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Abstract. We consider the antiferromagnetic Heisenberg and the repulsive Hubbard model on two N-site
one-dimensional lattices, which support dispersionless one-particle states corresponding to localized states
on triangular trapping cells. We calculate the degeneracy of the ground states in the subspaces with
n < Mmax, NMmax X N magnons or electrons as well as the contribution of these states (independent
localized states) to thermodynamic quantities. Moreover, we discuss another class of low-lying eigenstates
(so-called interacting localized states) and calculate their contribution to the partition function. We also
discuss the effect of extra interactions, which lift the degeneracy present due to the chirality of the localized
states on triangles. The localized states set an extra low-energy scale in the system and lead to a nonzero
residual ground-state entropy and to one (or more) additional low-temperature peak(s) in the specific heat.
Low-energy degrees of freedom in the presence of perturbations removing degeneracy owing to the chirality
can be described in terms of an effective (pseudo)spin-1/2 transverse X X chain.

1 Introduction

The thermodynamics of strongly correlated lattice models
is generally unknown. Although analytical (like conven-
tional Green’s function technique, dynamical mean-field
theory etc) and numerical (like series expansions, quantum
Monte Carlo algorithms, density-matrix renormalization
group algorithms etc) methods being applied appropri-
ately in particular cases may yield desired thermodynamic
characteristics with required accuracy, seeking for new ap-
proaches permanently attracts much attention of theoreti-
cians. One interesting idea for calculating thermodynamic
quantities for strongly correlated systems, which is related
to the concept of localized one-particle states [1-8], has
been suggested recently for some spin [9-13] and elec-
tron [14-16] models. The localized nature of one-particle
states for certain classes of lattices allows to construct
exactly the relevant many-particle states and to esti-
mate their contribution to thermodynamics using classi-
cal lattice-gas models which are much easier to investigate
than the initial quantum many-body models.

In previous investigations of localized states performed
for the antiferromagnetic Heisenberg and the repulsive
Hubbard model on highly frustrated lattices [1-16] mainly
bipartite trapping cells (e.g., a single bond or equilat-
eral even polygons) were considered. These cells have
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a nondegenerate ground state for the one-particle prob-
lem. Here we extend the discussion of localized states
to highly frustrated lattices with non-bipartite triangu-
lar trapping cells. A non-bipartite cell may have a de-
generate ground state for the one-particle problem that
may lead to new effects. For example, an equilateral tri-
angle has a two-fold degenerate one-particle ground state,
which can be related to the chirality degrees of freedom
associated to a triangle, see, e.g., references [17-19]. To
be specific, we consider (i) a one-dimensional (1D) lattice
which consists of corner sharing “double-tetrahedra” (the
double-tetrahedra chain) and (ii) a frustrated (cylindri-
cal) three-leg ladder having a triangular arrangement of
rungs (the frustrated triangular tube), cf. Figure 1. Both
lattice geometries have been considered in the literature,
see, e.g., references [20-23] for the double-tetrahedra chain
and references [24-32] for the triangular tube. Note that
triangular-tube geometry is realized for the copper spins
in [(CuClatachH)3Cl]Cly [27,28,30].

In what follows we consider two concrete models
of strongly correlated systems on these lattices, namely
the spin-1/2 Heisenberg model and the Hubbard model,
and discuss the consequences of the localized-magnon
or localized-electron states in combination with the ad-
ditional chirality degrees of freedom. We mention that
some similar ideas have been elaborated recently for the
Hubbard model on decorated lattices [22], for the coupled
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Fig. 1. (Color online) Two 1D frustrated lattices with triangu-
lar trapping cells: (a) the double-tetrahedra chain and (b) the
frustrated (cylindrical) three-leg ladder (or frustrated triangu-
lar tube). The exchange or hopping integrals along the equi-
lateral triangles are J2 > 0 or t2 > 0 (bold bonds) whereas all
other exchange or hopping integrals are J; > 0 or ¢1 > 0 (thin
bonds).

tetrahedral Heisenberg chain [20,21] as well as for the frus-
trated Heisenberg spin tube [25]. However, in these refer-
ences the concept of localized states has not been used
to discuss low-temperature thermodynamics for thermo-
dynamically large systems. Furthermore note that some
preliminary results of our study were announced in a con-
ference paper [33].

The paper is organized as follows. In Section 2 we dis-
cuss the one-particle spectra of the spin and electron mod-
els. In Section 3 we briefly illustrate the construction of
independent localized many-particle states and calculate
the contribution of these states to thermodynamic quan-
tities. Then, in Section 4, we illustrate how we can go
beyond the independent localized states taking into ac-
count additional low-energy excitations. Finally, in Sec-
tion 5 we consider symmetry-breaking interactions which
lift the degeneracy related to the chirality. We end up with
a summary of our findings in Section 6.

2 Heisenberg and Hubbard models
on one-dimensional lattices with triangular
traps

In our study we consider the two 1D lattices shown in
Figure 1. The double-tetrahedra chain (panel (a)) may be
viewed as a generalization of the diamond chain (the ver-
tical bond in the diamond chain is replaced by the equilat-
eral triangle). The frustrated triangular tube (panel (b))
may be viewed as a generalization of the frustrated two-
leg ladder (again the vertical bond is replaced by the equi-
lateral triangle). The essential geometrical element of the
considered lattices are these equilateral triangles (which
act as trapping cells, see below) together with the sur-
rounding (connecting) bonds attached to the sites of these
equilateral triangles. In order that the connecting bonds
should prevent the escape of the localized magnon (elec-
tron) from the triangular trap, each bond of the trap-
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ping cell together with two of the connecting bonds at-
tached to this trapping-cell bond must form an isosceles
triangle, i.e., the two connecting bonds must be equal to
each other. As a result, the considered lattices, owing to
destructive quantum interference, support localized one-
particle states. We note here that the lattices with triangu-
lar trapping cells may be constructed in higher dimensions
too, see references [22,34-36].
On these 1D lattices we consider the spin-1/2
Heisenberg antiferromagnet with the Hamiltonian
f[S = Zjijsi © 85 — hSz, S* = ZSZZ
(i) @

(2.1)

and the repulsive Hubbard model

Z Hy o+ UZ”LT”L& U >0,
o=1.1 i

Hyo, = Z tij (c;.f,acj,g + c;-’Ucl-,g) + 1 Z Nio. (2.2)
(i5) i

H, =

We use standard notations in equations (2.1) and (2.2)
and imply periodic boundary conditions. The exchange
or hopping integrals acquire two values: J; > 0 or to >
0 along the equilateral triangles (bold bonds in Fig. 1)
and J; > 0 or t; > 0 along all other bonds (thin bonds
in Fig. 1). It is convenient to label the lattice sites by a
pair of indeces, where the first number enumerates the
cells (m =1,...,N, N = N/4 for the double-tetrahedra
chain, N' = N/3 for the frustrated triangular tube, N is
the number of sites) and the second one enumerates the
position of the site within the cell, see Figure 1.

The one-particle (one-magnon or one-electron) energy
spectra for both models (with &~ = 0 or ; = 0) can easily
be calculated yielding

3
5172(,%) = —2J2 — Jl = —¢&,

3
eza(k) = —2J1 F Jy \/1 + 2(1 + cos k) (2.3)

(double-tetrahedra chain) and

3
61’2(11) = *2J2 — 3J1 = —&,

e3(k) = —=3J1 + 3J1 cosk (2.4)
(frustrated triangular tube) for the spin model and
e1,2(k) = —ta = —¢,
esa(k) =ta F \/tg + 6t2(1 + cos k) (2.5)
(double-tetrahedra chain) and
€12(Kr) = —t2 = —¢,
e3(k) = 2tg + 6t1 cos Kk (2.6)



M. Maksymenko et al.: Localized states on triangular traps and low-temperature properties...

(frustrated triangular tube) for the electron model. The
flat (dispersionless) bands €1 2(r) = —¢ allow to construct
such wave packets of Bloch states which are localized on
the triangles. These localized one-particle states read

1
(Sr_n,l +ws,, o+ W25;,3) [FM),

Syt “—’25;1,2 —+ ws;ﬁ) |[FM), (2.7)

where [FM) denotes the ferromagnetic background for the
spin model and

1
=g (e + ko + 0% ) 0]

1
=y (e +Pehateca) 0 @29)

where |0) denotes the vacuum state for the electron model
and the spin index o is omitted as irrelevant for the one-
electron problem. Here w = ¢27%/3,

The two-fold degeneracy of the flat bands corresponds
to two possible values of the chirality of the triangle. For
the spin model, after introducing the chirality operator for
a triangle [17-19]

4
Xm = \/3 (Sm,l : [Sm,2 X Sm,B])

21 B B
V3 [(3;,15m,2 - 5m,15;,2) Stn.3
+ (5;,25;,3 - 5;1,232,3) Sl

+ (52,35;,1 - 5;1,332,1) an,z] ) (2.9)
we find xom |£)m = £|E)m. We notice that the s* operators
in equation (2.9) yield simply 1/2 after acting of x,, on the
states |4),, (2.7). Therefore we may choose a simpler form
of the chirality operator omitting the operators s* and the
factor 2 in the last expression in equation (2.9), see, e.g.,
references [17-19]. Similarly, for the electron models

i
Xm =" 3
T

T T
+Cm»26m,3 + Cm,BCmal + C7"»3Cm,1

T T T
(Cm,lcm,2 + Cm»lcm,Q + Cm,QCm,3

(2.10)

and again Y, |£)m = £|£)m. In both spin and electron
cases the chirality operator x,, can be written in the form

Xm = |+)m(Flm = [=)m(=]m, (2.11)
see equations (2.7) and (2.8).

From the above equations for the spectra it is obvious
that the two-fold degenerate flat band becomes the lowest
one if Jo > 2.J; for the spin model or t5 > 2t¢; for the elec-
tron model. In what follows we assume that these ratios
are fulfilled.
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3 The contribution of independent localized
states to thermodynamic quantities

The spin Hamiltonian (2.1) commutes with S?, i.e., the
number of magnons n = N/2—5% is a good quantum num-
ber. Similarly, the electron Hamiltonian (2.2) commutes
with the operator of the number of electrons. Therefore,
we may consider the subspaces with different numbers of
magnons or electrons separately. Moreover, we may as-
sume at first h = 0 or = 0 and add trivial contributions
of these terms to the partition function later.

We start with the construction of localized many-
particle eigenstates in the subspaces with n < npax x NV
magnons or electrons based on the localized one-particle
states. These localized many-particle states are obtained
by occupying the triangular traps with localized parti-
cles. For the occupation of the traps certain rules have
to be fulfilled, cf. references [12,13] for spin systems and
references [14-16] for electron systems. For the spin sys-
tem on the frustrated-tube lattice localized magnons can-
not occupy neighboring triangular traps whereas for the
double-tetrahedra spin chain the occupation of neighbor-
ing triangular traps is allowed. Hence, according to refer-
ences [12,13], the frustrated triangular spin tube belongs
to the hard-dimer class and the double-tetrahedra spin
chain belongs to the hard-monomer class. For both elec-
tron models localized electrons may occupy neighboring
traps. Moreover, for the electron system it is possible that
two electrons forming a spin-1 triplet (e.g., two spin-up
electrons) but having different chiralities occupy the same
triangular trap. Note that the different trap occupation
rules lead finally to the different relations between the
maximum number of localized magnons (electrons) nmax
and the number of cells N given below.

It is helpful to bear in mind a simple picture visual-
izing this construction of the many-particle states [9-16].
Namely, the construction of the many-particle states may
be associated with a filling of an auxiliary lattice (a sim-
ple chain of AV sites in all cases considered here) by hard-
core objects (hard monomers or hard dimers) of two col-
ors corresponding to two values of the chirality. Moreover,
for the electron systems we have to take into account in
addition the electron spin and the Pauli principle. Thus,
the maximum filling with magnons is nyax = N (double-
tetrahedra Heisenberg chain) and nyax = N/2 (frustrated
Heisenberg triangular tube), whereas for the Hubbard
model the maximum filling with electrons is nya = 2N
for both lattices.

According to these rules the localized many-particle
states are product states of localized one-particle states
with the energy Epy — ne (EwxM is the energy of the fer-
romagnetic state) for the spin models or with the energy
—ne for the electron models, where ¢ is given in equa-
tions (2.3)—(2.6). Importantly, localized electron eigen-
states constructed in this way do not feel the Hubbard
interaction U. Furthermore, the localized many-particle
states are the only ground states in the corresponding sub-
spaces with up to npax magnons or electrons if J, > 2J;
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(spin models) or ty > 2t; (electron models)!. We have
checked this analyzing full diagonalization data for sev-
eral finite spin and electron systems. Obviously, there
is a large manifold of degenerate localized many-particle
ground states in an n-particle subspace. We will denote
this ground-state degeneracy in what follows as gy(n).
For the spin models the contribution of these localized
eigenstates to the partition function is given by

MNmax N
_ Bpm— g h—n(hy—h)
Zi (T, h, N) Z gn(n >
Mmax
EFM’ Py
Z gn(n
h1—h
z=e T , h=g¢, (3.1)

where the quantity gar(n) represents the degeneracy of
the ground-state manifold of n magnons in a system with
N traps. For the spin models it is easy to obtain (see
Refs. [12,13])

(double-tetrahedra chain) and
g/\/(n) = 2"Zhd(n,N) (3.3)

(frustrated triangular tube), where Zpq(n,N) is the
canonical partition function of n hard dimers on a pe-
riodic chain of N sites. The factor 2" in the above expres-
sions stems from the extra degeneracy due to the chirality
degrees of freedom. After substitution of gar(n) from equa-
tions (3.2) or (3.3) into equation (3.1) one obtains the free
energy

‘Flm (T7 ha N) EFM N

NG =\ 72Nh7T1n(1+2z) (3.4)
(double-tetrahedra chain) or
Fin(T,h.N) _ Een N (0 +X)
N N2V N '
1 1

(frustrated triangular tube). At low temperatures and for
magnetic fields i around the saturation field h; = ¢
the contribution of localized states is dominating. Hence,

L Although all previous numerical studies on finite spin and
electron systems show that a finite separation of the flat one-
particle band from the next dispersive band ensures complete-
ness of the localized many-particle states, we are not aware of
a comprehensive rigorous proof of this statement. For the re-
pulsive Hubbard model the arguments which are based on the
fact that Hy = U >, ns,1ns, is a positive semidefinite opera-
tor for U > 0 (i.e., it can only increase energies) were used to
illustrate the completeness of localized many-particle states in
references [14-16], see also [37].
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Fm(T, h,N) given in equations (3.4) and (3.5) yields a
good description of the low-temperature physics near the
saturation field of the full spin model.

Analogously, the contribution of the localized eigen-
states to the grand-canonical partition function of the elec-
tron models is given by

Mmax
> gn(ne
n=0

Nmax

> gn(n)e", z=er.
n=0

To avoid the calculation of ga(n) one may rewrite equa-
tion (3.6) as a sum over occupation numbers of each cell
taking into account (i) that the cells are independent and
(ii) that each cell may contain 0, 1, or 2 electrons having
the degeneracy of the ground states g1(0) =1, ¢1(1) = 4,
or g1(2) = 3, respectively, see references [14-16]. Thus, we
have

_ (—etmm
T

Ele<Ta s N) =

(3.6)

Ele<Ta s N) =

>

n1=0,1,2 ny =

N
l > gl(n)zn‘| = (1442432 (37
n=0,1,2

Z gl(nl)... ni+...4ny

0,1,2

g1(nn)z

for both lattices, the double-tetrahedra chain and the frus-
trated triangular tube. Equation (3.7) immediately yields
the required grand-thermodynamical potential

Qle(Tv s N) _
N =

Again, at low temperatures and for chemical potentials u
around po = € the contribution of localized states is dom-
inating, and 2i.(7T, pt, N) given in equation (3.8) yields a
good description of the low-temperature physics of the full
electron model.

We mention that the obtained formulas for the free en-
ergy and the grand-thermodynamical potential are simi-
lar (but not identical) to those derived in previous pa-
pers [12-16], the deviations from the previously derived
equations are related to the chirality degrees of freedom.

Let us briefly discuss the low-temperature thermody-
namics as it follows from equations (3.4), (3.5), and (3.8).
The main low-temperature features of the spin models for
h around hy are as follows: (i) a jump in the ground-state
magnetization curve at the saturation field hy with a pre-
ceding wide plateau, (ii) a nonzero residual ground-state
entropy at the saturation field hq, (iii) a low-temperature
peak in the specific heat, which moves to T'= 0 as h ap-
proaches hy. Correspondingly, for the electron models we
have: (i) a zero-temperature jump in the averaged num-
ber of electrons as a function of the chemical potential
at u = po, (ii) a nonzero residual ground-state entropy
for p = pp (or as a function of the electron concentration
c=mn/N for ¢ <2), (iii) a low-temperature peak in the

—Tln (1442 +32%). (3.8)
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Fig. 2. (Color online) Specific heat C(T, h, N)/N vs. temper-
ature T for h around h; for ((a) and (b)) the N = 20 double-
tetrahedra spin chain and ((c) and (d)) the N = 18 frustrated
triangular spin tube. J; = 1, Jo = 5; symbols correspond
to exact-diagonalization data, dashed lines correspond to in-
dependent localized-magnon predictions derived from equa-
tions (3.4) and (3.5) (abbreviation lm), dotted lines correspond
to interacting localized-magnon predictions derived form equa-
tion (4.2) (abbreviation LM, for the frustrated triangular tube
only). The thin dashed and thin dotted lines in panels (c) and
(d) correspond to localized-magnon predictions in the limit
N — oo. Note that some curves in panels (c¢) and (d) practi-
cally coincide. Namely in panel (c), thin dashed and thin dot-
ted lines are indistinguishable at low temperatures, whereas at
higher temperatures dashed and thin dashed (dotted and thin
dotted) lines coincide. In panel (d) dashed and thin dashed
(dotted and thin dotted) lines cannot be distinguished.

grand-canonical specific heat C(T, u, N), but a vanishing
low-temperature canonical specific heat C(T,n,N) = 0
for n < nmax (see also the discussion in Ref. [38]).

The temperature dependence of the specific heat of the
spin models is shown in Figure 2. By comparison of the
hard-core data obtained from equations (3.4), (3.5) with
exact-diagonalization data of the full spin model we can
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Fig. 3. (Color online) Residual ground-state entropy S(T° =
0,n,N)/N vs. electron concentration ¢ = n/N for the

Hubbard model with t2 > 2¢; on the double-tetrahedra chain
and the frustrated triangular tube (the data for both systems
are identical). Note that the curves becomes indistinguishable
in the scale of the figure as N increases.

estimate the range of validity of the hard-core descrip-
tion. The low-temperature parts of the curves for the spe-
cific heat obtained from exact diagonalization (symbols)
and from the hard-core description (dashed lines) coin-
cide at least up to 7' = 0.15. For both Heisenberg chains
the specific heat shows in addition to the typical high-
temperature maximum around 7' ~ Js a low-temperature
maximum which is well described by the hard-core mod-
els. This low-temperature maximum can be ascribed to an
extra low-energy scale set by the localized eigenstates. In-
terestingly, for the frustrated triangular tube there is even
a third maximum which can be related to a third energy
scale set by another class of highly degenerate eigenstates,
the so-called interacting localized-magnon states, which
will be discussed in the next section.

There are no finite-size effects in the hard-monomer de-
scription (3.4). To illustrate the finite-size dependence in-
herent in the hard-dimer description (3.5), we compare in
panels (¢) and (d) of Figure 2 results for finite N (dashed
lines) with data for N’ — oo (thin dashed lines). Clearly,
finite-size effects are obvious only at low temperatures for
h below the saturation field hq.

The high degeneracy of the localized eigenstates leads
to a residual ground-state entropy given by S(T = 0,h =
hi,N)/N = 1n3 = 1.099 (double-tetrahedra spin chain)
and S(T = 0,h = hy,N)/N = In2 ~ 0.693 (frustrated
triangular spin tube). Due to the chirality these numbers
exceed the corresponding results reported in reference [13]
for the standard diamond spin chain S(T" = 0,h =
h1, N)/N =1n2 =~ 0.693 and the frustrated two-leg spin
ladder S(T = 0,h = hy, N)/N =1In[(1 + v/5)/2] ~ 0.481.

For the Hubbard model we have calculated curves
for the grand-canonical specific heat similar to those
for the Heisenberg model, which for the sake of brevity
are not shown here. They also exhibit an additional
low-temperature maximum for p < po and u 2 o
which is well described by the localized eigenstates, see
also references [14-16]. The residual ground-state entropy
limr—0S(T,n,N) = Ingp(n) as a function of the elec-
tron concentration ¢ = n/N for the Hubbard model
is shown in Figure 3. According to equation (3.6) for



402

finite systems one has nlgy(n) = d"Zl(z, N)/dz"|.—0.
Using equation (3.7) one obtains gp(n) for (small) fi-
nite A. For N/ = 4 the analytical predictions which
follow from equations (3.7), (3.8) coincide with exact-
diagonalization data for the full Hubbard model, e.g.,
ga(n) = 1,16,108,400,886,1200,972,432,81 for n =
0,1,2,3,4,5,6,7,8. Using equation (3.8) by means of
standard relations of statistical mechanics we find for
the residual ground-state entropy in the thermody-
namic limit S(T = 0,n,N)/N = In(1 + 4z + 32%) —
(4zlnz + 62%2Inz2)/(1 + 42 + 32?) with 2 = [2(1 — ¢) —
Ve —2c+4]/[3(c — 2)], ¢ = n/N, see the dotted curve
in Figure 3. This quantity reaches its maximum, 31n2 ~
2.079, at ¢ = n/N = 5/4. Moreover, it equals In 3 ~ 1.099
at ¢ = n/N = 2. Obviously, the chirality leads to an in-
crease of the residual ground-state entropy. While for the
Hubbard model on the diamond chain and the frustrated
two-leg ladder S(T" = 0,0 = po, N)/N = In3 ~ 1.099
(see Ref. [15]), for the considered lattices S(T = 0, =
po, N)/N =31In2 ~ 2.079.

4 Beyond independent localized magnons

For the frustrated-tube spin model we can extend the
hard-dimer description taking into account additional
low-energy states following the lines described in refer-
ence [39,40]. If one allows the occupation of neighboring
traps by localized magnons (i.e., relaxing the hard-dimer
rule) one has also an eigenstate of the spin Hamiltonian,
however with a higher energy. More precisely, if two lo-
calized magnons become neighbors the energy increases
by Ji. Importantly, these localized-magnon states are also
highly degenerate and they are the lowest excitations
above the independent localized-magnon ground states
for S = N/2,...,N/2 — N/2 if Jy > JS§ (strong-
coupling regime). Based on finite-size calculations for
N = 18,...,72 we estimate J5/J; =~ 2.68 > 2. These
additional eigenstates can be described as interacting
localized-magnon states, where the repulsive interaction
V = J; is responsible for the energy increase with respect
to the independent localized-magnon states. Taking into
account this finite repulsion V' in the partition function
of the lattice-gas model with nearest-neighbor interaction
we have then (instead of Eq. (3.1))

Epv— N h
Zim(T b, N)y=e" 7" 3 03" gi(m)

n1=0,1 nan=0,1

_ V(ninaotnong+...+tnprng)
X ... g1(na)z™ TV e T

(4.1)
with ¢1(0) = 1, ¢g1(1) = 2 and z is defined in equa-
tion (3.1). In equation (4.1) we have used a represen-
tation in terms of the cell occupation numbers n;, cf.
equation (3.7). Obviously, equation (3.1) is obtained from
equation (4.1) for V' — oo. Evaluating the sums in equa-
tion (4.1) by means of the transfer-matrix method we ar-

The European Physical Journal B

rive at the following result for the free energy

Fum(T,h,N) _ Erm N . In (MY + )
N N

2N N ’
1 _Vv 1 % _ 2V
)\1,2224—26 T + 4+2z—ze T +z2e” T .
(4.2)

Note that the lattice-gas model with finite repul-
sion (4.1), (4.2) takes into account 3V ~ 1.442" states? of
the 2V eigenstates of the initial quantum spin model (2.1),
whereas hard-dimer model (3.1), (3.3), (3.5) has only
2N~ 1.260N states®. On the other hand, the hard-
monomer model (3.1), (3.2), (3.4) has 3V ~ 1.316"
states?.

The specific heat derived from equation (4.2) is plot-
ted in Figure 2, panels (¢) and (d), dotted and thin dotted
lines. Indeed, the inclusion of the interacting localized-
magnon states leads to a significant improvement of the
lattice-gas description. The lattice-gas model with finite
repulsion (4.1), (4.2) covers the thermodynamics of the
full spin model at least up to T' = 0.9 for h ~ h; including
the two maxima below the typical high-temperature max-
imum around 7" ~ J5. Again finite-size effects are more
important at low temperatures for h below the satura-
tion field A1, see thin dotted lines in panels (¢) and (d) of
Figure 2.

The interacting localized-magnon states being excita-
tions for S* = N/2,...,N/2 — N /2 can become ground
states for smaller values of S*. The ground-state magne-
tization curve (M) = 25*/N vs. h for the frustrated tri-
angular spin tube presented in reference [25] exhibits two
plateaus at (M) = 2/3 for hg < h < hy and at (M) =1/3
for hs < h < hs and two jumps at h = hy and h = ho,
where h1 = 3J1 +3J2/2, ho = J4 +3J2/2, and hg = 2J;.In
the language of localized magnons the 2/3-plateau corre-
sponds to the maximum filling with n = nya = N/2 in-
dependent localized magnons (i.e., every second trap is oc-
cupied and S = N/2—N/2 = N/3). f nmax < n < 2npmax
(i.e., N/2 =N < S% < N/2 — N/2), the ground states in
the strong-coupling regime are obtained by filling the re-
maining empty cells (i.e., the hard-dimer rule is relaxed)
thus having interacting localized-magnon states as ground
states. Then the very broad 1/3-plateau corresponds to
the complete filling of all cells with n = 2n,.« = N local-
ized magnons. Hence, with the improved effective theory
given in equation (4.2) we can provide an accurate descrip-
tion of the low-temperature physics of the frustrated trian-
gular spin tube in the strong-coupling regime not only near
the saturation field h; up to quite large temperatures as
shown in Figure 2, but also for much lower magnetic fields
in the entire region of the 2/3-plateau and even for fields

2 Each site of the auxiliary lattice may be either empty or
occupied by the localized magnon with two possible values of
the chirality.

3 To find Zﬁfz/ggj\r(n) = ZQ[:/S 2" Zna(n,N) for N' —
oo we note that the required number is given by
S 2" Zna(n, N) o (L V14 42)/21Y at z =2

— 00
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CThN)/N

Fig. 4. (Color online) Specific heat C(T, h, N)/N vs. tempera-
ture T for finite frustrated triangular spin tubes of N = 18 sites
(N =6 cells) with J1 =1, J» =5 (h1 = 10.5) for various mag-
netic fields down to values below he = 8.5 (lines — lattice-gas
model with finite repulsion, symbols — exact-diagonalization
data for the full spin model).

within the 1/3-plateau being not too far from hs, see Fig-
ure 4. It might be interesting to recall that the lattice-gas
model with finite repulsion provides similar description of
the frustrated two-leg spin ladder around both character-
istic fields hy and hg [39,40]. This is not the case for the
frustrated triangular spin tube because of the chirality
degrees of freedom, compare the results for Ah = 10 and
h =9 in Figure 4.

5 Lifting the degeneracy due to chirality
degrees of freedom

As discussed above the chirality degrees of freedom lead to
an extra degeneracy of the independent localized-magnon
or localized-electron ground states in the subspace with
n < Nmax Magnons or electrons. Moreover, the interacting
localized-magnon states discussed for the frustrated tri-
angular spin tube also carry this extra degree of freedom.
This degeneracy of the eigenstates owing to the chiral-
ity may be lifted by a small symmetry-breaking perturba-
tion. As a rule, perturbations of ideal model Hamiltonians
may lead to a more realistic description of real systems.
We consider here separately for the spin systems the
case of a Zeeman-like perturbation (which corresponds to
a Dzyaloshinskii-Moriya interaction between neighboring
spins in a triangular trap), see Section 5.1, and the case of
an X X-like perturbation acting on (pseudo)spin variables
representing chiralities (which corresponds to a four-site
interaction between spin pairs in neighboring traps), see
Section 5.3. For the Hubbard model appropriate pertur-
bations correspond to a magnetic field perpendicular to
the triangular traps and a four-site electron-electron in-
teraction, see Sections 5.2 and 5.3.

5.1 Dzyaloshinskii-Moriya interaction

We consider the spin system in the subspaces with n <
Nmax Mmagnons. The ground state has the energy Epyn —ne
(h = 0) and the degeneracies gp(n) are given in equa-
tions (3.2) or (3.3). The factor 2™ present in these formu-
las for gar(n) is due to the chirality of localized magnons.
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We introduce the (pseudo)spin-1/2 operators

.1 1
Tm = 9 ([ m{+lm = 1=ym{=|m) = 2Xma (5.1)

(i/\/g)(sr—;,lsr_nﬂ - 3;,15;,2 + 3;,25;,3 -

2SS aSm 1 — S g8} 1) is the chirality operator,
see equation (2.9) and the discussion below this equation.
We now add to the spin Hamiltonian (2.1) a small pertur-
bation

where x,, =

(1 _ e + S
Hs = 2\/3 Z (Sm,lsm,2 ~ S5m,15m,2

m
+ - ot + - ot
+3m,25m,3 - Sm,QSm,B + Sm,BSm,l - Sm,SSm,l)

x Y Y x
D E (Sm,lsm,Q — S5m,15m,2
m

x Yy Yy x x Yy Yy x
+Sm,28m,3 ~ Sm,25m,3 + Sm,35m,1 — Sm,35m,1) )

(5.2)

where the last expression in equation (5.2) corresponds
to a Dzyaloshinskii-Moriya interaction D = De,, D =
e / V/3 between neighboring spins within each triangular

trap. Note that the perturbation Hsgl) commutes with S7.
According to the discussion of the chirality operator (2.9)
in Section 2 it is obvious that the localized states are also
eigenstates of the perturbation Hamiltonian (5.2). The set
of 2™ degenerate ground states in the unperturbed sys-
tem belonging to one particular spatial configuration of
n magnons placed in a certain (allowed) set of traps now
splits into n + 1 subsets of levels. The subsets are charac-
terized by the magnon numbers ny and n— (ny+n_ =n),
belonging to the chirality indeces + and —, respectively.
There are n!/(ny!n_!) degenerate states in the subset
with energy Epy — ne + (ny — n_)e™ /2. The effective
Hamiltonian acting in the subspace of the gx(n) former
n-magnon ground states of the unperturbed system reads

Hy + HY = Epyg — ne + W Z T2, (5.3)

where the sum runs over the n occupied traps only.

We consider now the partition function of the spin
model with the Hamiltonian Hs + H.", equations (2.1)
and (5.2), at low temperatures and h close to hy. The dom-
inant contribution to the partition function of the spin sys-
tem comes from the low-energy degrees of freedom, which
are governed by the Hamiltonian (5.3). Therefore the par-
tition function is given by equation (3.1) replacing gar(n)
by gan(n) = {2cosh[e®/(27)]}"C} (double-tetrahedra
chain) and gar(n) = {2cosh[e™ /(2T)]}"* Zna(n, N) (frus-
trated triangular tube), cf. equations (3.2) and (3.3). As
a result, the free energy reads

Fm(T,h,N) Eey N e
- Y h—Tw(1+2cosh
N N T oN t ( tecoshyp2

(5.4)
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Fig. 5. (Color online) Specific heat C(T,h, N)/N vs. tem-
perature T' for h = 0.98h; for the spin model (2.1), (5.2)
on (a) the double-tetrahedra chain and (b) the frustrated
triangular tube. Exact-diagonalization data (symbols) ver-
sus analytical predictions (lines) according to equation (5.4)
(double-tetrahedra chain) and improved equation (5.5) (frus-
trated triangular tube) for finite systems of A/ = 4 cells with
Ji =1, J; =5, and D =0, 0.025, 0.05, 0.1.

(double-tetrahedra chain) and

Fi(T.h,N) _ B N (0 + X))
N N 2N N ’
1 1 e®
= h .
A2 2i\/4+2COS o7 ? (5.5)

(frustrated triangular tube), cf. equations (3.4) and (3.5).
Similar to Section 4, we can take into account interacting
localized-magnon states also for the perturbed frustrated

triangular tube described by the Hamiltonian Hg + Hs(l).
The improved free energy Fim(T,h,N) is then given
by equation (4.2), where 2z has to be substituted by
2 cosh[eM) /(2T)]z.

In Figure 5 we compare exact-diagonalization data for
perturbed spin systems with predictions based on equa-
tion (5.4) and improved equation (5.5). Small perturba-
tions lead to splitting of the ground-state levels and there-
fore to arising of one more low-energy scale. As a result,
low-temperature features close to h; are more subtle. Thus
temperature profiles of the specific heat for the spin sys-
tems show more tiny features which can be seen in Fig-
ure 5. For a special set of parameters the temperature
dependence C vs. T' may exhibit even three (four) max-
ima for the double-tetrahedra chain (frustrated triangu-
lar tube). The low-temperature maxima are excellently
described within the effective low-energy theory, see Fig-
ure 5.

5.2 Electrons in a magnetic field

In analogy to the above discussion for perturbed spin
models, we consider the case of n < nyax Hubbard elec-

The European Physical Journal B

trons (2.2) with a perturbation

>

o=T1,l
1 .
Hé,cz = Zgz (Cjn,l,crcm»lff + Cm,l»UCIn,ZU
m

O

0,0

HV =

T T
+ Cm,2,acm7370 + Cm72»acm,3,a

+ Cjn,S,crcmyLU + Cm73»acin,l,a'> ’ (56)

where i¢g is a pure imaginary component of the hop-
ping integral between neighboring sites along the triangu-
lar traps. For the perturbed Hamiltonian the number of
electrons remains a conserved quantity and the localized
states are its eigenstates, cf. the chirality operator (2.10) in
Section 2. The perturbation considered here corresponds
to a magnetic field perpendicular to the triangular trap.
Then the hoping integral ¢;; acquires the Peierls phase fac-

tor e(2im/®0) [} dr-A - where @ = he/e is the flux quantum,

A is the vector potential of the external magnetic field,
see references [41-43]. The effective Hamiltonian acting in
the subspace of the gar(n) former n-electron ground states
of the unperturbed system reads

n€+el)z

He +HY = (5.7)

where ¢(1) = 72\/3g and the sum runs over the n occupied
traps only.
We consider now the grand-canonical partition func-
tion of the electron models with the Hamiltonian H, +
M equations (2.2) and (5.6), at low temperatures and
close to pg = €. The dominant contribution to the grand-
canonical partition function comes from the low-energy
states, which are governed by the Hamiltonian (5.7). Re-
peating the arguments which lead to equation (3.8) we
arrive now at

1
Qlea;{/“’N) = Th (1 + 4 cosh ;Tz+3z2), (5.8)
where z = e(#=#)/T cf. equations (3.6)—(3.8).

We focus on the low-temperature behavior
of the entropy of the perturbed electron model.
We can easily find, using a simple counting of
states, the residual ground-state entropy, namely,
S(r = 0,n,N) = In(@2"Cy) for n = 0,...,N
and S(T = 0,n,N) = In(3nNoN-ncp- N) for
n=N,...,2N. In the thermodynamic limit N — oo this
gives: S(T'=0,n, N)/N =cln2—clnc— (1 —c¢)In(l—¢)
for 0 < ¢ < 1 and S(T" = 0,nN)/N =
(c—=1)In3+(2—c¢)ln2—(c—1)In(c—1)—(2—¢)In(2—¢)
for 1 < ¢ < 2, where ¢ = n/N. For the special
electron concentratlons ¢c = 1 and ¢ = 2 one has
S(T = 0)/N = In2 = 0.693 and S(T = 0)/N =
In3 =~ 1.099, respectively. For finite temperatures
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Fig. 6. (Color online) Entropy S(T',n,N')/N vs. electron con-
centration ¢ = n/N at low temperatures (a) T = 0.015,
(b) T = 0.075, and (c¢) T' = 0.15 for the Hubbard model (2.2)
with t2 > 2¢t; completed by small perturbation (5.6) with
g = 0.1 on the double-tetrahedra chain and the frustrated tri-
angular tube. Analytical predictions are obtained according to
equation (5.8) for systems of N = 8, 16, 32, and ' — oo cells.

we find from equation (5.8) S(T,n,N)/N = In{l +
4cosh[eM) /(2T)]z + 322} — {2()/T) sinh[e™M) /(2T)]z +
4cosh[eM) /(2T)]zInz + 622Inz}/{1 + 4 cosh[eM) /(2T)]z
+ 322} with 2z = {2(1 — ¢)coshleM/(2T)] —

\/4(0 —1)2 cosh?[eM) /(2T)] — 3¢(c — 2)}/[3(c — 2)].

In Figure 6 we show the entropy S(T',n, N) of the per-
turbed electron systems obtained by the above given for-
mulas versus the electron concentration ¢ = n/N. To es-
timate the region of validity of these results we compared
first exact-diagonalization data for the grand-canonical
specific heat C(T, u, N) for finite perturbed electron sys-
tems (e.g., for N' = 2, ¢4 = 1, to = 3 and ¢y = 5,
g = 0.1, p = 0.9810, 1o, 1.0219) with analytical results
for C(T, pu, N) based on equation (5.8). (For the sake of
brevity we do not show these results explicitely). We find
an excellent agreement between these results at least up
to T = 0.2 for to = 3 (and even for higher temperatures
for larger values of t3). For nonzero but low temperatures
(e.g., T = 0.15) S(T,n,N)/N behaves as in Figure 3,
see panel (c¢) of Figure 6. However, at lower temperatures
(e.g., T = 0.075 and T = 0.015) the smallest energy
scale comes into play, and the entropy changes remain-
ing nonzero in the ground state, see panels (b) and (a) of
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Figure 6. In spite of the partial degeneracy lifting due to
the perturbation (5.6), the ground states remain hugely
degenerate and exhibit a nonzero residual ground-state
entropy for electron concentrations 0 < ¢ =n/N < 2, see
panel (a) of Figure 6 (7' = 0.015).

5.3 Interacting pseudospins

Now we consider the double-tetrahedra spin chain at the
(M) = 1/2 plateau (i.e., there are n = nyax = N magnons
in the spin system, that is the so-called localized-magnon
crystal state). We add a perturbation which can be un-
derstood as an X X interaction of chirality pseudospins
on neighboring trapping cells. The (pseudo)spin raising
and lowering operators are defined as

T;; = [H)ml=lms Tom = [=)m{+lm- (5.9)

They can be expressed by bilinear forms in the spin op-
erators s~ and st attached to the mth cell, see equa-

tion (2.7). Clearly, 7.5|4+)m = 0, 75]=)m = |[+)m,
Tl +)m = |=)m, Ton|=)m = 0. The perturbation added
to the Hamiltonian (2.1) reads
(2 _ € . e
H® = 0 Z [($pm1 +wspm o +w?sy, 5)
X (Sp1 T wsy, 0 +wsy 5)

— 2 — —
X (5m+1,1 TWi S 412t w8m+1,3)

+ 2+ +
X (sm+171 +wisp 0t wsm+1,3) + h.c.] ,
(5.10)
where the sum runs over all trapping cells and w = e27%/3,
Obviously, that corresponds to certain four-site interac-
tions with the interaction constant € /9. The perturba-

tion Hamiltonian Hs(2) commutes with S%. Moreover, after
acting on the localized-magnon crystal state the perturba-

tion Hamiltonian HS(2) changes the chirality indeces only.
The effective Hamiltonian acting in the subspace of the
localized-magnon crystal states of the unperturbed sys-
tem now reads

N
HS+H§2) = Epp —ne+e? Z (T;;T,n:_i_l + h.c.) . (5.11)

m=1

Due to the perturbation HéQ) the 2V _fold degenerate
ground state of the double-tetrahedra spin chain with
n = Nmax = N magnons splits into N + 1 groups of
sublevels. Moreover, the effective (pseudo)spin-1/2 XX
chain (5.11) is the exactly solvable model [44-46] and
therefore we immediately obtain for the partition func-
tion Z(T,n,N), n = N/2 — S# of the double-tetrahedra
spin chain with a Hamiltonian given by the sum of the
terms in equations (2.1) and (5.10) the following dominant
contribution at low temperatures for the magnetization

5% = N/2 — nmax = N/4

Bpn—Ne €@ cosk
Zlm<Ta Tmax, N) =e FMT 1;[ 2 cosh T ’ (512)
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k=2ml/N, |l =-N/2,-N/2+1,....N/2 -1 (we as-
sume without loss of generality that N is even). Low-
temperature thermodynamic quantities in the thermody-
namic limit A/ — oo follow from the free energy

Em (T7 nma)uN) o EFM i
N N

T [T @ cosk
— 1 .
o / drIn (2 cosh T )

—1T

(5.13)

Note that the perturbation (5.2) can also be included.
Then the formula (5.13) has to be slightly modified,
namely, 2¢(?) cos k in equation (5.13) has to be replaced by
€M) 4+ 26 cos k. Thus, including both perturbations (5.2)
and (5.10) we arrive at an effective (pseudo)spin-1/2
X X chain in a transverse field which governs the low-
temperature physics of the double-tetrahedra chain in the
subspace with n = 1y, = N magnons (i.e., at the magne-
tization S* = N/2 — nmax = N/4). It might be interesting
to mention here that the spin-1/2 X X chain in a trans-
verse field also emerges as an effective low-energy model
for the diamond spin chain at high magnetic fields if the
conditions ensuring the presence of localized magnons be-
come slightly violated [47]. For such a generalized diamond
chain the spin-1/2 transverse X X chain describes a weak
spreading of the independent localized magnons over the
whole chain. Another related model, the so-called spin-
chirality model, is used for effective description of three-
leg spin tubes within the perturbation theory approach
from the strong rung-coupling limit, see reference [31] and
references therein. We stress here that in the case at hand
the spin-1/2 transverse X X chain describes propagating
of chirality over the whole chain in the localized-magnon
crystal state.

We consider next the frustrated triangular tube again
in the subspace with n = np.x = AN/2 magnons (i.e.,
at the (M) = 2/3 plateau). The ground state, besides
the degeneracy owing to chirality, is two-fold degener-
ate, i.e., the independent localized magnons may occupy
either even-site or odd-site sublattice only. The pertur-
bation to lift the degeneracy of the localized-magnon
crystal state with respect to chirality that has to be
added to the Hamiltonian (2.1) corresponds to HgQ) =
e Zﬁ;l (Th Tie +hc.), Le., it represents now an X X
interaction between next-nearest-neighbor (pseudo)spins.
In the initial spin model it is a certain four-site interaction
which contains the sites of next-nearest-neighbor cells.

Finally we discuss briefly corresponding perturbations
for the electron systems in the sector of n = N elec-
trons*. To have exactly one electron per cell we intro-
duce an appropriate extra repulsion [22] (i.e., we con-
sider an extended Hubbard model). Since the chirality

4 Note that the subspace of n = nmax = 2N electrons is not
of interest in the context of the considered issue, since in the
ground state all N cells are occupied by two electrons with
different chiralities. The degeneracy of this ground state is 3V
and is connected with three components of the triplet state at
each cell.
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and spin of electron states in each cell are not fixed,
we have a 4V-fold degenerate ground state. A perturba-
tion that lifts the degeneracy owing to chirality (indepen-
dently of the spin) again corresponds to an X X interac-

tion between (pseudo)spins given by HP = Doty Héi),,
H((fc), =@ Zﬁ;l (T Tons1 +hoc.), where 725 are defined

m

by equations (5.9) and (2.8). Note that there are no spin
(2)

0,0
of the perturbed Hamiltonian is 2V-fold degenerate owing
to the electron spin. Thus, if the perturbation interaction

indeces in the r.h.s. of the formula for Hy™, i.e., each state

HC(Q) (which contains, generally speaking, four-site terms
in the electron-electron interaction between the neighbor-
ing cells) is switched on, the thermodynamic properties
of the extended Hubbard model with n = N electrons
on both considered lattices are related to those of the
(pseudo)spin-1/2 X X chain, see the corresponding results
for the spin model, equations (5.12) and (5.13).

6 Conclusions

To summarize, we have considered the low-temperature
properties of the spin-1/2 antiferromagnetic Heisenberg
model and the repulsive Hubbard model on two 1D lat-
tices containing equilateral triangles. The lattices under
consideration have a dispersionless lowest-energy band for
the one-particle problem, and the corresponding localized
one-particle states can be trapped on the triangles. Due
to the triangular geometry of the trapping cells the lo-
calized one-particle states are characterized by two pos-
sible values of the chirality. Using the localized nature
of the one-particle states we can construct corresponding
many-particle low-energy states. Moreover, we estimate
their contribution to thermodynamics exploiting classi-
cal lattice-gas description of the low-energy degrees of
freedom of the quantum models. The lattice-gas descrip-
tion yields explicit analytical formulas for thermodynamic
quantities at low temperatures in a certain region of the
magnetic field (chemical potential) for the spin (electron)
model. We investigate the effects of the localized states
on the low-temperature thermodynamics. In detail we dis-
cuss the specific heat C(T, h, N') for the spin systems and
the entropy S(T,n,N) = fOT dT'C(T',n,N)/T" for the
electron systems. Both quantities exhibit fingerprints of
highly-degenerate localized states, namely, additional low-
temperature peaks of C(T,h,N)/N or a finite residual
ground-state entropy S(T° = 0,n,N)/N. Since the con-
sidered systems show a significant zero-temperature en-
tropy, they may exhibit an enhanced magnetocaloric ef-
fect [48-51].

The degeneracy related to the chirality degrees of free-
dom may be lifted by small symmetry-breaking interac-
tions. For the perturbed system we provide an effective
description of low-energy degrees of freedom of the consid-
ered spin and electron models in terms of a (pseudo)spin-
1/2 XX chain in a transverse field. It might be inter-
esting to note that in contrast to usual cases, where the
spins are related to the spin degree of freedom of elec-
trons, the (pseudo)spins emerging in our case are related
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to the charge degree of freedom of electrons and they sim-
ply stand for a (pseudo)spin representation of the chiral-
ity. Moreover, the chirality inherent in the considered spin
models on geometrically frustrated lattices may also give
rise to a chain of quantum (pseudo)spins 1/2.

It is worthy noting that quantum spin chains are often
used in quantum information theory both for illustration
of basic concepts and as candidates for physical imple-
mentation [52-54]. From such a perspective, manipulation
with chirality [65-57] realized in (pseudo)spin chains may
be an interesting subject for further studies.

Finally, although the main advantage of the consid-
ered strongly correlated lattice models is the possibility
to elaborate a theoretical description of thermodynamics
which works perfectly well at low temperatures for high
magnetic fields or low concentrations of electrons, we may
mention here some experimental solid-state realizations of
similar systems, see references [30,58,59]. As it has been
mentioned already in Section 1, one possible example is
the magnetic compound [(CuClytachH)3Cl|Cly, which is
known as an unusually perfect frustrated spin-tube mate-
rial that is quite similar to the model considered in our
paper. However, some relevant differences in relation to
our study have to be pointed out, cf. reference [30]. First,
while the intertriangular diagonal exchange integrals ac-
quire the value Ji/kg = 3.9 K, the leg exchange integral
seems to vanish in this material J{ = 0. From theoreti-
cal point of view, this circumstance would require a per-
turbation scheme to deviate from the condition J| = J;
adopted in our study, which is beyond the scope of the
present paper. Second, the strength of the rung exchange
integral is Jo/kp = 1.8 K yielding J3/J1 ~ 0.46 < 2,
whereas in our study we assume that Jy is at least two
times larger than J;. Inserting formally the values of J;
and J; given above into the formula hy = 3.J3/2+ 3.J; and
using a simple relation gssh =~ 1.49J, where h is in tesla
and J is in kelvin, one gets for s = 1/2 the value h; ~ 21.5
T. Unfortunately, as explained above, the spin-tube com-
pound [(CuClatachH)3Cl]Cly cannot be used for exper-
imental verification of theoretically predicted effects. We
also do not know whether the Dzyaloshinskii-Moriya inter-
action should be invoked to explain experimental data for
this compound. Therefore, although the theoretical results
observed in our work should prove valuable in understand-
ing the effects of dispersionless one-particle states corre-
sponding to localized states on triangular traps on the
observable properties of certain strongly correlated mate-
rials, there are to our knowledge, no experimental results
yet available that enable a direct comparison between the-
ory and experiment to be made. However, with further
progress of material science this lack of experimental data
may be resolved in the future.

The numerical calculations were performed using ALPS pack-
age [60] and J. Schulenburg’s spinpack®. The authors thank
A. Honecker for fruitful discussions. The present study was
supported by the DFG (projects Ri615/18-1 and Ri615/19-1).
M.M. acknowledges the kind hospitality of the University of
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the University of Magdeburg in 2010 and 2011.
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