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Abstract

The spectra of longitudinal and transverse collective excitations in liquid binary metallic
Na K;_. alloys are studied for pure components and four different concentrations.

A theoretical generalized collective modes approach is used to analyze the concentration
dependence of the dispersion of acoustic and optic branches in a wide region of wavenumbers.
The dispersion of longitudinal collective excitations in binary alloys is estimated from the
eight-variable thermo-viscoelastic dynamic model with full account of thermal fluctuations.

It is found that the longitudinal and transverse branches show different dependences on
concentration in the short-wavelength region. The issue of ‘positive dispersion’ of acoustic

excitations in liquid binary alloys on the boundary of the hydrodynamic regime is discussed.
It is shown that the coupling between longitudinal acoustic and optic modes is responsible for
an increase of the ‘positive dispersion’ close to equimolar composition.

(Some figures may appear in colour only in the online journal)

1. Introduction

Experimental and simulation studies of the dynamic structure
factors in liquid metals reveal interesting behavior of
the collective excitations and fascinating features of their
dispersion, that changes from a linear hydrodynamic law
to a high-frequency dispersion and with further increase
of wavenumbers to a roton-like minimum in the short-
wavelength region [1-3]. The collective dynamics in binary
metallic liquid alloys is of great interest for theoretical,
experimental and simulation groups, especially since the
reports on ‘fast sound’ observation in molecular dynamics
simulations of Li4Pb [4] and the later inelastic neutron
scattering experiments on molten LisPb and LisTl [5]. The
existence of two collective excitations branches in mixtures

0953-8984/12/505102+08$33.00

with high component—mass ratio has been actively studied
theoretically, first within the memory-function approach [6,
7], and later on using the more advanced method of
generalized collective modes (GCM) [8, 9]. The GCM
approach permitted the analytical conditions for the existence
of transverse [8] and longitudinal [9] optic-like excitations
in non-Coulombic liquid mixtures to be obtained. It also
analytically explained the non-vanishing contributions from
optic modes to the charge density autocorrelation functions
in molten salts in the long-wavelength limit [10]. Namely,
the GCM approach made it possible to explain the ‘fast
sound’-like behavior of the frequency of the side peak of
the dynamic structure factors as a crossover in contributions
coming from the acoustic and non-hydrodynamic optic
branches of collective excitations. The crossover takes place

© 2012 IOP Publishing Ltd Printed in the UK & the USA
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by approaching the boundary of the hydrodynamic regime
from higher wavenumbers: since the contribution from
the high-frequency branch is decaying ock®, whereas the
contribution from acoustic modes tends to a constant in the
k — 0 limit, one observes in the shape of the partial dynamic
factor of the light component a ‘fast sound’-like behavior of
the side peak. This was demonstrated by the GCM analysis of
MD simulations performed for Li4Pb [11] and LisT1 [12].

An attempt to study more generally the dependence of
the dispersion branches of both collective excitations on the
component mass ratio was presented in [11]; in particular, this
was studied analytically in the long-wavelength limit. On the
other hand, on the basis of a ‘toy model’, a concept of ‘bare’
propagating modes was introduced in [13] in order to study
analytically the dispersion of purely imaginary eigenvalues
over the whole wavenumber range. The ‘bare’ modes mean
purely imaginary eigenvalues, i.e. there is no damping
for these modes. The coupling of ‘bare’ propagating and
relaxing modes causes the damping of collective excitations.
Therefore, in the zero approximation one can consider ‘bare’
propagating modes which do not interact with relaxation
processes [13, 14]. This simplification permits the mass
ratio and concentration dependence of the dispersion of
‘bare’ collective modes in a model binary liquid to be
studied analytically. Namely, for the case of ‘bare’ modes a
perturbation approach for dispersion of collective excitations
was suggested in [14].

Another interesting issue in the collective dynamics of
liquids is the so-called ‘positive dispersion’ of collective
excitations [1, 15], that emerges at the boundary of the
hydrodynamic regime in dense liquids and consists of an
increase of the apparent speed of sound from its macroscopic
hydrodynamic value to some high-frequency value due to
coupling of collective excitations with structural relaxation.
However, the existing theory of ‘positive dispersion’ based
on the mode coupling approach [16, 17] was unable
to explain recent inelastic x-ray scattering experiments
on the pressure dependence of the ‘positive dispersion’
in supercritical argon [18]. Interestingly, the ‘positive
dispersion’ in supercritical fluids was suggested to be a
dynamic quantity that enables a discrimination between the
‘gas-like’ and ‘liquid-like’ fluids even beyond the critical
point [18, 19]. Recently, the GCM approach applied to the
problem of the pressure (density) dependence of the ‘positive
dispersion’ in pure fluids [20] explained correctly the features
of sound dispersion in the long-wavelength region and derived
a condition of vanishing ‘positive dispersion’ in the gas-like
region. Very recently, an IXS experimental study conducted
for a number of liquids [21, 22] successfully tested the
predictions of the GCM theory on ‘positive dispersion’. The
GCM predictions on ‘positive dispersion’ for pure liquids
were even used for the analysis of sound dispersion in
complex liquids [21, 22], that definitely is not completely
consistent. To date, the theory of ‘positive dispersion’ for the
case of many-component liquids has still not been elaborated,
because even if a simple viscoelastic approximation is adopted
for the case of binary liquids, a six-variable GCM model
would have to be analytically solved in the long-wavelength

limit, which is too complicated. Simpler models like [13]
point out that there should be an additional contribution to the
‘positive dispersion’ originating from the coupling between
acoustic and optic modes. Therefore, an interesting issue
would be to determine how such a contribution would change
with concentration even in the simplest binary alloys.

To date, however, there has been no detailed study of the
concentration dependence of the spectra of longitudinal and
transverse collective excitations in realistic liquid mixtures
or metallic binary alloys. The issue of ‘positive dispersion’
of acoustic excitations in binary liquids and its possible
concentration dependence has not even been considered.
Recently, we reported a GCM study of the relaxation
processes in liquid metallic Na.Kj_. alloys [23] in order
to explain the large values of the Landau-Placzek ratio
observed in simulations of these alloys. They were also
studied for the dependence of the structural and diffusion
properties on the concentration [24], as well as for the
experimental IXS dynamic structure factor, but only at the
Nas7K43 composition [25]. The potentials for these alloys are
well elaborated and yield realistic results for the structural
and single-particle dynamic properties. Hence, metallic
Na.K;_. liquid alloys are well suited for a GCM study of
collective excitations. Here, we aim to study the concentration
dependence of the dispersion of longitudinal and transverse
collective excitations in realistic liquid metallic Na.K;_.
alloys with particular focus on the ‘positive dispersion’ of
acoustic modes.

This paper is organized as follows. In section 2 we
present the details of MD simulations and spectra calculations.
Results on the dispersion of longitudinal and transverse
collective excitations in Na.K;_. liquid alloys are given in
section 3. Finally, section 4 summarizes the conclusions of
this study.

2. Molecular dynamics simulations and the
methodology of dispersion calculations

We performed classical MD simulations for the pure liquid
metals Na and K and four Na K;_. alloys with ¢ = 0.2, 0.4,
0.6 and 0.8 at a temperature of 373 K, a little above the melting
point of Na. The effective interactions were obtained from
Fiolhais’ pseudopotential [26] and the Ichimaru—Utsumi local
field correction [27] (see [24] for detailed formulas and a test
of the reliability of this force description). The cut-off radius
was chosen at a node of the force located at about 20 A. All
the simulations were performed in the NVT ensemble with
4000 particles in a cubic box subject to periodic boundary
conditions. Calculation of the time evolution of all relevant
dynamic variables required by GCM studies is highly time
consuming from MD simulations. Therefore, the earliest
GCM studies of liquids [8, 28, 29] were performed with much
smaller numbers of particles. Recent simulations of metallic
liquid alloys with 4000 particles and their GCM analysis [12,
23] gave evidence that all the features of collective dynamics
are well reproduced with systems of that size. However, liquid
systems close to their melting points have hydrodynamic
regions (regions of wavenumbers where the hydrodynamic
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asymptotes of collective modes are observed) much narrower
than high-temperature liquids far above their melting point.
Thus, the size of the MD box in actual simulations of Na—K
alloys (between L = 54.799 A for pure Na and L = 68.156 A
for pure K) may not be sufficient to study the hydrodynamic
regime in high detail, but this is out of the scope of our study
and we will mainly focus on collective excitations near the
boundary of the hydrodynamic regime.

The time step in the simulations was 10 fs and
the production runs were of 300000 steps. Each sixth
configuration has been considered to sample relevant
dynamic variables from which the correlation functions
and generalized hydrodynamic matrix elements have been
obtained. The wavevectors k were sampled for our case of
a cubic MD box in a standard way as

ky = 2mmy /L,
k, = 2wm,/L,

ky = 2mmy/L,
my, my,m; = 0, &1, £2...,

and additional averages of static and time-correlation
functions over all possible directions of wavevectors with the
same module were performed. Thus, k-dependent quantities
have been evaluated for 20 k-values, with the smallest one
ranging from 0.09 A™" for pure K to 0.11 A~ for pure Na.
To obtain the collective excitations spectra, we first
computed the partial particle densities, ny(k, ), the par-
tial densities of the longitudinal/transverse mass current,
L/ T (k, 1), and the energy density, ¢(k, t), via the following
microscopic expressions:

(k t) 1 ND‘ e—ikr~
Ny (K, = § ’,

VNa 1=

kv;
Jg;(k, t) _ Z J —lkl‘j
vNa
kvi] (1)

JZ‘(k’ t) _ § v/ 71kl'

ek, 1) = ﬁ Z gje—ikl‘j‘
j=1

In these relations, N, and m, are the number and mass of
particles of the ath species, r;(¢) is the position and &;(#) is
the single-particle energy of the jth particle, and [kv;(#)] is
the vector product of wavevector k and velocity of the jth
particle. In order to reach similar sufficiently high accuracy in
the description of both pure metals and alloys, the analysis of
longitudinal excitations was performed within a five-variable
dynamic model for pure liquids

AO (k1) = {nk, 1), ¥ (k, 1), e(k, 1), T (k, 1), é(k, D)} (2)
and within an eight-variable one
A® &, 1) = (na(k, 1), J5(k, 1), np(k, 1), T (k, 1), e(k, 1),
Ttk 0, T5 k.0, &k, 1)} 3)

in the case of binary mixtures. Since the longitudinal and
transverse dynamics are decoupled in the hydrodynamics of
non-associating fluids the transverse collective excitations

were treated separately. Similarly to the longitudinal case, the
transverse excitations in pure and binary liquids were studied
in the following two- and four-variable dynamic models:

ACD (k) = [JT(k, 0, I (k, t)} (4)
and
AUD (&, ) = {J}(k, 0, I3k, 0, ITk, 1), T (k. t)} . 6)

In these expressions, the dotted quantities refer to the
corresponding time derivatives. The level of time derivatives
of hydrodynamic variables in these sets was restricted to
the first ones. The detailed studies of collective modes in
liquids with extended sets of dynamic variables including
up to the third time derivatives of hydrodynamic variables
reported in [8, 11, 29] gave evidence that the second and
higher orders of the time derivatives of the hydrodynamic
variables are responsible for collective modes with extremely
short lifetime, that marginally contribute to solely short-time
dynamics. These short-time collective modes have practically
no effect on the dispersion of acoustic and optic excitations.

Once one has the time evolution of dynamic variables
(2)—(5) from MD simulations one can use the GCM
methodology to calculate the dispersion of collective
excitations. The GCM approach [28, 30] permits solution of
the generalized Langevin equation for the matrix of time-
correlation functions with three main assumptions: (i) the
chosen set of dynamic variables represents all main dynamic
processes contributing to the shape of the corresponding
time-correlation functions; (ii) in contrast to mode coupling
theory the coupling between collective modes is treated in
a local approximation; (iii) the Markovian approximation is
valid for the highest order memory functions, that is, it is
correct for regular (non-supercooled) liquids.

From the time evolution of the dynamic variables,
the matrix F(k, ) of their time-correlation functions was
computed for each k-point sampled in MD simulations and

each dynamic model (2)—(5) with matrix elements
Fiji(k,t =0) = (A} (k, t = 0)A;(k, t = 0)), (6)

where the asterisk means complex conjugation. The

generalized hydrodynamic matrices
T(k) = F(k, z = 0)F ' (k,r = 0),

where F(k,z = 0) is the matrix of Laplace-transformed
correlation functions in the Markovian approximation, were
estimated from the MD data avoiding any free parameters and
fitting. By making use of the equality

o0
BM&=®=/(£®®&%M¢
0
= (A} (k, 0)A;(k, 0)), (7N
and definition of the correlation times
o
mwzzmzf Fyk, 0 di
0

= Fl](k’ t == O)II](k)’ l?.] == nl)(a 87 (8)
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for slow hydrodynamic correlations, one can easily calculate
without any fit all the matrix elements of Fk,z=0).Ina
final step, the eigenvalues of these generalized hydrodynamic
matrices T(k) and associated eigenvectors were calculated.
The eigenvectors permit direct fit-free calculations of the
contributions ij‘- (k) of the estimated eigenmodes to the
relevant time correlation functions

Ny
FiMk.n =) Gitke =", ©)
a=1

and the corresponding dynamic structure factors via time
Fourier transform of expression (9) [30, 31]. In (9), Ny
denotes the number of dynamic variables in the corresponding
dynamic model, i.e. Ny = 5 for the thermo-viscoelastic model
of longitudinal dynamics in pure liquids, or Ny = 8 for the
binary case. Of course, as many eigenvalues as the considered
dynamic variables in the corresponding dynamic model are
obtained, which can either be real, dg(k), or complex, zy (k) =
oq(k) £ iwy(k), quantities in the cases of relaxing and
propagating modes, respectively.

3. GCM analysis of collective excitations in Na—K
liquid alloys

In this section we will first present the concentration
dependence of dispersion of ‘bare’ collective modes and
will discuss the effect of the coupling between acoustic and
optic modes on the ‘positive dispersion’. The dispersion of
collective excitations with damping for all six simulated
systems will be discussed for the longitudinal and transverse
cases.

3.1. Longitudinal collective modes

One of the most important quantities that is needed for
analysis of the dispersion of collective excitations in liquids
is the structure factor S(k). The location of the first sharp
diffraction peak (FSDP) indicates the region of the de Gennes
slowing down of the density fluctuations (increase of the
correlation times and slowing of the decay of density—density
time-correlation functions [2]) and the corresponding roton-
like minimum of the dispersion law. In figure 1, we show
the composition dependence of the structure factors S(k)
and—for binary systems—total structure factors Sy (k). The
well-known Bhatia—Thornton total structure factor Sy (k) can
be represented as a sum of the normalized generalized
k-dependent compressibility 6(k) and an additional term
connected with the so-called number-concentration ‘N-C’
dilatation § (k) [32],
NkgT58%(k)
Su(k) = 0(k) + “Zh

where the factor Z(k) = (82G/8€2)T,P,N is the second
derivative of the Gibbs energy with respect to the
concentration. The generalized k-dependent quantities 6 (k),
é(k) and Z(k) were reported for Na—K alloys in [23]. For
our purpose of analysis of dispersion we note that the FSDP

3 KI 1 1 é“ 1
25 c=0.2 P -
c=0.4
2 c=0.6 -
c=0.8
Na

N

Structure factor S(k)
o

o
o

Figure 1. Static structure factors S(k) for pure K and Na, and S (k)
for liquid Na K _. alloys at four compositions calculated via
statistical averages of instantaneous total density autocorrelations.
The lines represent spline interpolation of the raw data.

changes gradually with concentration from 1.6 to ~2 A
when going from pure K to pure Na.

In order to analyze the longitudinal propagating modes
it is convenient to look first at the behavior of the ‘bare’
modes [13], that can easily be obtained analytically using a
reduced set of four dynamic variables,

AD k1) = Lk, 1), TGk, 1), L k. 1), j};(k, n}. (10)

The absence of dissipation processes connected with density

and heat fluctuations permits one to analytically obtain two

branches of non-damped excitations corresponding to the

purely imaginary eigenvalues,
2 = +i0?(k),

2 = +iw) (k). (11)

Both w(l) (k) and a)g (k) have analytical expressions in terms of
the matrix elements
(U Ig)

L L
JgJg)

Top(k) =

)

which can be found in [13].
In the low-k limit,

(k) k=0 = cook, (12)

whereas

@I (k) |[k—0 = wp, (13)

where ¢, corresponds to the high-frequency speed of sound
and wy is a constant representing the ‘bare’ frequency of the
optic modes. On the other hand, in the large-k limit,

(JRIR) mg

o 1/2
(JL gLy 3kgT

AW isoo = [ R = [k (15)
(JNa‘]Na> MNa

giving evidence that in the Gaussian limit the low- and
high-frequency branches of the collective excitations solely

- 1/2
(JL L 3kgT
W) () k00 = ( KR = =k

and
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Figure 2. The dispersion of ‘bare’ collective modes in binary
Na.K|_. liquid alloys. In the long-wavelength region the low- and
high-frequency branches correspond to the acoustic and optic ‘bare’
modes, respectively. The line-connected symbols correspond to

¢ = 0.2 (crosses), ¢ = 0.4 (stars), ¢ = 0.6 (open squares) and

¢ = 0.8 (full squares).

correspond to the dynamics of the heavy (K) and light (Na)
subsystems in the alloy, respectively.

In figure 2, we show the ‘bare’ collective modes
calculated analytically from the correlation functions obtained
in our simulations. The two eigenvalues for each binary
system are shown by the same line-connected symbols,
because it is impossible to discriminate beforehand between
acoustic and optic branches, especially in the region where
they cross. One can see that in the long-wavelength region
the analytical results are recovered. Surprisingly, there is no
obvious dependence of the ‘bare’ optic frequency wy on
the concentration. The low-frequency branch of the ‘bare’
excitations shows a linear dependence with k according
to (12) in the long-wavelength region, whereas in the
short-wavelength limit both branches behave according to
(14) and (15). Usually, this short-wavelength asymptotic
behavior can be seen beyond the roton-like minimum of the
dispersion curves.

The high-frequency speed of sound, ceo(k), is an
important quantity for the characterization of acoustic
excitations. It reflects the speed of long-wavelength collective
excitations that would be based on elastic mechanisms of
sound propagation (in contrast to hydrodynamic theory). The
concentration dependence of the high-frequency speed of
sound has been calculated from the long-wavelength limit of
w(l)(k). Its changes with composition in Na.K;_. alloys are
plotted in figure 3. Interestingly, it is almost a linear function
of concentration, interpolating between the pure component
values, which does not display any anomaly.

For comparison, in figure 3 we show the experimental
values of the adiabatic speed of sound, cg, for Na.K;_.
alloys [33]. We found that these experimental data on c¢g at
373 K versus Na concentration can be nicely fitted using a
second order polynomial,

Cexplm s~ = 1862.39 + 180.97cx, + 464.1¢%,.

The two macroscopic quantities, ¢s and ¢, are important for
analysis of the “positive dispersion’ in liquid systems. In [20],
for the case of pure liquids a correction to the hydrodynamic

c T T T T -i
= 00 *
_ 3500 o
‘v *
€ *
S 3000 % .
5 *
o
(2]
5 2500 | 4
hel
Q
[0
Q.
9 2000 | .
1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 3. The infinite-frequency speed of sound, ¢ (k), as a
function of concentration in liquid Na.K;_. alloys. The dependence
of the experimental adiabatic speed of sound, cg, on

concentration [33] is shown by the open boxes.

dispersion law was obtained as follows:

(k) k0 = sk + BK> + -+, (16)

where the factor B is treated as a measure of ‘positive
dispersion’ [20, 34] and depends on the high-frequency and
adiabatic speeds of sound, and the kinematic viscosity Dy,

CSD% 5— (Coo/cs)2 _

pure = > B
8 oo — G5

(y = DA. A7)

C,
The second term in (17) with a parameter A corresponds to the
coupling effects between non-hydrodynamic structural and
heat current relaxations. Since for Na Kj_. alloys the ratio
of specific heats y is close to unity (see [23]) these coupling
effects can be neglected. The values of co, and c¢g shown
in figure 3 lead to a rather smooth increase of the ‘positive
dispersion’ from pure K to pure Na.

It is obvious that in binary liquids there must be an effect
of the optic (LO) excitations on the ‘positive dispersion’ of
the acoustic (LA) branch. As was mentioned in section 1,
there does not exist to date a theory of ‘positive dispersion’
except for pure liquids. However, within the GCM approach
one can make use of simplified models in order to get a
clue about what kind of effect can be expected from the
optic modes on ‘positive dispersion’ in binary liquid alloys.
Making use of the concept of ‘bare’ modes one can show that
the coupling effects between LA and LO modes depend on
the t—x cross-correlations that are proportional to k> in the
long-wavelength limit (see the inset in figure 4),

(JH77)
(]}%J)%) k—0
Here oy, is the t—x cross-correlation coefficient. Then, the

dispersion laws of the ‘bare’ branches can easily be obtained
in the long-wavelength limit as follows:

= ok (18)

2
0 ~ X]xz()lt 3
w (K) k-0 ~ cock — —;k >
Coo®,
2’ (19)
x1x20(lxk3
Tk

0 ~
@5 (k) [0 ~ wp +
CooW)
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Figure 4. The dependence of the coupling constant between the
longitudinal acoustic and optic modes on the concentration. The
UriE)

ubih) ®
calculated from MD data for concentrations ¢ = 0.2 (plus symbols)
and ¢ = 0.4 (crosses) and their correspondence to the correct
quadratic wavenumber dependence of 7—x cross-correlations (18) in
the long-wavelength region.

inset shows the cross-correlation static averages,

These expressions give evidence that the low- and high-
frequency branches shift in opposite directions due to
the coupling between them. There should be a negative
contribution from the LA-LO coupling to the dispersion
of the low-frequency branch and a positive contribution
to the dispersion of the high-frequency branch in binary
liquids. In figure 4, we show the concentration dependence
of the coupling constant oy for the four concentrations
of Na.Kj_. alloys. It follows that the largest contribution
to the ‘positive’/‘negative’ dispersions of the high- and
low-frequency branches should be expected for the equimolar
composition. Since the optic and acoustic branches of

‘bare’ excitations cross at wavenumbers ~0.5 A_l, one can
expect that the high-frequency branch, a)g(k), for higher
wavenumbers is a continuation of the acoustic dispersion,
showing an additional contribution to ‘positive dispersion’
due to coupling with optic modes (19).

The dispersion curves of the propagating acoustic- and
optic-like collective excitations, calculated with full account
of their coupling with relaxation processes, are presented in
figure 5. In the case of pure components we obviously only
show the acoustic branch, although another pair of complex-
conjugated eigenvalues corresponding to non-hydrodynamic
heat waves, zn(k), was obtained for larger wavenumbers.
The purely real eigenvalues that correspond to wavenumber
dependent relaxation processes were discussed in detail
in [23]. Here, we will only focus on the dispersion of the
acoustic and optic branches (for binary alloys). For clarity,
we do not show the dispersion of non-hydrodynamic heat
waves, zh (k). They only marginally contribute to the dynamic
structure factors of interest.

A noticeable fact in figure 5 is that the damping due
to coupling with relaxation processes only slightly shifts the
frequencies of the propagating modes down in comparison
with the dispersion of ‘bare’ modes. This nice reproduction
of the dispersion of collective modes in liquid alloys by
simplified models, that permit analytical solutions, makes
them worthwhile. The results for both pure components, also

Im z(k) / ps"1

0 05 1 15 2 25 3
kA

Figure 5. The dispersion of collective excitations in Na.K;_. liquid
alloys obtained on the basis of an eight-variable dynamic model A®
for binary case and a corresponding five-variable dynamic model
A® for pure components. The line-connected symbols correspond
to pure K (plus signs), ¢ = 0.2 (crosses), ¢ = 0.4 (stars), ¢ = 0.6
(open squares), ¢ = 0.8 (full squares) and pure Na (open circles).

K
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Figure 6. The apparent speed of sound as a function of
wavenumber for liquid Na.K;_. alloys. The inset shows the ratio of
the maximum of the apparent speed, cmax, for each concentration to
the experimental adiabatic speed of sound, ¢,. This ratio was defined
in [18] as a measure of the ‘positive dispersion’ observed in
[XS-experiment-derived dispersion curves. The concentration
dependence of the ratio gives evidence that the ‘positive dispersion’
in liquid binary Na—K alloys increases for close to equimolar
compositions.

plotted in figure 6, help to highlight the features of the
low- and high-frequency dispersion branches for the binary
liquid alloys. In the long-wavelength region, the low- and
high-frequency excitations are clearly identified as acoustic
and optic modes, respectively. Within the accuracy of the
GCM calculations, all the longitudinal optic branches tend to
a frequency ~12.3 ps~!. The acoustic branches for binary
Na.Kj_. alloys are all located between the curves of pure
K (lowest branch) and pure Na (highest one). Their slope
increases gradually with increasing concentration of the light
component (Na).

With increasing wavenumber, the optic branches cross
the corresponding acoustic ones at k =~ 0.5 A7 As a
consequence, for higher k-values, it is no longer possible to
ascribe branches to either acoustic or optic excitations. For
k>1 A_l, the low- and high-frequency branches instead
correspond to the partial dynamics of the heavy- and light
components in the surrounding medium, respectively.
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In the case of pure components, the dispersion curves
have a minimum at about the location of the FSDP of
S(k) (at k~ 1.6 A" in liquid K and k ~ 2 A™ in
liquid Na). These wavenumber regions correspond to the
appearance of the de Gennes slowing down of density
fluctuations, and an interesting sequence of dispersion curves
versus concentration is observed here for the case of
binary alloys. Only the low-frequency branches contain

.. -1 . . .
a minimum at k ~ 1.6 A™"; this value increases with
increasing concentration of the light component, Na. At

k~?2 A_l, only the high-frequency branches of the binary
alloys have a shallow minimum. This time, interestingly, the
minimum value increases with increasing concentration of
the heavy component, K. Perhaps, in the region of ‘partial’
dynamics, there exists a mechanism of different damping
of the longitudinal excitations corresponding to the kind
of particles predominant in the surrounding medium. This
composition dependence of the excitation frequencies in the
region of de Gennes slowing down will be studied analytically
elsewhere.

Outside the hydrodynamic regime, the acoustic excita-
tions interact with the non-hydrodynamic structural relaxation
and optic modes. The slope change of the dispersion
curve outside the hydrodynamic regime can be highlighted
by considering the apparent speed of sound, i.e. the
apparent frequency w;(k) of acoustic excitations divided by
wavenumber [1]. In figure 6, we show the evolution of the
apparent speed of sound with composition. The inset in
figure 6 illustrates how the ratio of the maximum of the
apparent speed to the adiabatic speed of sound, ascribed
in [18] to ‘positive dispersion’, changes with composition for
Na.Kj_. alloys. It is seen that the positive dispersion is rather
strong, especially close to the equimolar composition, which
implies a strong effect of the LA-LO coupling on the ‘positive
dispersion’, as follows from figure 4. This finding should be
compared with the analytical theory of ‘positive dispersion’ in
binary liquids to be developed within the GCM approach.

3.2. Transverse dynamics

Transverse propagating modes in pure and binary liquids are
all of the non-hydrodynamic kind since they cannot survive
on a macroscopic length scale. Indeed, the only conserved
quantity in transverse dynamics is the transverse component
of the total mass current; hence, the only hydrodynamic
transverse mode existing in fluids is the relaxation process
connected with the shear viscosity of the system, which
cannot propagate. Therefore, transverse sound excitations
cannot propagate with long wavelength, and the dispersion
curve of non-hydrodynamic shear waves must start at a
non-zero wavenumber, k;. In figure 7, the branch of the
shear waves reaches zero frequency at the smallest available
wavenumbers, kmin. Accordingly, this implies that ky >~ kpin
at each composition and that hydrodynamic shear waves are
absent from the spectrum, even if the corresponding k-range
is out of reach of our simulations.

In the long-wavelength region, there is a flat branch
of transverse optic modes at a frequency of ~12.3 ps~!.
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Figure 7. The dispersion of generalized transverse excitations in
the pure components and four compositions of the Na—K alloy. The
symbols are defined as before.

Similarly to longitudinal modes, the location of this
long-wavelength TO branch almost does not change with
composition.

Comparing the shear-waves branches of the pure
components with those of the binary alloys, it can be found
that both branches of all the binary alloys are located
right between the branches of pure K (lowest frequency
branch) and pure Na (highest frequency branch), whatever

the composition, provided that k£ > 1 A" This is further

evidence that for k > 1 A" the low/high-frequency branch
in binary alloys is defined by the partial dynamics of the
heavy/light component in the surrounding medium. The effect
of the surrounding medium is reflected in the sequence of
branches versus composition: both transverse frequencies
increase with the concentration of the lighter component,
namely Na. For longitudinal branches in the FSDP region of
pure Na, we have found a completely opposite tendency of
the frequency change with composition for the high-frequency
branch (see figure 5). This observation is in agreement with a
memory-function study on K—Cs liquid alloys [6].

4. Conclusion

We have studied the composition dependence of the collective
excitations for four concentrations of the binary liquid alloys
Na.K;_. and the pure liquid metals K and Na. The approach
of generalized collective modes was applied for calculations
of the dispersion of the acoustic and optic branches.

The main conclusions of this study can be formulated as
follows.

(1) We have shown that the coupling between the acoustic
and optic modes causes an increase of the ‘positive
dispersion’, that can be quantitatively explained within
the simplified model of ‘bare’ excitations. The prediction
of this theoretical approach for the increase of ‘positive
dispersion’ for compositions close to the equimolar one
was supported by direct calculation of the ratio of the
apparent speed of sound to the adiabatic one. These
findings point out the need in analytical theory for the
‘positive dispersion’ for binary liquids, that perhaps can
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