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Diagrams of State for One-Dimensional
Hydrogen-Bonded Proton Conductor

I. V. STASYUK,∗ O. VOROBYOV, AND R.YA. STETSIV

Institute for Condensed Matter Physics of the National Academy of Sciences
of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine

We investigate the equilibrium states of one-dimensional proton conductor where pro-
tons can move in the subsystem of hydrogen bonds. The consideration is based on the
orientational-tunnelling model that takes into account two-stage mechanism of proton
transfer (inter-bond and intra-bond hopping according to Grotthuss) as well as the
short-range interaction between protons. Using exact diagonalization method for the
finite cluster we have obtained one-particle spectral densities and found conditions
of appearance of the various states of the system, in particular, charge density wave
(CDW) like state and the state similar to superfluid (SF) phase (that can be analogues
to superionic one). The corresponding diagrams of states are built and discussed.

Keywords Proton conductors; hydrogen bond; correlation; superionic transition

1. Introduction

In recent decades the systems with ionic and proton conductivity are getting more and more
popular. Though solid state ionic conductors are known for almost two hundred years the
intensive study of these objects were induced by the discovery of superionic (superprotonic)
conductors. The latter are very promising from the point of view of their applications that
include solid electrolyte batteries, fuel cells etc [1]. The special attention is paid to the
crystals with hydrogen bonds that exhibit transition to superprotonic (superionic) phase
with high conductivity that arises due to the motion of protons. Extensive experimental
studies of these systems (see [2] for a review) revealed that the charge transfer occurs
within the network of hydrogen bonds that connect ionic groups and form, in particular,
quasi-one-dimensional (chain-like) [3–5] structures. For various crystals it was shown that
superionic phase transition is driven by the transformation in proton subsystem (see [2] for
review).

Though physical properties of superionic (superprotonic) conductors were thoroughly
studied experimentally, the investigation of the microscopic mechanism of phase transitions
was done within very simple and approximate theoretical approaches. Several variations of
lattice gas model were used for this purpose. Some of these approaches were focused on
long-range interaction [6, 7] and treated superionic transition as order-disorder one. These
authors considered the network of virtual positions that can be occupied by ions (or virtual
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Diagrams of State for Proton Conductor 7

hydrogen bonds that can be occupied by protons). In superionic (superprotonic) phase these
positions are occupied partially with the same probability. The other authors have studied
the influence of phonons on the proton subsystem and the transition from ferroelastic to
superionic phase [8–10]. Some recent attempts based on the orientational-tunnelling model
[11] have developed the approach focused on the short-range interaction between protons
while also including the proton hopping into consideration [12–14].

All of the above-mentioned lattice models have treated protons in frames of Fermi
statistics. However more correct consideration of protons (and ions in general) should
be based on the mixed statistics of Pauli [15] since these particles are actually bosons
but they occupy localized positions according to Fermi rule. Though the use of Pauli
operators generate some additional mathematical complexities this approach opens up
new possibilities. For instance, the lattice model of ionic Pauli conductor is capable to
describe the appearance of superfluid-like state (that may correspond to superionic phase)
in the system even in the absence of interaction between particles [16, 17]. While turning
on interaction allows to describe more complex behaviour including transition to CDW-
like state [18]. The lattice model of Pauli particles is similar to hard-core Bose-Hubbard
model widely used for the description of physical phenomena in optical lattices as well as
ionic conductivity and intercalation phenomena [19]. Bose-Hubbard model also exhibits
the transition from the so-called Mott insulator state to superfluid-like state (see [20] for
review). Some of the authors also mention the possibility of formation of intermediate
“supersolid” phase that may appear on the phase diagrams alongside the transition from
dielectric (CDW) to superfluid phase.

Here we consider the one-dimensional Pauli (hard-core boson) lattice model of pro-
ton conductor taking into account both proton transfer (according to two-stage Grotthuss
mechanism) and short-range interaction between protons. We pay special attention to the
latter ones since according to experiments [21] and quantum-chemical calculations [22, 23]
they can be significant in real systems and therefore may affect the system’s behaviour
considerably. Moreover, for the case of ionic Pauli conductor the short-range interactions
are responsible for the transition to CDW-like state [18]. Analyzing the single-particle
spectral densities of protons in the finite 1D hydrogen-bonded chain and their changes
with temperature at different concentration of protons we obtain the diagrams of state. The
conditions of the crossover-type transition from CDW-like state to the superfluid(SF)-like
state (that can be considered as an analogue of the superionic phase) and to the state that is
similar to the Mott-insulator phase are discussed.

2. The Model

We use hard-core boson lattice model to describe proton conductor. From one hand such a
model is similar to the ones used for strongly-correlated electron systems (i.e. the Hubbard
model), but from the other hand it takes into account the specific feature of the object it
is applied to. Particularly, the two-stage Grotthuss mechanism of the proton transport is
taken into account via two proton transfer constants (�0 for intra-bond hopping between
two possible positions a and b on each bond as well as �R for inter-bond transfer between
hydrogen bonds that arises due to orientational motion of ionic groups) and because of that
the model is known as orientational-tunnelling model [11]. It also includes the correlation
between nearest protons caused by the short-range repulsion (the corresponding energies
U,V on the bond and w,w′, ε). Here we introduce effective correlation parameters Vef =
U + V and wef = w + w′ − 2ε that allows us to rewrite the Hamiltonian proposed in [11]
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8 I. V. Stasyuk et al.

Figure 1. The model of one-dimensional hydrogen-bonded proton conductor. The large circles
are ionic groups connected with the lines of hydrogen bonds. The small circles denote two possible
positions of proton on each hydrogen bond. The table illustrates the energies of different configuration
of protons near ionic group.

as follows

H = (ε−µ)
∑

i

(nia+nib) + Vef

∑
i

nianib + wef

∑
i

nibni+1,a

+ �0

∑
i

(c+
iacib+c+

ibcia) + �R

∑
i

(c+
ibci+1,a+c+

i+1,acib). (1)

In contrast to [11] ci,α (c+
i,α) in our case are Pauli operators. They describe the process

of annihilation (creation) of proton in position i, α (α = a, b) therefore ni,α = c+
i,αci,α is

the occupation number of protons in this position (see Fig. 1).

3. Exact Diagonalization Technique

We calculate the single-particle spectral densities of one-dimensional proton Pauli conduc-
tor using exact diagonalization technique. For the finite chain of N hydrogen bonds we
introduce the many-particle states

| n1,an1,b . . . nN,anN,b〉; ni,α = 0, 1. (2)

The Hamiltonian matrix on the basis of these states is the matrix of the order 22N × 22N .
This matrix is diagonalized numerically

U−1HU = H̃ =
∑

p

λp|p〉〈q|, (3)

where λp and |p〉 are eigenvalues and eigenvectors of the Hamiltonian. The same transfor-
mation is applied to the creation and annihilation operators

U−1ci,αU =
∑
pq

Apq |p〉〈q|, U−1c+
i,αU =

∑
pq

A∗
rs |r〉〈s| (4)

which are required to construct the two-time retarded Green’s function �ci,a|c+
i,a� that

contains information about the one-particle energy spectrum of the system. For Pauli
creation and annihilation operators this Green’s function can be constructed in two ways,
i.e. commutator Green’s function

�ci,α(t)|c+
i,α(t ′)� = −i�(t − t ′)〈[ci,α(t), c+

i,α(t ′)]〉 (5)
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Diagrams of State for Proton Conductor 9

or anticommutator Green’s function

�ci,α(t)|c+
i,α(t ′)� = −i�(t − t ′)〈{ci,α(t), c+

i,α(t ′)}〉. (6)

Imaginary parts of these Green’s functions are the single-particle spectral densities (also
referred to as densities of states or DOS)

ρ(ω) = − 1

πN

N∑
i=1

Im �ci,a|c+
i,a �

= − 1

πN

N∑
i=1

Im

[
1

Z

∑
pq

ApqA
∗
pq

e−βλp − ηe−βλq

ω − (λq − λp)

]
, (7)

where Z = ∑
p e−βλp . Spectral densities in (7), obtained from commutator η = 1 (5) and

anticommutator η = −1 (6) Green’s functions respectively, exhibit discrete structure, i.e.
they consist of several δ-peaks due to the finite size of a cluster. Therefore we introduce small
parameter � to broaden the δ-peaks according to Lorentz distribution δ(ω) → 1

π
�

ω2+�2 .
Throughout our calculation � = 0.25. To eliminate the effect of boundaries, we apply the
periodic boundary conditions to the cluster of N hydrogen bonds. In numerical calculations
we take the value N = 5 that corresponds to 10 virtual proton positions.

4. Proton Spectral Densities and Diagrams of State

We have calculated the spectral densities (7) for a wide range of correlation strength,
temperatures and values of chemical potential. The average concentration 〈n〉 at given µ was
calculated according to spectral theorem 〈n〉 = ∫ ∞

−∞
ρ(ω)dω

eβω+1 . Analyzing the changes of shape
and character of frequency-depended spectral densities we have built the corresponding
diagrams of state (Fig. 2).

Figure 2. The diagram of state for different correlation parameters a) Vef = 6, wef = 4; b) Vef =
6, wef = 2; c) Vef = 4, wef = 2.8. δ =< n > −1/2 denotes the deviation from half-filling. �1, �2, �3,
�4 denote the points on the diagram illustrated with the corresponding spectral densities on Fig. 3
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10 I. V. Stasyuk et al.

We have used the fact that in the SF phase the characteristic feature of the commutator
spectral density is the existence of the negative branch (at ω < 0) which appears contin-
uously in ω = 0 point (see, for example [24]). Contrary to this, in the CDW phase this
branch is separated from the positive one by the gap. The latter also exists in the MI phase
but it has another meaning as it indicates the distance between the level of chemical poten-
tial and the edge of one-particle proton energy band (the negative branch is absent in this
case).

In numerical calculations we have widely varied the values of short-range correlation
constants relatively to transfer parameters. Experimental data and quantum-chemical cal-
culations as well as semi-empirical theoretical estimations propose a wide range of values
for interaction constants depending on the object considered. While transfer parameters
are estimated as �0 = 40–250 cm−1,�R = 200–1000 cm−1, interaction strengths in usual
hydrogen-bonded superionic conductors can be by nearly an order of magnitude greater
[8, 9]. On the other hand, in molecular systems the latter can reach quite large values
Vef ≈ 6 · 103cm−1, wef ≈ 103−104 cm−1 [21, 22]. Below we present results obtained here
for the cases Vef /�0 ∼ 4–6, wef /�0 ∼ 2–4,�R/�0 = 1.5 (accordingly, on figures all en-
ergy parameters including kT are presented in relation to �0 which is treated as an energy
unit).

Let us first analyze the proton spectra (particularly, commutator spectral density)
near half-filling (one proton per hydrogen bond). The case of strongly correlated proton
conductor (V,w >∼ �0,�R) corresponds to the gapped spectra that describes CDW-like
state (Fig. 3.1). In this case the level of the chemical potential is near the middle of the
gap (〈n〉 ∼ 1/2) and one may observe the situation when all protons occupy a positions
(or all protons occupy b positions) along the chain. Due to the simplicity of the model this
situation corresponds to ferroelectric type ordering, however it has more general meaning.
The protons only occupy some of the positions available (while other positions remain
unoccupied) that is a general feature of ordered phases that exist in superionic crystals.
Similar effect was found for ionic and proton conductors described by the analogous models
in frames of Fermi statistics [13, 14] as well as for the Pauli ionic conductor [18]. Keeping
this in mind we will call this state CDW though the doubling of lattice period is not
observed (while it is observed in “real” CDW phases). For the case of ionic conductor (both
Pauli and Fermi) the splitting of spectra occurred due to charge ordering with doubling
of lattice period. In the CDW-state the conductivity is weak as it may arise only due to
the motion of D- and L-defects while the energy of forming of pair of these defects is
about the width of the gap. At weaker interactions (V,w ∼ �0,�R) as well as at higher
temperatures the gap that exists in the proton spectra near half-filling may vanish and the
system undergoes the transition to SF-state. This transition can be also achieved by the
change of the chemical potential or conjugated change of average concentration (Figs. 3.2
and 3.3). The conductivity in this state increases dramatically and we can match it with the
experimentally observed superionic phase. Moreover as we go far away from half filling
(or considerably decrease µ) we obtain another transition to the state that has no negative
branch (Fig. 3.4). The spectrum in this case is gapless but the level of the chemical potential
is below the band. This state is interpreted as Mott insulator (MI) state because the protons
need some activation energy to induce their transport. The situation is similar to the one
observed, in particular, in optical lattices in the vicinity of SF-MI transition at intermediate
concentrations. However for more thorough description of the proton subsystem in this
case one would have to include the long-range interactions into consideration. At low
temperatures the latter induce the real CDW state accompanied by charge modulation

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

ri
zo

na
] 

at
 0

4:
09

 1
0 

Ja
nu

ar
y 

20
13

 



Diagrams of State for Proton Conductor 11

Figure 3. The commutator spectral densities that correspond to CDW, SF and MI states. Vef =
6, wef = 4, kT = 0.2. The dashed curve denotes the level of the chemical potential.

when some of the virtual hydrogen bonds in the unit cell are occupied. This kind of state
would be an analogue of ferroelastic phases in real superionic conductors.

Figure 4 presents the diagrams of state (T ,wef ), (wef , δ) in the vicinity of half-filling
(1 proton per bond) where we observe transition from charge ordered state (CDW) to
SF-state both at increase of temperature and decrease of interaction. As we go away from
half filling (δ �= 0) the critical value of correlation wef that separates SF and CDW states

Figure 4. The diagrams of states. a). (T , wef ) diagram for different values of interaction Vef ; b).
(wef , δ) diagram for Vef = 4, T = 0.05.
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12 I. V. Stasyuk et al.

increases. This result is in agreement with the ones obtained for hard-core boson with pair
interaction via Monte-Carlo simulations and within mean-field approach [25]. In T → 0
limit the transition between this states becomes a quantum phase transition.

5. Conclusions

Calculating the spectral densities for hydrogen-bonded one-dimensional proton conductor
described by Pauli orientational-tunnelling model we have found the regions where various
equilibrium states (phases) exist. We have found that at relatively strong correlations and
low temperatures the charge ordered state (CDW-like) in this system is observed near
half-filling. This state is an analogue of ferroelastic phase of superionic conductors. As we
increase temperature the system undergoes the crossover transition to SF-state that can be
considered as superionic phase. Clearly, this one-dimensional model is too simple to fully
describe this kind of transitions in three-dimensional crystals, nevertheless one can easily
fit the values of ratios Vef /�0, wef /�0 to obtain the experimentally observed superionic
transition temperatures of several hundred K.
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