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A complete and exact solution of the ground-state problem for the Ising model on the Shastry-

Sutherland lattice in an applied magnetic field is found. The magnetization plateau at one third of the

saturation value is shown to be the only possible fractional plateau in this model. However, stripe magnetic

structures with 1=2 and 1=n (n > 3) magnetization, observed in the rare-earth-metal tetraborides RB4,

occur at the boundaries of the three-dimensional regions of the ground-state phase diagram. These

structures give rise to new magnetization plateaus if interactions of longer range are taken into account.

For instance, an additional third-neighbor interaction is shown to produce a 1=2 plateau. The results

obtained significantly refine the understanding of the magnetization process in RB4 compounds,

especially in TmB4 and ErB4, which are strong Ising magnets.
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Geometric frustrations in lattice systems result in a rich
variety of phenomena in both classical and quantum mod-
els. The investigation of such models, and even of their
ground states is, however, a difficult problem. The first
two-dimensional frustrated quantum model whose ground
states have been determined exactly was introduced by
Shastry and Sutherland in 1981 [1]. The Shastry-
Sutherland (SS) lattice [Fig. 1(a)] is topologically equiva-
lent to the Archimedean lattice 32:4:3:4 [Fig. 1(b)]. In
1999, the SS model was shown to describe the magnetic
properties of the compound SrCu2ðBO3Þ [2] synthesized in
1991 [3]. Some time later, other quasi-two-dimensional
compounds with magnetic atoms of each layer located on
a lattice topologically equivalent to the SS one have been
discovered. In particular, this concerns the rare-earth-metal
tetraborides RB4 (R ¼ La� Lu) [4–7]. Some of these are
regarded to be classical systems, since the magnetic mo-
ments of the magnetic ions are large. Moreover, if the
crystal field effects are strong enough, then the compounds
can be described in terms of an effective spin-1=2
SS model under strong Ising anisotropy. This is the case
of TmB4 [4,5], ErB4 [5,6], and HoB4 [5], where the easy-
magnetization axis is normal to SS planes.

SS magnets exhibit fascinating and puzzling sequences
of fractional magnetization plateaus. For instance, plateaus
at m=ms ¼ 1=2; 1=7; 1=8; 1=9; . . . of the saturated magne-
tization ms have been observed in TmB4 for temperatures
below 4 K when the field was normal to the SS planes; the
1=2 plateau is the major one. To explain the origin of this
sequence of plateaus is a challenging task. Some efforts
were made to do this through the Ising model on the SS
lattice since TmB4 is a strong Ising magnet, as well as ErB4

[5], where a single 1=2 plateau was observed [6]. Because
of the strong frustration, the solution of the ground-state
problem for this model is difficult to obtain; therefore, in
Ref. [1] the Ising limit was analyzed only for the zero field.

There is still no analytical solution for nonzero fields.
There are only some numerical results showing the exis-
tence of a single fractional plateau at m=ms ¼ 1=3.
However, the results of numerical simulations cannot be
considered as absolutely reliable since an inappropriate
finite lattice size can lead to erroneous conclusions. For
instance, in Ref. [4] a single magnetization plateau at
m=ms ¼ 1=2 was found for a system of 16 spins. More
precise calculations, however, did not confirm this conclu-
sion [8–10].
Here, we determine a complete solution of the ground-

state problem for the Ising model on the SS lattice using
our own method [11,12]. We rigorously prove the existence
of a single 1=3 plateau. As to magnetic structures with
other fractional values of m=ms, they exist at the bounda-
ries of full-dimensional regions of the ground-state phase
diagram. (A region in the parameter space of a model is
full-dimensional if its dimension is equal to the dimension
of the space). However, as the range of interactions in-
creases, these structures become full-dimensional one by
one and, hence, give rise to new plateaus. For example, we
show that an additional third-neighbor interaction produces
a 1=2 plateau. A similar result was obtained numerically in
Ref. [13], but we have found three different phases with

FIG. 1 (color online). (a) Shastry-Sutherland and (b) Archime-
dean 32:4:3:4 lattices. They are topologically equivalent.
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m=ms ¼ 1=2; one of these is expected to be realized
in ErB4.

Consider the spin-1=2 Ising model on the SS lattice in
the magnetic field

H ¼ J1
X

hiji1
�i�j þ J2

X

hiji2
�i�j � h

X

i

�i: (1)

Here, �i, �j ¼ �1 are the spin variables; J1 and J2 are the

interaction constants (for TmB4 and ErB4, J1 � J2 > 0);
hiji1 and hiji2 denote the summation over edges and diag-
onals [not all, see Fig. 1(a)] of the squares, respectively; h
is the magnetic field.

The ground-state phase diagram for any Ising-typemodel
is a set of convex polyhedral cones in the parameter space
[11]. (A polyhedral cone is the linear hull, that is, all linear
combinations with nonnegative coefficients—the so-called
conic hull—of a set of vectors. It is fully determined by
its edges or vectors along them). The full-dimensional

polyhedral cones fill the parameter space without gaps
and overlaps. Herein, we refer to a structure, which is a
ground-state structure in a full-dimensional polyhedral
cone, as full-dimensional and to the corresponding edges
(vectors) as basic rays (vectors) [11,12]. The convexity
property (i.e., if a structure is a ground-state one in two
points of the parameter space, then this structure is a
ground-state one in the entire line segment connecting these
points) makes it possible to find the ground-state structures
in any point of the parameter space if all basic rays are
known, as well as the ground-state structures in them.
Consider the rays listed in Table I. We shall shortly see

that these form a complete set of basic rays for the model
under consideration. To determine the ground-state
structures in these rays, let us rewrite the Hamiltonian
equation (1) as a single sum over all clusters in the form
of a right-angled triangle with an SS diagonal being the
hypotenuse, that is,

The numbers �i0, �i1, and �i2 define a configuration
(among the six unique possible ones) of the ith triangle;
�i0 is the spin value in the vertex of the right angle. With
each site being a vertex for three triangles, an arbitrary
number � accounts for the fact that the energy contribution
of a site can be distributed among these triangles in various
ways.

A structure is generated by a set of triangle configura-
tions if each triangle in the structure has a configuration
belonging to the set. If, at a point (h, J1, J2), all configu-
rations of the set have the same energy, which is lower than
the energies of all the remaining configurations, then the
structures generated by the configurations of the set are
ground-state ones at this point. Now, for each basic ray, we
can find a set of triangle configurations which generate all
ground-state structures in this ray. We call such sets basic
sets of configurations [11]. They are given in the second

column in Table I, and in the fourth column such a
value of the free coefficient � is indicated, for which all
configurations from the basic set have the same energy Hi,
which is lower than the energies of all the remaining
configurations. Herein, solid and open circles denote spins
up and down, respectively.
Table I represents a complete solution of the ground-

state problem for the Ising model on the SS lattice. Using
this table, we should firstly determine the full-dimensional
regions and structures. Here is an example to explain how
this is done: The Néel structure (Fig. 4, structure 3) is
generated by the set of configurations and . This

set is a subset of the basic sets of configurations for r1, r3,
r5, and r�5 . Hence, the Néel structure is the ground-state

one in these rays and, by virtue of the convexity property,
in the whole polyhedral cone generated by these four
vectors. A structure is full-, i.e., three-dimensional, if it is

TABLE I. Basic rays and basic sets of configurations for the Ising model on the SS lattice.

Basic ray ri (h, J1, J2) Basic set of configurations Full-dimensional regions �

r1 (0, 0, �1) 1, �1, 3 Arbitrary

r2 (0, �1, 2) 1, �1, 2 Arbitrary

r3 (0, 1, 2) 2, 3, 4, �4 Arbitrary

r4 (1, 0, 1) 1, 2, 4 0

r�4 (� 1, 0, 1) �1, 2, �4 0

r5 (4, 1, 0) 1, 3, 4 1=2

r�5 (� 4, 1, 0) �1, 3, �4 1=2
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generated by a set of triangle configurations that is a subset
of at least three basic sets. All full-dimensional regions are
listed in Table II. In its first, second, and third columns we
see, respectively, the notation of the region, the set of
triangle configurations generating the ground-state struc-
tures in this region, and the basic rays, which are the edges
of the region. The bar over the number of a region (struc-
ture) means that this region (structure) is symmetric to the
region (structure) with the same number but without a bar
in regard to field inversion (the flip of all spins). Now we
can see that the vectors listed in Table I are basic vectors
indeed and constitute a complete set. This is so, since the
full-dimensional regions, determined from this set, fill the
whole parameter space without gaps and overlaps (see
Figs. 2 and 3).

With the generating configurations for the full-
dimensional ground-state structures being known, one
can easily construct the latter. These are shown in Fig. 4,
except for the fully polarized structure 1 (see also Fig. 3).
Phase 2 is a disordered phase of Ising dimers (opposite
spins on the SS diagonals). The disorder is two-
dimensional; i.e., an extensive entropy occurs (kB ln2=2
per site [1]). Phase 3 is the Néel phase. The magnetization
of phases 1, 2, 3, and 4 is equal to 1, 0, 0, and 1=3,
respectively. Hence, there is a single fractional plateau at
m=ms ¼ 1=3, which confirms the numerical results of
Refs. [8–10].
An important advantage of our method is that it makes it

possible to determine the ground-state structures not only
in full-dimensional regions but also at their boundaries.
This enables us to analyze the effects of longer-range
interactions. The sets of generating configurations for the
boundary structures are given in Table II. The sets are
obtained as intersections of corresponding basic sets.
The structures observed in TmB4 emerge at the boundary
between Néel and 1=3-plateau phases. They are generated
by the configurations , , and . In addition to

structures 3 and 4, these configurations generate a se-
quence of stripe structures and their mixtures (Fig. 5).
The stripes contain an even number 2n of antiferromag-
netic chains and are bordered by the ferromagnetic ones.
We denote the structures composed of one type of stripe
only by ð3; 4Þn (n ¼ 1 for structure 4 and n ¼ 1 for
structure 3). The magnetization of structure ð3; 4Þn is equal
to 1

2nþ1 . The periodic mixture with the smallest unit cell of

consecutive structures ð3; 4Þn and ð3; 4Þnþ1 [we denote it by
ð3; 4Þn;nþ1; see Fig. 5] has a magnetization equal to 1

2nþ2 . In

a future paper [14], we will rigorously show that the
structure ð3; 4Þn (n � 2) can become full-dimensional
(i.e., produce a plateau) if the interaction range is not
less than the distance between the successive ferromag-
netic chains of the structure ð3; 4Þn�1. At the boundary
considered, there can also occur structures where there is
the first ferromagnetic chain on the left and/or the last one
on the right, which can then form a right angle.
Consider some other boundaries. The structures at the

boundary between regions 1 and 3 (see Table II and Fig. 6)

TABLE II. Basic rays and generating configurations for the
full-dimensional ground-state regions (top) and for their faces
(bottom).

Region Configurations Basic rays

1 r1, r2, r4, r5
�1 r1, r2, r

�
4 , r

�
5

2 r2, r4, r3, r
�
4

3 r1, r5, r3, r
�
5

4 r3, r4, r5

�4 r3, r
�
4 , r

�
5

Boundary Configurations Basic rays

1, �1 r1, r2

1, 2 r2, r4

1, 3 r1, r5

1, 4 r4, r5

2, 4 r3, r4

3, 4 r3, r5

FIG. 2 (color online). Stereoscopic ground-state phase diagram
for the Ising model on the SS lattice (see also Tables I and II).
Edges of the polyhedral cones (basic rays) are depicted in red
(gray); faces of cones are bordered by arcs of the unit sphere
(heavy black lines). Unit circles (thin lines) in the three coordinate
planes are figured for better visualization. This figure is a 3D
image.

FIG. 3. Two-dimensional ground-state phase diagram for the
Ising model on the SS lattice (see also Tables I and II and
Figs. 2 and 4).
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are constructed according to the following rule: all the spins
at SS diagonals chosen arbitrarily, but without any nearest
couples (i.e., belonging to diagonally joined squares), are
orientated downwards; all the rest of spins are orientated
upwards. The structures at the boundary between regions 1
and 4 (Fig. 6) are determined by a single condition: there
cannot be two neighboring spins downwards either along
SS diagonals or along the edges. If an additional antiferro-
magnetic (as in TmB4 [5]) third-neighbor interaction J3
along all the diagonals of empty (i.e., without SS diagonals)
squares is included, then, from all possible structures at
the boundary between regions 1 and 3 as well as 1 and 4,
only those structures become full-dimensional in which all
the empty squares have the configuration (Fig. 6), since

the energy should be as small as possible. These structures
constitute disordered phases with 1=2 magnetization. One
can show that the width of corresponding plateaus is equal
to 4J3. Thus, contrary to the conclusion of Ref. [13], we can
say that an additional third-neighbor interaction is sufficient
for the stabilization of a 1=2 plateau. If J3 < 0, then among
all structures at the boundary between phases 1 and 4,
only the ordered structure ð1; 4Þ� (Fig. 6) becomes full-
dimensional. It produces a 1=2 plateau as well. We suppose
that this structure emerges inErB4 since J3 is expected to be
negative in this compound [5]. Interaction J3 lifts also the
degeneracy of the Ising dimer phase. If J3 > 0 (J3 < 0),

then among all the structures of this phase, the structure
with the minimum energy is the one for which spins at J3
bonds are different (identical) (Fig. 7).
Some ground-state structures, obtained here analytically,

coincide with those found numerically. Structure 4 was
determined in Refs. [9,10,13,15], structure 3 (Néel phase)
in Refs. [4,9,10], and structure 2 (Ising dimers) in
Refs. [1,10]. It seems that structures with 1=4, 1=5, and
1=6 magnetization coincide with those determined in
Ref. [15] for a spin-electron model (we cannot be sure,
since SS bonds are not indicated there). This is quite clear
because the spin-electron interaction lifts the degeneracy
and some structures become full-dimensional. Our struc-
tures with 1

2nþ1 magnetization are different from those

shown in Ref. [4]: all antiferromagnetic chains are shifted.
The same concerns the structure with 1=3 magnetization
shown in Ref. [8].
The main conclusion of our study is that an Ising model

with additional long-range interactions is sufficient to ex-
plain the origin of fractional magnetization plateaus in
rare-earth-metal tetraborides which are strong Ising mag-
nets (TmB4 and ErB4). The long-range interactions are
RKKY ones [4,13], since rare-earth-metal tetraborides
are good metals. Here, we have studied the role of the
first- and second-neighbor interactions and rigorously

FIG. 4 (color online). Full-dimensional ground-state structures
for the Ising model on the SS lattice. Phases 2, 3, and 4 are,
respectively, the Ising dimer phase (opposite spins on the SS
diagonals), the Néel phase, and the 1=3-plateau phase. Unit cells
are shown. Solid and open circles represent spins up and down,
respectively.

FIG. 5 (color online). Ground-state structures ð3; 4Þ2 and ð3; 4Þ3
(m=ms ¼ 1=5 and 1=7) and their periodic mixture ð3; 4Þ2;3 with
the smallest unit cell at the boundary between phases 3 and 4. The
structures consist of ferro- [on the yellow (light gray) background]
and antiferromagnetic chains. Unit cells are indicated.

FIG. 6 (color online). Ground-state structures at the bounda-
ries between regions 1 and 3 as well as 1 and 4 (see also
Table II). First and second figures present disordered structures.
The right-hand parts of these figures show the arrangements of
spins (still disordered) if an additional third-neighbor interaction
J3 > 0 is included. All the empty squares have then the configu-
ration . The third figure shows an ordered structure that

becomes full-dimensional if J3 < 0. All the structures ð1; 3Þþ,
ð1; 4Þþ, and ð1; 4Þ� produce a 1=2 plateau. The magnetization of
the structures (1, 3) and (1, 4) can vary between 0 and 1 as well
as 1=3 and 1, respectively.

FIG. 7 (color online). Ground-state structures of the Ising
model on the SS lattice with additional third-neighbor interac-
tion: (a) J3 > 0 (collinear phase), (b) J3 < 0 (chessboard phase).
The Ising dimer phase exists at the boundary between these
phases.
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proved that they produce a single fractional plateau at 1=3
saturated magnetization. We have also partially analyzed
the effect of the third-neighbor interaction and thus have
shown that it produces at least five new phases; for three of
these the magnetization is equal to 1=2. One of these
1=2-plateau phases is expected to emerge in ErB4.
Having analyzed the structures at the boundary between
the Néel phase and the 1=3-plateau phase, we have also
found the stripe structures with m=ms ¼ 1=n ðn � 4Þ;
some of these have been observed in TmB4. To finally
explain the emergence of the sequence of magnetization
plateaus in TmB4, the effect of further-neighbor interac-
tions should be investigated.

We are grateful to T. Verkholyak for drawing our atten-
tion to the problem of fractional magnetization plateaus in
SS compounds and for useful discussions.
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