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ABSTRACT 

A microscopic theory is developed to describe light-induced deformation of azobenzene polymers of different chemical 
structures: uncross-linked low-molecular-weight azobenzene polymers and cross-linked azobenzene polymers 
(azobenzene elastomers) bearing azobenzene chromophores in their strands. According to the microscopic theory the 
light-induced deformation is caused by reorientation of azobenzene chromophores with respect to the electric vector of 
the linearly polarized light, E. Theoretical calculations of the order parameter of short azobenzene molecules (oligomers) 
affected by the light show that the sign of the light-induced deformation (expansion / contraction along the vector E) 
depends strongly on the chemical structure of the oligomers. The conclusion of the theory about different signs of the 
light-induced deformation of low-molecular-weight azobenzene polymers is in an agreement with performed series of 
molecular dynamics simulations. Using the microscopic theory it is shown that cross-linked azobenzene polymers 
demonstrate the same light-induced deformation (expansion / contraction) as their low-molecular-weight analogues, i.e. 
polymers consisting of short azobenzene molecules whose chemical structure is the same as chain fragments of the 
elastomers. 

Keywords: azobenzene polymers, light-induced deformation, statistical physics, computer simulations 
 

1. INTRODUCTION  
Azobenzene polymers containing azo-moieties in their chemical structure are a class of smart materials which are able to 
transform the light energy into mechanical stress.[1-19] Since the deformation driven by the light can be controlled rapidly, 
precisely and remotely, azobenzene polymers have a fascinating potential for micro- and nano-technologies to produce 
alignment layers for liquid crystalline (LC) fluorescent polymers in the display technology,[1,2] to build waveguides and 
waveguide couplers,[3,4] to construct data storage media,[5,6] etc. A very hot topic in modern research is design of light-
controllable artificial muscles based on azobenzene elastomers.[7-19] 

Light-induced deformation of azobenzene polymers is initiated by the photoisomerization of azobenzene chromophores: 
the chromophores affected by the light of a proper wavelength are able to change their shape from the rod-like trans-state 
to the bent cis-state.[20-22] The light-induced mechanical force is so large that the light irradiation of the typical intensity 
Ip ~ 1 W/cm2 can deform azobenzene polymers which are even in the glassy state.[23-28] This feature is used for the 
inscription of surface relief gratings onto thin azobenzene polymer films.[23-28] To explain the light-induced deformation 
of glassy azobenzene polymers, some authors have developed a concept of photo-induced softening.[29-35] According to 
this concept, the light of intensity Ip ~ 1 W/cm2 is able to melt locally a glassy polymer, and such a “molten” polymer can 
be then irreversibly deformed under weak light-induced mechanical fields. However, as it was shown recently with the 
help of three different experimental techniques,[25-28] illumination with a visible light does not affect material properties 
of an azobenzene polymer such as bulk compliance, Young’s modulus and viscosity. Therefore, one can claim 
unambiguously that an azobenzene polymer remains in a glassy state. Hence, the theories which need a concept of photo-
induced softening are not able to describe the phenomenon in a correct way. 
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Alternative approach to explain photo-mechanical behavior of azobenzene polymers is based on the orientation 
mechanism: influence of the linearly polarized light leads to orientation anisotropy of chromophores. This anisotropy 
appears due to anisotropic character of the photoisomerization process: maximal probability of the transition from the 
rod-like trans-state to the bent cis-state is achieved at such orientation of the rod-like chromophore, when its long axis is 
parallel to the electric vector of the light E.[20-22] As a result, after multiple trans-cis-trans photoisomerization cycles the 
number of rod-like chromophores, which are arranged parallel to the vector E, becomes lower than the number of 
chromophores which are oriented in perpendicular direction, i.e. orientation anisotropy appears. The light-induced 
orientation anisotropy can be described by introducing an effective orientation potential acting on each chromophore.[36] 
Recently, we developed a microscopic theory[37-39] which shows that the orientation potential introduced in ref.[36] 
provides values of the light-induced stress, σ, comparable and higher than the values of the yield stress, σY, typical for 
glassy polymers: σ ≥ σY ~ 50 MPa at Ip ~ 1 W/cm2. At stresses σ > σY a glassy polymer demonstrates an irreversible 
deformation. Thus, the microscopic theory based on the orientation mechanism of azobenzene chromophores is sufficient 
to explain irreversible light-induced deformation of glassy azobenzene polymers making the concept of photo-induced 
softening redundant. This demonstrates a great potential strength of the proposed orientation microscopic theory[36-39] for 
describing photo-mechanical properties of azobenzene polymers of different structures. 

Another perspective class of photo-deformable polymers are azobenzene elastomers which display reversible elastic 
deformations up to tens of percents under light irradiation: uniaxial contraction and expansion depending on their 
chemical structure[7-12] as well as bending motions.[13-19] One can distinguish two types of photo-deformable azobenzene 
elastomers. The systems of the first type[9-16] are based on anisotropic liquid crystalline nematic elastomers with 
incorporated azobenzene chromophores. The rod-like trans-isomers of the chromophores stabilize the LC phase, whereas 
the bent cis-isomers destabilize it. Consequently, trans-cis photoisomerization caused by an ultraviolet illumination 
induces a transition of the LC-elastomer from the nematic to isotropic state, this transition being accompanied by a 
uniaxial deformation of a sample with respect to the LC-director. Theoretical description of the light-induced 
deformation in the materials of such kind can be based on a modification of the theory of phase transitions in nematic 
elastomers, with the nematic-to-isotropic phase transition being dependent now on the light intensity.[10,11] 

Photo-deformable azobenzene elastomers of the second type are based on elastomeric matrices which are 
macroscopically isotropic.[14,17-19] Under influence of the linearly polarized light, azobenzene elastomers of this type are 
deformed along the electric vector of the light E. Thus, in contrast to azobenzene polymers based on nematic elastomers 
whose direction of deformation is restricted by the LC-director,[9-16] the direction of deformation in azobenzene 
elastomers based on isotropic matrix can be varied by rotating the polarization vector of the light.[14,17-19] Thus, 
investigation of photo-deformable elastomers with variable direction of deformation is of a special interest. To our 
knowledge, there are no theories in the literature which describe light-induced deformation of isotropic azobenzene 
elastomers with variable direction of deformation. In the present paper we develop the microscopic theory[36-39] based on 
the orientation mechanism of light-induced deformation to describe further the light-induced deformation of isotropic 
azobenzene elastomers along the electric vector of the light. 

The paper is organized as follows. In Section 2.1 we present the microscopic theory of light-induced deformation of 
uncross-linked low-molecular-weight azobenzene polymers. The theory takes into consideration interactions of 
azobenzene chromophores with the light wave in the framework of the orientation mechanism[36-39] but does not consider 
more complex effects, such as excluded volume interactions between molecules, etc. We calculate the orientation order 
parameter of the oligomers as a function of the light intensity and show that the sign of deformation (expansion / 
contraction) depends on the chemical structure of the oligomers. Molecular dynamics (MD) simulations, presented in 
Section 2.2, complement these studies essentially, as far as the interaction potentials used incorporate both short-range 
repulsive and long-range attractive interactions between chromophores and polymer monomers. The computer 
simulation study provides a microscopic insight on structure-dependent photo-mechanical properties of low-molecular-
weight azobenzene polymers. In Section 3 we extend the microscopic theory developed in Section 2.1 for short 
azobenzene molecules to cross-linked azobenzene elastomers taking long-chain elasticity of network strands into 
account.  
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2. PHOTO-INDUCED DEFORMATION OF UNCROSS-LINKED LOW-MOLECULAR-
WEIGHT AZOBENZENE POLYMERS 

2.1 Microscopic theory  

In the framework of the approach based on the orientation mechanism[37-39] a photo-induced deformation of azobenzene 
polymers is initiated by the orientation anisotropy, which is the result of multiple trans-cis-trans isomerization cycles of 
the chromophores under illumination with the linearly polarized light. Following the previous works,[37-42] we describe 
the light-induced orientation anisotropy of azobenzene chromophores with respect to the electric vector E of the light by 
means of an effective orientation potential acting on each chromophore: 

Θ=Θ 2
0 cos)( VV ,      (1) 

where Θ is the angle between the long axis of the chromophore and the polarization vector of the light E; V0 is the 
strength of the potential. The value of V0 is determined by the intensity of the light Ip and can be estimated as:[36,43] 

pp ICIaV ⋅≡= υτ
2
1

0  ,     (2) 

where a is the absorption coefficient, υ is the volume of an azobenzene and τ is the effective transition time between two 
isomer states. The value of the proportionality constant C at the room temperature has been estimated in previous works 
as C ≈ 10-19 J⋅cm2/W.[36,43] 

Reorientation of chromophores subjected to the potential (1) results in the reorientation of the whole azobenzene-
containing polymer molecules due to the covalent bonding between the chromophores and the main chains of the 
molecules. Short azobenzene molecules (oligomers) are modeled as rigid rods which contain the same number of rod-
like azobenzene chromophores rigidly attached to the main chains of the oligomers (Figure 1a). The architecture of 
chromophores inside oligomers is characterized by the orientation distribution function of chromophores around the 
main chain, W(α,β). Here α is the angle between the long axis of a chromophore and the main chain; the angle β 
characterizes an azimuthal rotation of chromophores around the main chain. Azobenzene oligomers possess, as a rule, a 
planar symmetry;[40-42] the angle β is introduced as the angle between the plane of symmetry of the oligomer and the 
plane formed by the long axis of the chromophore and the main chain. The function W(α,β) is defined by the potentials 
of internal rotations and by the length of spacers connecting the chromophores with the main chain. As a rule, one uses 
the spacers with symmetrical potentials of internal rotation, e.g. polyethylene’s spacers.[9,10,44-46] Due to the symmetry of 
the spacers the orientation distribution of chromophores inside oligomers is symmetrical and obeys the following 
relations: W(α,β) = W(α,-β) and W(α,β) = W(180°-α,β). 

The summarized orientation energy of chromophores inside an oligomer affected by the light can be treated as an 
effective potential, U, of the oligomer in the field of the light wave. It depends on the orientation of the oligomer in the 
space and can be written according to Equation (1) in the following form: 

(a) 

 

(b) 

 

Figure 1. (a) Orientation distribution of chromophores inside an oligomer. (b) Spatial orientation of an oligomer with 
respect to the electric vector of the light E; θ, ϕ and ψ are the three Euler angles, see the text for details. 
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)()( 0ch Ω=Ω uVNU  ,     (3) 

where Nch is the number of chromophores in each oligomer and  

W
u )(cos)( 2 ΩΘ≡Ω  .     (4) 

The averaging here is performed over all chromophores inside the oligomer with the distribution function W(α,β); Ω 
denotes a set of the three Euler angles which define orientation of the oligomer in the space: Ω ≡ (θ, ϕ, ψ), see Figure 1b: 
θ is the angle between the long axis of the oligomer and the vector E which is assumed to be directed along the x-axis;  
ϕ is the angle between the y-axis and the projection of the long axis of the oligomer on the plane YZ; ψ is the angle 
between the plane of symmetry of the oligomer and the plane formed by the long axis of the oligomer and the vector E. 
Thus, the angle ϕ determines the rotation of the oligomer around the vector E and the angle ψ defines the rotation of the 
oligomer around its long axis. 

The value of the cosine of the angle Θ as a function of the angles α, β, θ, ϕ and ψ is given by: 

)cos(sinsincoscoscos βψαθαθ +−=Θ  .    (5) 

Now, from Equation (4) and (5) after averaging with the distribution function W(α,β) and using the symmetry of the 
oligomers, W(α,β) = W(α,-β) and W(α,β) = W(180°-α,β), one can find the function u(Ω) in the following form (cf. with 
Equation (35) of ref.[37]): 

[ ] θψβαα 222 sin2cos2cossin2sin3
2
1)(

WW
u +−=Ω  .  (6) 

We note that due to axial symmetry with respect to the vector E, the potential u(Ω) is independent of the angle ϕ. 
Moreover, the potential of an oligomer in the field of the light wave, u(Ω), is determined now by the orientation 
distribution of chromophores inside the oligomer; in particular, it is defined by the moments of the angular distribution 
of chromophores, 〈sin2α〉W and 〈sin2α cos2β〉W. Below these factors are used as structural parameters of the theory. 

Under influence of the potential (6) the system of azobenzene oligomers becomes uniaxially anisotropic. Uniaxially-
ordered system of oligomers can be characterized by the orientation order parameter, S: 

2

1cos3
)(cos)(

2

20

−
≡=

θ
θPVS  .      (7) 

For an isotropic system one has S = 0, whereas for fully oriented system S = 1. In refs.[37-39] the order parameter S has 
been used for estimating the relative extension, ε, of a glassy polymer consisting of short azobenzene molecules: 

S⋅≅ maxεε  ,       (8) 

where εmax > 0 is the maximal relative extension corresponding to a fully oriented sample with S = 1. In the framework of 
the approximation given by Equation (8), we have calculated in refs.[37-39] the striction stress σstr which appears at the 
moment when the light is switched on. The value σstr has been calculated by means of the following equation: 

( ) 0str / =∂∂−= εεσ F  ,      (9) 

where F = F(ε,V0) is the free energy of the oligomers in the field of the light wave. The free energy includes three 
contributions:[37-39] (i) elasticity of a glassy polymer consisting of azobenzene oligomers, (ii) energy of the oligomers in 
the orientation potential given by Equation (6), and (iii) orientation entropy of the oligomers. It was shown in refs.[37-39] 
that the striction stress obeys the following asymptotical behavior as a function of V0: 

⎩
⎨
⎧

>>
<<

≅
1/,3/
1/,3/

)(
0chmax002

0chmax001
0str kTVNVnC

kTVNVnC
V

ε
ε

σ     (10) 

where n0 is the number of chromophores in the unit volume and the dimensionless coefficients C1 and C2 are given by: 
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2 −−= .  (11) 

One can make two important conclusions from Equation (10). First of all, the striction stress estimated from the 
microscopic theory based on the orientation mechanism is proportional to the intensity of the light Ip: σstr ~ n0V0 = n0CIp, 
where C ≈ 10-19 J⋅cm2/W, see Equation (2). Thus, for the laser intensity Ip ~ 1 W/cm2 and for the number density of 
azobenzenes n0 ≅ 1.5⋅1021cm-3, which is a typical value for these materials, we obtain σstr ~ n0CIp ≈ 100 MPa. This value 
is comparable with the values of the yield stress typical for glassy polymers: σY ~ 10-100 MPa (e.g., σY ~ 50 MPa for 
PMMA). At stresses σstr > σY, a glassy polymer is deformed irreversibly, and the deformation is fixed after the light is 
switched off. Thus, the microscopic theory is able to explain the possibility of irreversible deformation of glassy 
azobenzene polymers under light illumination and, consequently, explains the possibility for irreversible inscription of 
surface relief gratings[23-28] onto glassy azobenzene polymer films avoiding the concept of the light-induced softening. 

Furthermore, Equations (10) and (11) show another important result: photo-mechanical behavior of azobenzene 
polymers depends strongly on their chemical structure, namely, on the orientation distribution of chromophores inside 
oligomers. In order to illustrate the structure-property relationship for low-molecular-weight azobenzene polymers, we 
have calculated in the present paper the dependence S(V0) at different values of the structural parameters 〈sin2α〉W and 
〈sin2α cos2β〉W; the dependence S(V0) can be used for estimation of the light-induced deformation: ε ≅ εmax⋅S(V0), see 
Equation (8). The value of the order parameter S(V0) is calculated by means of Equation (7), where the factor 〈cos2θ〉 as a 
function of V0 is given by:[37] 

∫

∫

⎥⎦
⎤

⎢⎣
⎡ Ω−Ω

⎥⎦
⎤

⎢⎣
⎡ Ω−Ω

=
)(exp

)(expcos  
cos

0ch

0ch2

2

u
kT

VNd

u
kT

VNd θ
θ  ,    (12) 

where k is the Boltzmann constant and T is absolute temperature. From Equations (7) and (12) one can obtain asymptotic 
behavior for S(V0) at small and high values of the parameter NchV0/kT. Expanding into a series the right-hand side of 
Equation (12) with respect to the small parameter NchV0/kT and keeping only the first terms proportional to NchV0/kT that 
come from both numerator and denominator in Equation (12), we obtain for S(V0) using Equation (7): 

kT
VNCVS

15
)( 0ch

100 ≅     at 10ch <<
kT

VN  ,    (13) 

where the value of C1 is given by Equation (11). Thus, if C1 > 0, an azobenzene polymer demonstrates a uniaxial 
expansion (ε > 0), whereas if C1 < 0 it shows a uniaxial contraction (ε < 0) at NchV0/kT << 1.  

At high values NchV0/kT >> 1 photo-mechanical behavior of low-molecular-weight azobenzene polymers is controlled by 
the minima of the potential u(Ω). One can see from Equation (6) that the positions of minima for u(Ω) are determined by 
the sign of the parameter C2 given by Equation (11). If C2 > 0 the prefactor before sin2θ in Equation (6) for u(Ω) is 
positive at any values of ψ and, hence, the minimum of u(Ω) is achieved at θ = 0 that corresponds to S = 1 according to 
Equation (7). Thus, if C2 > 0 an azobenzene polymer demonstrates a uniaxial expansion along the electric vector of the 
light E (S > 0 and ε > 0) at NchV0/kT >> 1. On the other side, if C2 < 0 then there exist values ψ, for which the prefactor 
before sin2θ in Equation (6) for u(Ω) is negative. Hence, in this case the global minimum of u(Ω) is achieved at θ = 90° 
that corresponds to a planar orientation of the oligomers with S = −0.5 according to Equation (7). Thus, if C2 < 0 an 
azobenzene polymer demonstrates a uniaxial contraction along the electric vector of the light E (S < 0 and ε < 0) at 
NchV0/kT >> 1. 

Summarizing the results for S(V0) at small and large strengths of the potential, one can distinguish three types of photo-
mechanical behavior of short azobenzene molecules depending on their structure. (I) If C1 < 0, then we have 
automatically that C2 < 0 according to Equation (11), and in this case an azobenzene polymer demonstrates a uniaxial 
contraction (S < 0 and ε < 0) both at small and at large strengths of the potential. (II) If C2 > 0, then we have 
automatically that C1 > 0 according to Equation (11), and an azobenzene polymer shows a uniaxial expansion (S > 0 and 
ε > 0) both at small and at large strengths of the potential. (III) In the intermediate case, when C1 > 0 and C2 < 0, an 
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azobenzene polymer demonstrates a non-monotonic deformation as a function of the strength of the potential: a uniaxial 
expansion at NchV0/kT << 1 and a uniaxial contraction at NchV0/kT >> 1. 

To illustrate these three types of photo-mechanical behavior of low-molecular-weight azobenzene polymers, we have 
calculated the dependences S(V0) for oligomers, whose structural angles α and β are fixed at equiprobable values β = ±β∗ 
and α = α*, 180°− α*, the values α* and β∗ being variables. Figure 2a shows the diagram for the values of the parameters 
α* and β∗, at which three types of photomechanical behavior take place for azobenzene polymers: (I) monotonic 
contraction, (II) monotonic expansion, and (III) non-monotonic deformation of the polymer with increasing light 
intensity. The boundary between the areas (I) and (III) are given by the condition C1 = 0 that reads sin2α* = 2/3, i.e. 
α* ≈ 54,7°. The boundary between the areas (II) and (III) are given by the condition C2 = 0 that can be rewritten as: 

∗
∗∗ −

≡=
β

βα
2cos3

2arcsin)(A  .    (14) 

Figure 2b shows the dependences S(V0) for different values of α* and β∗ belonging to the areas I, II, and III presented in 
Figure 2a. The dependences S(V0) have been calculated numerically using Equations (7) and (12). The results of 
numerical calculations show three types of photo-mechanical behavior of azobenzene polymers in accordance with 
qualitative considerations presented above. 

I. When α* < 54,7° (the area I in Figure 2a), the chromophores lie preferably along the main chains of oligomers. Their 
orientation perpendicular to the electric field E of the light results in the orientation of the oligomers also perpendicular 
to the vector E and is accompanied by a uniaxial contraction of an azobenzene polymer with respect to the vector E 
(S < 0 and ε < 0). In this case the function S(V0) decreases monotonically (open symbols in Figure 2b). 

II. When A(β*) < α* < 90° (the area II in Figure 2a), the chromophores are arranged preferably perpendicular to the main 
chains of the oligomers. Orientation of the chromophores perpendicular to the electric vector E under light illumination 
leads to the orientation of the long axes of the oligomers parallel to the vector E and this is accompanied by a uniaxial 
expansion of an azobenzene polymer along the vector E (S > 0 and ε > 0). In this case S(V0) is a monotonically-
increasing function (filled symbols in Figure 2b). 

III. The values of structural angles 54,7° < α* <  A(β*) (the area III in Figure 2b) correspond to the structures with non-
monotonic dependence of the order parameter on the field strength V0: S(V0) is an increasing function at small values of 
V0 and decreasing one at large field strengths (semi-open symbols in Figures 2b). One can see from Figure 2b that at 
increasing values of the angle α* from α* = 0° to α* = 90° the order parameter S increases at fixed values of β* and V0, 
and the function S(V0) demonstrates sequentially the I, III, II – types of photo-mechanical behavior. 

(a) 

 

(b) 

Figure 2. (a) Three areas of the values of the structural angles α∗ and β∗ for three types of photo-mechanical behavior of 
azobenzene polymers. (b) Dependences of the order parameter S on the reduced strength of the potential, 
V0Nch / kT , at fixed value of the structural angle  β∗ = 70° and at varied values of the structural angle  α∗. 
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We conclude the present subsection by noting that different signs of light-induced deformation (expansion / contraction) 
of low-molecular-weight azobenzene polymers of different chemical structures have been observed experimentally[44-47] 
and have been found in computer simulation studies.[40-42] These results demonstrate a great potential of the proposed 
microscopic theory based on the orientation mechanism of light-induced deformation for describing the photo-
mechanical properties of azobenzene polymers. In the next section we present the results of computer simulation studies 
which take into account more complex effects on the photo-mechanical behavior of azobenzene polymers, e.g. effects of 
isotropic and anisotropic excluded volume interactions between azobenzene molecules as well as long-range anisotropic 
attraction forces that have not been considered in simple theoretical calculations presented above. 

 

2.2 Molecular dynamics simulations 

To study the light-induced deformation of uncross-linked low-molecular-weight azobenzene polymers, a series of 
molecular dynamics simulations has been performed. In the simulations we use a hybrid semi-atomistic modeling,[48] 
which is efficient for description of the structure, dynamics and phase transformations in LC polymers.[49-51] The polymer 
beads are represented as Lennard-Jones (LJ) sites and azobenzenes as single-site Gay-Berne[52] particles. Thus, both 
short-range excluded volume and long range anisotropic attractive interactions are taken into account explicitly. In this 
way one concentrates on a flexibility of polymer chains and on the ability of mesogens to form LC phases. To reflect a 
role of the spacer length and the rigidity of the polymer backbone, we construct two models for the side-chain LC 
polymers. The weakly-coupled model has a flexible backbone and long spacer of 10 LJ sites [40] (Figure 3a), whereas the 
strongly-coupled one has more rigid backbone and short spacer of two LJ sites[41-42] (Figure 3b). The models are targeted 
on the description of typical LC azo-polymer (e.g. P6a12) and amorphous azo-polymer (e.g. E1aP), respectively.[44] 
More details on force-field parameters are given elsewhere.[53] 

The MD simulations are performed with the aid of the parallel program GBMOLDD.[54-55] A simulation box with 
periodic boundary conditions mimics the behavior of the LC polymers within a bulk volume element. We employed the 
simplified Parrinello-Rahman method, to be referred as NPXXPYYPZZ  ensemble, in which only the diagonal components 
of stress tensor are constrained[53]. For the integration of the equations of motion we used the leap-frog algorithm, the 
RATTLE constraint have been applied for the integration of mesogens rotation.[55] The time step fs2=Δt  was found to 
be acceptable for all production runs. The simulation times span from 35 ns to 120 ns and are in the range of 6−20 
typical reorientation times for the azobenzene groups, depending on the particular model and its phase. 

In both cases of weakly- and strongly-coupled models (representing LC and amorphous azo-polymers, respectively) we 
concentrate on following properties. The degree of orientational order is measured by the order parameter along certain 
axis, ||S , and via nematic order parameter, 2S : 

)(2|| ue ⋅= iPS   and )(22 ne ⋅= iPS .      

Here the unit vector ei is defined along the long axis of the i-th elongated object, u is the unit vector along the axis of 
interest, n denotes the nematic director, )(2 xP  is the second Legendre polynomial. The elongated object can be either 

(a) (b) 
 

 

Figure 3. Molecular architecture of the weakly-coupled (a) and strongly-coupled (b) models. 
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the azobenzene unit or the equivalent ellipsoid of the polymer backbone.[53] Metric properties of polymer backbones are 
analysed via the components of the gyration tensor.[53] The main emphasize of our study are the microscopic mechanisms 
responsible for converting reorientational perturbations of the azobenzenes into mechanical deformation of the azo-
polymer. 

 

I. Liquid crystalline azo-polymer 

We consider the monodomain smectic volume element well equilibrated at KT 485= , just below the smectic-isotropic 
transition temperature KTSI 490~ .[53] Both the azobenzenes director and applied reorientation field are directed along a 
certain axis, initial values for both order parameters along this axis are equal to 75.02|| ≈= SS . With no external field 
applied the phase is found to be stable for at least 120 ns with minimal fluctuations of the order parameter and of 
dimensions of the box. With application of the field, this arrangement becomes energetically unfavorable and a torque 
applied to each chromophore attempts to reorient it perpendicularly to the field. The rate of the reorientation depends on 
the reduced field strength, f, defined as V0 = 1.5 f⋅10-20 J, where V0 is the strength of potential in Equation (1). It is also 
affected by coupling of the chromophores to the polymer matrix. 

We found that a weak field with the reduced strength of 02.0005.0 −=f  induces the smectic-isotropic phase transition. 
In particular, at 005.0=f  it takes place during the time interval of 6545~ −t  ns, the duration of the transition is 
approximately 20 ns. The latter does not change with the increase of the field strength to 2.0=f  but the transition 
occurs earlier in time (more details are given elsewhere[42]). One can relate this transition to the so-called photo-chemical 
transition well known from the numerous experimental studies.[56-57] The transition is accompanied by an essential 
contraction of the simulation box along the direction of the field, ||L , as shown in Figure 4. One observes remarkable 
synchronicity in the behavior of ||S  and ||L . 

One should stress that these simulations demonstrate that the photo-induced deformations of the LC azo-poymer can be 
achieved solely due to the reorientation of trans-azobenzenes. The deformation is attributed to the fact that the duration 
of the transition (20 ns) is shorter than the estimated relaxation times for the chromophores reorientations in the 
equilibrium state, ≈τ 43 ns.[53] As it is shown in Ref. 42, in stronger fields, the smectic-isotropic transition is followed 
by the isotropic-smectic one, the resulting smectic phase being regrown in such a way that the azobenzenes are 
perpendicular to the applied field (polarization vector). One should note that no systematic deformation is found during 
this second transition, this finding is also confirmed by the simulations performed directly in a polydomain isotropic 
phase.[42] One may conclude that the defining factor in contraction of the volume element of the LC azo-polymer along 
the field is the “randomization” of the azobenzenes orientations. The spacers are also found to align partially along the 
nematic director in smectic phase,[42] therefore these also add to the net effect. 

To clarify the role of the rearrangements of the backbones we consider the components of their averaged gyration tensor 
Gα,β in respect to the direction of the applied field. In the initial smectic phase G||

1/2 ≈ 2.6 Å , this value is essentially 

Figure 4. Evolution of the orientation order parameter of azobenzenes ||S  (asterisks) and of the reduced box dimension 
along the applied field )0(/ |||| LL  (diamonds) for the monodomain smectic phase at KT 485=  

at reduced field strength 005.0=f . 
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lower than G⊥
1/2 ≈ 5.5 Å indicating “sandwiching” backbones in between the azobenzene layers.[53] Upon the field-

induced transition, in the isotropic phase, all values are found to be approximately equal to 4.47 Å.[42] Therefore, during 
the smectic-isotropic transition the component G|| increases and this effect “works” towards the extension of the volume 
element along the field, i.e. in an opposite direction to that of the azobenzenes. The net result is, however, contraction of 
the volume element, most likely, due to bulkiness of rigid azobenzenes, long spacers and to the flexibility of backbones 
in this model.  

For the polydomain smectic phase no systematic deformation is observed, in contrary to theoretical predictions[32] or 
experimental results.[17,58] Possible reason behind this result is either modeling (the deformations of opposite sign, related 
to chromophores and backbones rearrangements, cancel each other) or computational (insufficient system size) issue. 

 

II. Amorphous azo-polymers 

The strongly-coupled model is used to represent an amorphous azo-polymer. The initial phase is macroscopically 
isotropic, therefore we undertake three separate simulations to improve the statistics. In each case the field was directed 
along x-, y- and z-axis, respectively, and the results over three runs were averaged afterwards. The glass transition 
temperature GT  for this model is estimated from the density vs temperature plot obtained via step-by-step cooling of the 
melt within the temperature interval of ]500,350[ KKT ∈ . It is found to be around K450  (for more details see Ref.[42]). 

Most technological applications of such materials are done well below GT , however, the required time scales are 
difficult to cover within the MD simulations. We performed a set of simulations at GTKT ~450=  targeted to reveal 
certain tendencies for the photo-induced deformations that occur at reduction of the temperature and could be 
extrapolated further to GTT <  region. The effect of photo-induced deformation was observed in a range of field strength 

7.01.0~ −f . All properties of interest are found to behave quite similarly for 15.0=f , 20.0  and 50.0  field strengths 
(here one can ignore small differences in reorientation dynamics in this interval of values of f ), and, therefore the 
results are averaged over these runs to improve statistics. 

The behavior of the orientation order parameters for the backbones and of the box dimension along the field are shown in 
Figure 5. Their values, stabilized after application of the field for 37=t  ns, are found to be kept after the field is 
switched off for at least another 30 ns. This is in a sharp contrast to the case of GTKT >= 500 , when the order vanishes 
in about 5 ns after the field is switched off.[42] The same holds true also for the dimension of the volume element along 
the field ||L , which changes synchroneously with the orientation order parameter for the backbones. 

The results obtained provide an evidence for the following microscopic mechanism for photo-induced deformations in a 
strongly-coupled model. Due to the strong coupling between chromophores and backbones, the molecules behave 

 
 

Figure 5. Evolution of the orientational order parameter of polymer backbones ||S  (circles) and of the reduced box 
dimension along the applied field )0(/ |||| LL  (diamonds) for the isotropic amorphous phase at KT 485=  

averaged over runs with the reduced field strengths 15.0=f , 20.0  and 50.0 . 
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similarly to rigid bodies (compare with assumption of the microscopic theory in Section 2.1). Given suitable conditions, 
these massive molecular reorientations lead to the build-up of anisotropic internal stress which causes permanent 
deformation of the volume element at GTT ~ . The sign of the deformation (extension of the volume element along the 
field direction) points out on the role of backbone rigidity, as far as the effect of backbones reorientation wins over the 
effect of chromophores reorientation perpendicularly to the field. 

To conclude the present subsection, we note that the molecular dynamics simulations demonstrate unambiguously that 
opposite photo-induced deformations, observed experimentally on uncross-linked liquid crystalline and amorphous 
polymers, can be explained solely on the basis of molecular reorientations initiated by application of the effective light-
induced orientation potential. For both molecular architectures being considered, chromophores orient perpendicularly 
and backbones orient parallel in respect to the external field (which direction is associated with the polarization vector). 
These reorientations compete in terms of volume element deformation, as far as chromophores reorientation promote 
contraction (prevails for the LC polymers), whereas that of the backbones promotes extension (prevails for the 
amorphous polymers) along the direction of the field. The final result depends, therefore, on subtle details of molecular 
architecture. 

 

3. PHOTO-INDUCED DEFORMATION OF CROSS-LINKED AZOBENZENE 
POLYMERS: EXTENSION OF THE MICROSCOPIC THEORY 

By introducing azobenzene chromophores into a polymer network matrix, photo-deformable azobenzene elastomers 
have been recently synthesized which demonstrate reversible deformation under light irradiation: uniaxial contraction 
and expansion depending on their chemical structure[7-12] as well as bending motions.[13-19] In the present section we 
extend the microscopic theory developed in Section 2.1 for uncross-linked azobenzene polymers to cross-linked 
azobenzene polymers (azobenzene elastomers) bearing azobenzene chromophores in their strands. 

An azobenzene elastomer is modeled as an ensemble of polymer chains between network junctions (network strands). 
Each network strand consists of N freely-jointed rod-like Kuhn segments, see Figure 6. Each Kuhn segment contains Nch 
azobenzene chromophores which are chemically attached to the main chain of the segment (Figure 6). Architecture of 
chromophores inside the Kuhn segments is characterized by the orientation distribution function, W(α,β), as it was 
presented in Section 2.1 for short azobenzene molecules (oligomers). Here α is the angle between the long axis of a 
chromophore and the main chain; β is the angle between the plane of symmetry of the Kuhn segment and the plane 
formed by the long axis of the chromophore and the main chain (Figure 1a). In other words, short azobenzene molecules 
which have been modeled in Section 2.1 are considered now as Kuhn segments of network strands in azobenzene 
elastomers. By this, we extend the formalism presented in Section 2.1 for uncross-linked azobenzene polymers to cross-
linked azobenzene polymers taking the chain structure of network strands explicitly into account. 

We consider highly elastic azobenzene elastomers whose network strands are long enough (N >> 1), so that the 
distribution of their end-to-end vectors b (see Figure 6) obeys the Gaussian statistics. In the absence of any external 
fields, the end-to-end vector’s distribution of network strands is isotropic and can be written in the following form:[59,60] 

 
Figure 6. Model of an azobenzene elastomer: each network strand consists of N freely-jointed rod-like Kuhn segments 

bearing Nch azobenzene chromophores in side chains; L = Nl is the contour length of a network strand. 
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where the index “0” denotes the distribution of the end-to-end vectors b in an isotropic azobenzene elastomer without 
external fields; C0 is the normalization constant and 〈b2〉 = Nl2, where l is the length of the Kuhn segment. We note that 
the approach given by Equation (15) does not take into account the finite extensibility of network strands, since it allows 
the network strands to display unrealistic end-to-end distances with |b| > Nl. However, the probability of conformations 
with |b| ≥ Nl (relative to the probability of the state with |b| = 0) can be estimated as P0/C0 ≤ exp(-3N / 2) according to 
Equation (15), i.e. it is negligibly small at N >> 1 (e.g., P0/C0 ≈ 0.01 at N  = 3). Thus, at N ≥ 3 Equation (15) provides a 
very good approximation for statistics of network strands (cf. with ref. 61). 

Under illumination with the linearly polarized light, each Kuhn segment is affected by the orientation potential given by 
Equations (3) and (6) due to the interaction of the chromophores with the light wave. Thus, under light illumination the 
network strands change their conformations, and each end-to-end vector b is transformed into a new vector b′. As in a 
classical theory of rubber elasticity,[59,60] we assume that network strands deform affinely with the bulk deformation of 
the elastomer because of the constraints of the crosslinks. Using the incompressibility of elastomers, one can write the 
condition of affinity of deformation in the following form: 

λxx bb =′ , λ/yy bb =′ , and λ/zz bb =′ ,    (16) 

where λ is the elongation ratio of a sample along the x-axis. As in Section 2.1 we assume here that the electric vector of 
the light E is directed along the x-axis. 

Below we will use the Gaussian approach also for deformed azobenzene elastomers. Note, that the validity of the 
Gaussian approach can cover a broad region of deformations λ, if the network strands are long enough (N >> 1). To see 
this, we recall that the Gaussian approach describes very well the statistics of stretched polymer chains if their end-to-
end distances are smaller than 40% of their contour lengths, i.e. |b′| ≤ 0.4Nl.[61] At |b′| > 0.4Nl the effects of finite 
extensibility of polymer chains should be taken into account. Moreover, the main contribution to the statistics of an 
elastomer comes from network strands whose initial end-to-end distances are given by b2 ≤ Nl2, according to 
Equation (15). Thus, the Gaussian approach is applicable to a stretched elastomer, if all strands with initial end-to-end 
distances b2 ≤ Nl2 are stretched after deformation of the elastomer not larger than 40% of their contour length, i.e. when 
the condition |b′| ≤ 0.4Nl is fulfilled at least for the chains with initial elongation |b| = N1/2l. Substituting the condition 
|b′| ≤ 0.4Nl for |b| = N1/2l into Equation (16) separately for the chains, which are stretched along the x- and y-axes, we 
obtain the following conditions for λ in the Gaussian regime: N1/2lλ ≤ 0.4Nl and N1/2l / λ−1/2 ≤ 0.4Nl. The last two 
conditions can be rewritten as follows: 

NN 4.0/25.6 ≤≤ λ .     (17) 

One can see that the condition (17) for the Gaussian regime can cover a large region of deformation at N >> 1. For 
instance, 0.06 ≤ λ ≤ 4 at N = 100, and 0.25 ≤ λ ≤ 2 at N = 25, i.e. the Gaussian regime can hold until hundreds percents 
of the relative deformation of the elastomer, ε ≡ λ − 1. 

Thus, at values λ given by Equation (17), one can use the Gaussian approach for the statistics of network strands. The 
distribution of the end-to-end vectors b′ of network strands in a deformed elastomer can be written in the framework of 
the Gaussian approach as follows: 
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where C is a normalization constant. In contrast to an undeformed elastomer which is characterized by an isotropic 
distribution of the end-to-end vectors of network strands (see Equation (15)), the distribution P(b′) becomes anisotropic, 
i.e. 〈(b′x)2〉 ≠ 〈(b′y)2〉 and 〈(b′x)2〉 ≠ 〈(b′z)2〉 due to reorientation of the Kuhn segments with respect to the vector E after the 
light is switched on. The mean-square sizes of polymer coils 〈(b′x)2〉, 〈(b′y)2〉, and 〈(b′z)2〉 can be expressed in terms of the 
averaged projections of the Kuhn segments on the x, y, and z-axes: 
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αα θ222 cos)( Nlb =′  for zyx ,,=α ,    (19) 

where θα are the angles between the long axis of the Kuhn segment and the x-, y-, and z-axes. The values cos θα can be 
rewritten in terms of the Euler angles presented in Figure 1b in the following form: cos θx = cos θ, cos θy = sin θ cos ϕ, 
and cos θz = sin θ sin ϕ. At the absence of the light, we have 〈cos2θx〉 = 〈cos2θy〉 = 〈cos2θz〉 = 1/3 and the distribution 
given by Equation (18) is reduced to Equation (15) for isotropic elastomers. Under light irradiation the polymer coils 
between network junctions becomes anisotropic: 〈cos2θx〉 ≠ 〈cos2θy〉 = 〈cos2θz〉; the equality 〈cos2θy〉 = 〈cos2θz〉 follows 
from the axial symmetry of the elastomer with respect to the vector E. 

Now, it is a simple matter to find the light-induced elongation λ as a function of the light intensity using the equation for 
the free energy F (per the unit volume): 

0
)(ln)(

P
bPckTF ′−=λ  ,     (20) 

where c is the number of network strands in the unit volume, and the averaging runs over all strands, i.e. with the 
distribution function P0 given by Equation (15). Substituting Equation (18) into (20) and using the relationship between 
vectors b and b′ given by Equation (16) we obtain the following expression for F(λ) taking into account Equation (19): 
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The equilibrium value of the light-induced elongation λ is determined from the minimum of the free energy, ∂F / ∂λ = 0. 
Using the fact that 〈(bx)2〉P0 = 〈(by)2〉P0 = 〈(bz)2〉P0 for an isotropic elastomer as well the equality 〈cos2θy〉 = 〈cos2θz〉 
discussed above, we obtain the equilibrium elongation λ from the condition ∂F / ∂λ = 0 in the following form: 

3/1

2

2

cos

cos
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

y

x

θ

θ
λ  .      (22) 

The right-hand side of the last equation depends on the strength of the orientation potential V0 which is proportional to 
the light intensity Ip, see Equation (2); the dependence of the factors 〈cos2θα〉 on V0 is given by Equation (12). Thus, the 
light-induced elongation of azobenzene elastomers in the Gaussian regime is independent of the chain length N, since in 
this regime the finite extensibility of network strands plays almost no role. At the same time, according to Equation (22) 
the deformation of an azobenzene elastomer is determined by the orientation anisotropy in the system of separate rod-
like Kuhn segments (oligomers) bearing chromophores in side chains. The orientation anisotropy of short azobenzene 
molecules has been investigated in Section 2.1 in terms of the order parameter S. Now, using the relationships 
〈cos2θx〉 = (1+2S) / 3 and 〈cos2θy〉 = 〈cos2θz〉 = (1−S) / 3, which follow from Equation (7) and from the equality 
cos2θx + cos2θy + cos2θz = 1, Equation (22) can be rewritten in terms of S for oligomers as follows: 
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The last equation relates the light-induced elongation of an azobenzene elastomer with the light-induced orientation 
order in its low-molecular-weight analogue, i.e. in the system of oligomers, whose chemical structure is the same as 
chain segments of the elastomer. Now, using Equation (23) we can extend the results obtained above for uncross-linked 
low-molecular-weight azobenzene polymers to cross-linked azobenzene polymers. We recall that the order parameter S 
was used in Section 2.1 for estimating the relative extension ε of glassy polymers consisting of short azobenzene 
molecules: ε = εmaxS, see Equation (8). From Equation (23) one can see that an azobenzene elastomer should demonstrate 
the same photo-mechanical behavior (expansion / contraction) as its low-molecular-weight analogue: the elastomer 
displays a uniaxial expansion along the electric vector of the light E (λ > 1), if its low-molecular-weight analogue 
demonstrates the expansion along the vector E (S > 0, ε > 0), and vice versa: λ < 1 if S < 0, ε < 0. Moreover, as low-
molecular-weight azobenzene polymers, azobenzene elastomers should display three types of photo-mechanical behavior 
depending on the chemical structure of their network strands: (i) contraction along the electric vector of the light E, 
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(ii) expansion along the vector E, and (iii) non-monotonic behavior of the deformation with the light intensity (expansion 
at small light intensities and contraction at high light intensities). 

Figure 7 shows the dependences λ(V0) calculated in the framework of the Gaussian approach given by Equation (23) for 
azobenzene elastomers, whose structural angles of network strands α and β are fixed at equiprobable values β = ±β∗ and 
α = α*, 180°− α*; parameters α* and β∗ have been chosen to be of the same values as in Figure 2b for uncross-linked 
polymers. One can see from Figure 7 three types of photo-mechanical behavior of azobenzene elastomers: (I) monotonic 
contraction along the electric vector of the light E (open symbols), (II) monotonic expansion along the vector E (filled 
symbols), and (III) non-monotonic behavior of λ as a function of V0 (semi-open symbols). We note that the diagram for 
the values α* and β∗, at which three types of photomechanical behavior take place for azobenzene elastomers (I, II, III), 
is the same as in Figure 2a for uncross-linked polymers due to the connection between photo-mechanical properties of 
uncross-linked and cross-linked azobenzene polymers discussed above. 

Dashed lines in Figure 7 show the boundaries of the region where the Gaussian approach is valid for N = 25, as an 
example, according to Equation (17). One can see that even until the values of the strength of potential V0Nch / kT ~ 30, 
the values of the light-induced deformation λ belong to the validity range of the Gaussian regime. For elastomers built 
from longer chains (N > 25) this region is longer according to Equation (17). Using Equation (2), the light intensity 
corresponding to the characteristic values V0Nch / kT  ≅ 30 at the room temperature and for Nch = 10 can be estimated as 
Ip ≅ 100 mW/cm2. The last value belongs to a typical region of the light intensities which are used in experiments on 
light-induced deformations of azobenzene elastomers.[3-13] Thus, there exists a broad region of the light intensity where 
the Gaussian approach can be applied for calculation of the light-induced deformation of azobenzene elastomers. We 
note that at very large degrees of deformation the finite extensibility of network strands can strongly influence the photo-
mechanical behavior of azobenzene elastomers. One can expect that at high light intensities the elongation λ tends to its 
limiting value which depends on the length of network strands: the shorter are the chains between junctions, the smaller 
is the elongation λ at the same light intensity. More detailed analysis of the effects of finite extensibility of network 
strands on the photo-mechanical behavior of azobenzene elastomers can be a topic of further generalizations. 

 

4. CONCLUSIONS 
In this study we undertake both theoretical and computer simulation studies of the light-induced deformations in 
azobenzene-containing polymers. Both cases of uncross-linked and cross-linked (elastomeric) systems are considered. 
Our main assumption is that the reorientation of trans-isomers of azobenzenes perpendicularly to the polarization vector 
plays the principal role in subsequent molecular rearrangements in the polymer, which, in turn, result in observed 
deformation of a sample under illumination. This reorientation is modeled in a statistical way, via application of the 

Figure 7.  Dependences of the elongation ratio λ on the reduced strength of the potential, V0Nch / kT , at fixed value of 
the structural angle  β∗ = 70° and at varying values of the structural angle  α∗. The strand length is N = 25. Dashed 
lines show the boundaries of the region where the Gaussian approach is valid according to Equation (17). 
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effective light-induced orientation field. Molecular dynamics simulations of the uncross-linked azobenzene polymers 
indicate that in the case of the liquid crystalline sample the principal microscopic mechanism is the order-disorder 
transition, whereas for the amorphous sample it is the rearrangement of stiff polymer backbones parallel to the field. In 
this way, the rigidity of the backbone and the amount of coupling between the chromophores and backbones are defining 
factors in a sign of final deformation under illumination. Theoretical studies concentrate on various scenarios for the 
deformation depending of angular distributions of chromophores in respect to the backbone. We have shown that 
azobenzene polymers demonstrate uniaxial contraction, uniaxial elongation or in case of some architectures even a non-
monotonic dependence of sample deformation on the light intensity. Importantly, it is found in the theoretical studies that 
the sign of the deformation does not change upon cross-linking of the sample. Hence, it is expected that the microscopic 
mechanisms observed in the simulations are valid also for the elastomer case. This work is currently in progress. 
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