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The approach of generalized collective modes is applied to the study of dispersion curves of
collective excitations along isothermal lines of supercritical pure Lennard-Jones fluid. An effect of
structural relaxation and other nonhydrodynamic relaxation processes on the dispersion law is
discussed. A simple analytical expression for the dispersion law in the long-wavelength region of
acoustic excitations is obtained within a three-variable viscoelastic model of generalized
hydrodynamics. It is shown that the deviation from the linear dependence in the long-wavelength
region can be either “positive” or “negative” depending on the ratio between the high-frequency
�elastic� and isothermal speed of sound. An effect of thermal fluctuations on positive and negative
dispersion is estimated from the analytical solution of a five-variable thermoviscoelastic model that
generalizes the results of the viscoelastic treatment. Numerical results are reported for a
Lennard-Jones supercritical fluid along two isothermal lines T�=1.71,4.78 with different densities
and discussed along the theoretical expressions derived. © 2010 American Institute of Physics.
�doi:10.1063/1.3442412�

I. INTRODUCTION

The theoretical treatment of collective dynamics in liq-
uids is an extremely complicated problem because of the
existence of different time scales of microscopic processes.
Only on macroscopic spatial and time scales the analytical
expressions for time correlation functions Fij�k , t� and spec-
trum of hydrodynamic collective modes can be obtained. The
leading contributions to experimentally measured quantities
�such as the dynamic structure factor S�k ,��, where k and �
are wave number and frequency, respectively� are well estab-
lished only in hydrodynamic limit when k→0, �→0.1–3 For
the case of simple monoatomic liquids, three hydrodynamic
equations reflect in fact the local conservation laws and de-
scribe only the dynamical processes on large spatial and time
scales comparing with the average interatomic distance and
characteristic molecular times, i.e., when liquids are treated
as continuum without any detail of the atomic structure. Be-
yond the hydrodynamic region, where most of real experi-
ments using X-ray or neutron scattering techniques and com-
puter molecular dynamics �MD� simulations are located, the
short-time processes with finite lifetime and a spatial nano-
scale become very important and essentially contribute to the
shape of dynamic structure factors. Therefore, a lot of efforts
have been made in order to derive analytical expressions for
the hydrodynamic time correlation functions �in particular,
for the density-density time correlation function Fnn�k , t�,

which are simply connected via inverse time-Fourier trans-
form to S�k ,��� generalizing the known hydrodynamic re-
sults and that could be used beyond the hydrodynamic re-
gion. One of the successful attempts, a nonlocal mode
coupling theory �MCT�,4,5 can potentially explain dynamical
phenomena in a very broad range of temperatures and den-
sities, however due to the necessity of evaluating intermedi-
ate integrations over wave numbers it can be used practically
in a limited number of applications. Hence less sophisticated
schemes of generalized hydrodynamics based on the memory
function formalism �MFF� in the local form1 are often more
useful for practical needs.

According to hydrodynamics the only long-wavelength
propagating processes in liquids are the longitudinal sound
excitations with linear dispersion law ��k�=csk and a damp-
ing which is quadratic in wave numbers ��k�=�k2, where cs

and � are the adiabatic speed of sound and damping coeffi-
cient, respectively. For single-component liquids the hydro-
dynamics yields only two nonpropagating relaxation
processes. One of them, which couples to longitudinal propa-
gating modes, corresponds to thermal relaxation and is de-
fined by thermal diffusivity. Another relaxation process is not
coupled to longitudinal processes in isotropic liquids and is
connected with shear viscosity.1–3 Upon increasing wave
numbers, i.e., when wavelengths reduce and approach the
molecular length scale, the dispersion law of acoustic exci-
tations changes essentially from that of the hydrodynamic
regime. Usually for dense liquids the deviation at small wave
numbers corresponds to bending up the dispersion curve anda�Electronic mail: bryk@icmp.lviv.ua.
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is called “positive” dispersion,6,7 although recently “nega-
tive” dispersion cases in supercritical fluids have been
reported.8 To date two mechanisms are recognized to be
mainly responsible for the “positive dispersion” in pure liq-
uids: nonlocal coupling effects between hydrodynamic
modes described within the MCT �Ref. 4� and local coupling
between acoustic excitations and nonhydrodynamic struc-
tural relaxation obtained within the MFF.9 However, there
were no systematic theoretical and experimental studies of
the density or pressure dependence of positive or negative
deviation from hydrodynamic dispersion law, except the in-
elastic neutron scattering experiments and subsequent calcu-
lations, based on MCT for liquid Ar at 120 K.10 The micro-
scopic mechanism responsible for positive dispersion in
MCT �Ref. 4� is the nonlocal �with different wave numbers�
coupling of hydrodynamic relaxation and propagating
modes. The MCT yields the following expression for the
dispersion law of acoustic excitations:

��k� = csk + �sk
5/2 + O�k11/4� + . . . , �1�

where the coefficient �s can be estimated from a sophisti-
cated expression given in Ref. 10, which requires the knowl-
edge of explicit density dependences of adiabatic speed of
sound cs�n� and thermal expansion coefficient �T�n�. The
analytical expression for the dispersion law �1� is an
asymptotic expansion and is valid only in a small wave num-
ber region, usually very close to the boundary of hydrody-
namic regime. The third term in expansion �1� contains k11/4

and to date nobody was able to calculate it in order to esti-
mate its sign and relative contribution with respect to the
second term. Even calculations of the prefactor �s and its
density dependence are very scarce in the literature. The re-
sults on �s, reported in Ref. 10 gave evidence that for dense
liquids such as Ar at 120 K, the prefactor �s is positive, and
contains a strong contribution from thermal processes and
reduces with increasing density. This means that the behavior
of the dispersion following from the first two terms in Eq. �1�
should be expected as a reduction of the positive dispersion
of acoustic excitations in dense liquids by increasing density
or pressure. However, recent IXS experiments on supercriti-
cal Ar �Refs. 11 and 12� resulted in a completely different
tendency for the pressure dependence of positive sound dis-
persion in the supercritical region. It was observed that the
positive dispersion reduces with decreasing density and prac-
tically vanishes at some density.

Besides, recently there appeared a report on a change of
dispersion curves in liquid nitrogen for seven thermody-
namic points at constant pressure.13 A transformation from
adiabatic to isothermal speed of sound was observed in the
sound dispersion of fluid nitrogen close to supercritical con-
ditions. Such a change in the dispersion curve of collective
excitations was treated as a consequence of the absence of a
structural relaxation process, known to be responsible for the
positive deviation from the linear dispersion law beyond the
hydrodynamic regime. Recently there appeared also a theo-
retical study within the MCT, which was focused on struc-
tural relaxation processes in liquids and glasses14 and one of
the results was a possible negative deviation from the linear
dispersion law for long-wavelength acoustic excitations.

Over the last 15 years, another theoretical method of
analysis of collective dynamics in liquids has proved its abil-
ity to correctly describe the dispersion of acoustic collective
excitations and wave number dependence of nonpropagating
relaxation processes. The approach of generalized collective
modes �GCM� represents collective dynamic processes in
liquids as a sum of contributions from hydrodynamic and
nonhydrodynamic �kinetic� collective modes.15,16 This ap-
proach is based on the eigenvalue solutions of the general-
ized Langevin equation with coupling effects between differ-
ent processes taken in local approximation �with the same
wave numbers� in contrast to MCT. The microscopic mecha-
nism for changes in hydrodynamic dispersion law of collec-
tive excitations in GCM is due to coupling of acoustic exci-
tations with nonhydrodynamic processes such as structural
relaxation, nonhydrodynamic heat relaxation, or propagating
heat waves. This approach is much simpler with respect to
the MCT one, and gives the possibility of tracing down the
role of different nonhydrodynamic processes by analytically
treating simplified dynamical models, which yielded very
transparent and useful analytical results in different regions
of �k ,��-plane. The analytical GCM results were obtained
for describing the following nonhydrodynamic processes in
liquids: structural relaxation,17 kinetic heat relaxation,18 op-
ticlike excitations in binary liquids,19,20 heat waves,21 and
charge waves in molten salts.22

The aim of this study is to perform a numerical and
analytical GCM analysis of dispersion of collective excita-
tions along several isothermal lines on the phase diagram of
Lennard-Jones fluids. The obtained analytical expressions
within a local-coupling GCM theory could point out what
kind of microscopic processes are responsible for positive or
negative sound dispersion at the boundary of hydrodynamic
regime.

The remaining paper is organized as follows: in the next
section we report a GCM analysis of collective dynamics in
supercritical Lennard-Jones fluids along two isothermal lines
on the phase diagram; in section III two dynamic models
�viscoelastic and thermoviscoelastic ones for pure liquids�
are solved analytically in the long-wavelength limit in order
to study the origin of deviation from linear dispersion law of
acoustic excitations on the boundary of hydrodynamic re-
gion; and in the last section we give the conclusions of this
study.

II. COLLECTIVE DYNAMICS IN SUPERCRITICAL
LENNARD-JONES FLUIDS: NUMERICAL
GCM ANALYSIS

In this section we will discuss the dispersion law of col-
lective excitations in fluids obtained within the five-variable
dynamical model.18 Analytical solutions in terms of five
eigenmodes are possible only in the limit k→0. Beyond the
hydrodynamic region, for an arbitrary k, only numerical
GCM analysis of the five-variable model can yield the
k-dependence of all eigenmodes.
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A. Method of calculations and details of MD
simulations

MD simulations were performed in microcanonical en-
semble for a model system of 2000 particles interacting via
Lennard-Jones potentials with cutoff radius of 12 Å. Produc-
tion runs of 300 000 time steps were performed along the
two isothermal lines at reduced temperatures T�=1.71 and
T�=4.78, shown on phase diagram of Lennard-Jones fluid in
Fig. 1. The Lennard-Jones parameters �LJ=3.405 Å and
�LJ=119.8 K were used in actual simulations, and the stan-
dard reduction of units was applied: n�=n�LJ

3 , T�=T /�LJ.
Since we made use of the standard Lennard-Jones parameters
of argon we have to mention that in this theoretical study, we
are aimed to explain by a combination of computer simula-
tions and analytical theory an effect, which is general for all
pure fluids. In case of a particular application of this theory
to the analysis of scattering experiments on supercritical Ar
more precise ab initio potentials23,24 can be used, especially
in the case of Ar fluid at high pressures and temperatures.

The time step in MD simulations was 2 fs. For every
sixth configuration the following five dynamic variables: par-
ticle density n�k , t�, density of longitudinal momentum
JL�k , t�, heat density h�k , t�, and first time derivatives of
JL�k , t� and h�k , t�, were sampled, saved and used later in
subsequent calculations of relevant static and time correla-
tion functions needed for the estimation of generalized ther-
modynamic quantities and matrix elements within the GCM
approach. Here

n�k,t� =
1

�N
�
j=1

N

e−ikrj ,

JL�k,t� =
m
�N

�
j=1

N
kv j

k
e−ikrj , �2�

h�k,t� = ��k,t� −
��kn−k	
�nkn−k	

n�k,t� ,

where

��k,t� =
1

�N
�
j=1

N

� je
−ikrj ,

with � j�t�, v j�t�, and r j�t� being total single-particle energy,
velocity, and position of jth particle at time moment t, re-
spectively, and N, m are the number and mass of particles.
The averages ��kn−k	 and �nkn−k	 correspond to the standard
instantaneous energy-density and density-density correlators.
We stress that the direct sampling of heat density and its first
time derivative is necessary for the correct analysis of col-
lective dynamics beyond the hydrodynamic region. Most
theoretical and simulations studies of collective dynamics in
liquids completely ignore effects connected with heat fluc-
tuations, or treat them on the level of fitting procedures.

The main equations of the GCM approach for the case of
pure systems can be found in Ref. 16. The general scheme of
GCM analysis consists in the calculation of the generalized
hydrodynamic matrix T�k� on a chosen basis set of dynamic
variables and finding its eigenvalues and eigenvectors. The
pairs of complex-conjugated eigenvalues correspond to
propagating modes, while purely real eigenvalues have the
meaning of inverse lifetimes of corresponding nonpropagat-
ing relaxation processes. The corresponding eigenvectors al-
low to calculate so-called mode strengths �weights� of the
dynamic eigenmodes in relevant time correlation functions
or the dynamic structure factors. In this study the matrix
elements of the generalized hydrodynamic matrix T�k� were
estimated for each k-point directly from MD simulations
avoiding any fitting procedure. The GCM analysis of MD-
derived time correlation functions was performed within the
thermoviscoelastic five-variable dynamic model for the case
of longitudinal dynamics

A�5��k,t� = 
n�k,t�,JL�k,t�,h�k,t�, J̇L�k,t�, ḣ�k,t�� . �3�

For the analysis of collective dynamics the density depen-
dence of adiabatic speed of sound cs is needed. This quantity
is a characteristic of sound propagation in hydrodynamic re-
gime. Another quantity, the high- frequency speed of sound
c�, reflects the elastic mechanism of sound propagation. The
adiabatic speed of sound

cs = � �kBT

mS�k = 0�
1/2
,

was calculated for each thermodynamic point from the long-
wavelength limit of a ratio ���k� /S�k�, which is a smooth
function of wave number and can be easily extrapolated to a
value at k=0. The high-frequency speed of sound was esti-
mated from the long-wavelength asymptote of wave number-
dependent quantity

c��k� =
1

k
� �J̇L�− k�J̇L�k�	

�JL�− k�JL�k�	

1/2

.

In Figs. 2 and 3, one can see the calculated density depen-
dence of adiabatic and high-frequency speed of sound for the
two isothermal lines shown in the phase diagram of Fig. 1.

Another important thermodynamic quantity, which re-
flects the strength of coupling between thermal and viscous
processes in liquids, is the ratio of specific heats at constant
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FIG. 1. Thermodynamic points on phase diagram along the isothermal lines
T�=1.71 and T�=4.78 chosen for this study. The standard reduction of units
was used: n�=n�LJ

3 and T�=T /�LJ.
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pressure and constant volume �. For �=1 the density and
thermal fluctuations are decoupled. The values of � calcu-
lated along two chosen isothermal lines are shown in Fig. . In
the high-density region, the ratio of specific heats is close to
unity like in case of liquid metals. By reducing the density, �
increases and, at the temperature T�=1.71, shows a pro-
nounced peak close to reduced density n�=0.3. According to
the NIST database25 for supercritical argon close to the den-
sity n�=0.3 the ratio of specific heats as a function of density
reaches maximum, which in the case of T�=1.71 is much
sharper than for the high-temperature state. This gives evi-
dence that by approaching to the critical point from the high-
temperature side a strong coupling between density and ther-
mal fluctuations takes place.

B. Spectra of collective excitations

The GCM theoretical results for some restricted set of
dynamic variables have sense only in the case when the
GCM analytical expressions can reproduce MD-derived dy-
namic structure factors S�k ,��. For the case of the five-
variable dynamic model A�5��k , t� the quality of GCM repli-
cas is provided by first five frequency moments of S�k ,��,
which coincide for MD- and GCM-derived dynamic struc-
ture factors, as well as additional sum rules connected in
GCM theory with equivalence of density-density, density-
energy and energy-energy correlation times in theory and
simulations. All this permits to obtain very nice reproduction
of dynamic structure factors on the boundary of hydrody-
namic regime by the GCM theory �see Fig. 5�. Different
intensities of central and side peaks of S�k ,�� in the hydro-
dynamic regime are defined by the Landau–Placzek ratio,1

and in our case, Fig. 5 shows that the GCM theory can nicely
reproduce collective effects in supercritical Ar in quite wide
region of the ratio of specific heats �, which is a measure of
coupling between thermal and viscous processes.

The imaginary parts ��k� of complex-conjugated pairs
of GCM eigenvalues of the generalized hydrodynamic ma-
trix T�k�,

z	�k� = ��k� 	 i��k� ,

correspond to the dispersion of collective excitations. The
calculated dispersion curves for several densities are shown
in Figs. 6 and 7. By dashed lines, the linear dispersion law
with corresponding values of adiabatic speed of sound cs is
shown. The values of cs for different n were estimated inde-
pendently from the calculations of z	�k� as described above.

In Figs. 6 and 7, the general tendencies in the dispersion
change with density are: �i� the reduction of the slope of the
linear dispersion law at small exchanged momentum with
decreasing density, which is in agreement with Figs. 2 and 3;
�ii� the reduction of the rotonlike minimum with decreasing
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density, �iii� the reduction of the bending up of the dispersion
curve in the long-wavelength region, i.e., the reduction of
positive dispersion, with decreasing density; and �iv� increas-
ing of the width of region, where apparent speed of sound
almost coincides with cs, with decreasing density.

Interesting that for some low-density states the eigenval-
ues can even correspond to a negative dispersion of collec-
tive excitations, as it is shown by the bottom curve in the
long-wavelength region of Fig. 7. However, with increasing
wave numbers the dispersion of collective excitations at
n�=0.357 does not keep reducing its slope, but for
k�0.7 Å−1 the dispersion curve starts again to bend up im-
plying that perhaps different processes have an effect on
sound dispersion curve in different regions of wave numbers.

In order to explain the positive and negative dispersions ob-
served in our GCM calculations we aimed to obtain the ana-
lytical expressions for eigenvalues z	�k� within the same dy-
namic model.

III. SOUND DISPERSION AT THE BOUNDARY OF
HYDRODYNAMIC REGIME: ANALYTICAL
GCM EXPRESSIONS

Let us first consider a simplified viscoelastic model in
order to obtain a compact expression for the positive disper-
sion, while the subsequent treatment performed within the
five-variable thermoviscoelastic model will generalize the
obtained expression to the case of coupled density and ther-
mal fluctuations.

A. Decoupled density and heat fluctuations

A simple dynamical model, which consists of three dy-
namical variables

A�3��k,t� = 
n�k,t�,JL�k,t�, J̇L�k,t�� , �4�

is well known as the viscoelastic one, because in addition to
the hydrodynamic variables of particle density and mass-
current density, a nonhydrodynamic variable connected with
the elastic properties of the liquid is taken into account.

Since the extended variable J̇�k , t� is connected to the stress
tensor ��
�k , t� via26

d

dt
J�k,t� = ik�̂�k,t� ,

there appear in the viscoelastic approach the quantities from
the theory of elasticity.

For this basis set A�3��k , t�, when one does not take the
heat fluctuations into account, the correlation time can be
obtained from the hydrodynamic one �nn

�hyd��k� defined as

�nn�k� =
1

S�k��0

�

Fnn�k,t�dt ,

by setting �=1 in the analytical hydrodynamic expression
for Fnn�k , t� �Ref. 27�

�nn�k� =
DL

cs
2 + 4DL

2k2 .

Now the generalized hydrodynamic matrix generated on the
basis set �4� can be written down as follows:

T�ve��k� =� 0 − i
k

m
0

0 0 − 1

− imkcT
2 c�

2 − cT
2

DL

k2c�
2 c�

2 − cT
2

DL

� , �5�

where the following shortcut was introduced k2c�

= �J̇LJ̇L	 / �JLJL	 with c� being the high-frequency �elastic�
speed of sound. The quantities DL and cT in Eq. �5� are the
kinematic viscosity and isothermal speed of sound. One can
easily find eigenvalues of the matrix T�ve��k� within the pre-
cision of O�k2�, which are a pair propagating modes
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z	�k� =
DL

2
k2 	 icTk � ��k� 	 i��k� , �6�

and a kinetic collective mode

dve�k� =
c�

2 − cT
2

DL
− DLk2 � d0 − DLk2, �7�

which tends to a nonzero constant d0 in the long-wavelength
limit. The factor �c�

2 −cT
2� is usually called as the “strength”

of the structural relaxation process. Besides, the constant d0

goes to zero when the kinematic viscosity tends to infinity
that means an almost infinite relaxation time of the mode
dve�k� at the glass transition. All this implies that the kinetic
mode dve�k� is connected to the structural �-relaxation.

The expression for the sound dispersion �imaginary part
of eigenvalues z	�k�� does not show any effect due to cou-
pling of acoustic excitations to the relaxation kinetic mode of
structural relaxation dve�k�, which can appear only in the
O�k3� order in the sound dispersion. In order to estimate the
imaginary part of the complex eigenvalues corresponding
sound dispersion within the precision of O�k3�, one can de-
rive from Eq. �5� an effective equation for sound eigenmodes
by eliminating the known real eigenvalue dve�k� �see
Eq. �7��. The effective equation reads

z2 − DLk2z +
cT

2d0

dve�k�
k2 = 0, �8�

and now the sound dispersion can be obtained as

�ve�k� = cTk�1 +
DL

d0 k2 −
DL

2

4cT
2 k2 + O�k4�

= cTk + 
vek
3 + ¯ . �9�

In the expression under the square root there are two contri-
butions proportional to k2: the first one is positive and comes
from the coupling of acoustic excitations with structural re-
laxation, and the second contribution, the negative one, is the
standard renormalization down of the dispersion law due to
the damping effects. One can obtain the first correction to the
linear viscoelastic dispersion law, proportional to the k3 hav-
ing the following coefficient:


ve � cT

DL
2

8

5 − �c�/cT�2

c�
2 − cT

2 . �10�

The most interesting consequence is that, in general, the
sign of the O�k3� correction to the linear dispersion law can
be different depending on the ratio between the high-
frequency speed of sound and the isothermal one. Note, that
the high-frequency speed of sound is always higher than the
adiabatic one cs �as it is shown in Figs. 2 and 3� that in its
turn is �� times higher than cT. The analysis of MD simula-
tions leads to the fact that a negative dispersion can be ob-
served for the low-density states, and this finding supports
MD results shown in Fig. 7.

B. Thermoviscoelastic model for pure fluids

Now our task is to take into account the coupling of
density fluctuations to thermal processes and find out how

this effect contributes to the deviation of the dispersion curve
from the linear hydrodynamic dispersion law. We want to
obtain the analytical expressions for the eigemmodes in a
pure fluid, within a five-variable thermoviscoelastic model in
the long-wavelength limit.18The dynamical model A�5��k , t�
�Eq. �3�� contains additionally to the viscoelastic model the
heat density h�k , t� and the corresponding extended variable

ḣ�k , t�. The five eigenmodes within the precision of O�k2� for
the thermoviscoelastic model are reported in Ref. 18 and
contained three hydrodynamic modes

d1�k� = DTk2,

�11�
z	�k� = �k2 	 i�csk + O�k3�� ,

exactly as they appear in the hydrodynamic approach, and
two kinetic relaxing modes

d2�k� = d2
0 − DLk2 + �� − 1��k2, �12�

and

d3�k� = d3
0 − �DTk2 − �� − 1��k2, �13�

where the following shortcuts were introduced:

d2
0 =

c�
2 − cs

2

DL
,

and

d3
0 =

cV

m

�Gh −

�� − 1�
�T


 ,

and

� =
d2

0d3
0

d3
0 − d2

0

DT

DLcs
2 �DT − DL�2.

The quantities DT, �, Gh, and �T correspond to thermal dif-
fusivity, sound damping coefficient, heat rigidity modulus
and isothermal compressibility, respectively. The last terms
in right hand sides of Eqs. �12� and �13� appear only due to
coupling between the heat and density fluctuations. When
this coupling is neglected, i.e., �=1, one obtains for the ki-
netic modes d2�k� and d3�k� the same expressions as within
the separated treatment of two-variable heat- and three-
variable viscoelastic dynamical models �at �=1 the kinetic
mode d2�k� is reduced to Eq. �7��.

Let us try now to look at the complex eigenvalues of the
thermoviscoelastic dynamic model within the precision of
O�k3�. After straightforward calculations one yields

zs�k� = �k2 	 i�csk + 
k3� , �14�

where the coefficient at k3 reads as follows:


 = −
�2

2cs
− �� − 1�DT

DL − DT

2cs
+

csDL

2d2
0 + �� − 1�

cs�� − 1�DT

2d3
0 .

�15�

It can be observed that in comparison with the results of the
three-variable viscoelastic dynamic model 
 contains two
additional contributions: Negative and positive ones. The
first and third terms in Eq. �15� have an analogy in the vis-
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coelastic model and correspond to contributions from damp-
ing and coupling with the structural relaxation process, re-
spectively. Combining the terms with prefactor ��−1� one
yields the following expression:


 =
csDL

2

8

5 − �c�/cs�2

c�
2 − cs

2 − �� − 1�DT�6DL + �� − 5�DT

8cs
−

cs

2d3
0
 .

�16�

In the case when ��1 the estimate for the sound dispersion
at the boundary of hydrodynamic regime within the thermo-
viscoelastic model reads

��k� � csk +
csDL

2

8

5 − �c�/cs�2

c�
2 − cs

2 k3, �17�

which is identical to Eq. �10� for the case of �=1, with cs

being equal to cT. In Fig. 8, the results of numerical calcula-
tions of the factor 
 from Eq. �16� for two temperatures
using the GCM data as input are presented. The strength of
contribution from the first term in Eq. �16� is shown by open
circles. The evident difference between the total 
 and vis-
coelastic contribution is attributed to thermal processes �sec-
ond term in Eq. �16��. One can see that for the high-
temperature state T�=4.78 the positive dispersion is
completely defined by the viscoelastic mechanism, i.e., due
to coupling of collective excitations with structural relax-
ation. Most interesting is the fact that positive dispersion
practically vanishes for that temperature around n��0.8. For
smaller temperatures �T�=1.71� being closer to the critical
point the effect of thermal contribution is much stronger due
perhaps to the strong increase of � as is shown in Fig. 4. Our
calculations give evidence that at low-temperatures for den-
sities n��0.75 the dispersion curve in the long-wavelength
region shows a positive dispersion, while for n��0.6 the

dispersion can be negative in a narrow region of wave num-
bers close to hydrodynamic regime. A comparison of the
results of our analytical study for factor 
 �Fig. 8� that de-
fines the deviation from linear dispersion law in long-
wavelength region, with the GCM dispersion curves of col-
lective excitations shown in Figs. 6 and 7 gives evidence that
the proposed analytical approach can reasonably reflect the
behavior of positive and negative dispersion versus density,
and most important it points out the microscopic processes
responsible for the observed effects.

One has to keep in mind that the obtained analytical
expressions correspond to asymptotic expansions in long-
wavelength region. They correctly reflect the change in posi-
tive dispersion and emergence of negative dispersion as ob-
served from the GCM-MD numerical calculations. Hence, it
would be very useful to estimate the width of wave number
region, where these expressions would be valid. The issue of
the density dependence of the positive dispersion is strictly
connected with understanding of how the range of hydrody-
namic regime changes with density. From the wave number
dependence of hydrodynamic relaxation mode d1�k�, see Eq.
�11�, and nonhydrodynamic relaxation processes d2�k�, d3�k�,
Eqs. �12� and �13�, one can expect that strong deviation from
the hydrodynamic behavior �k2 will be observed for the
case when the lifetimes of hydrodynamic and nonhydrody-
namic processes become comparable. This can be treated as
the boundary of hydrodynamic regime, and the collective
modes that corresponded to hydrodynamic processes do not
have anymore hydrodynamic �k2 dependence of real parts
of the eigenvalues. Approximately, the upper bound of the
hydrodynamic region �or the width of hydrodynamic regime�
can be defined as the point, where the lowest kinetic relax-
ation mode d2�k�, which corresponds to the structural relax-
ation, becomes equal to the hydrodynamic relaxation mode,
connected with thermal diffusivity d1�k�=DTk2. From such a
condition one obtains straightforwardly a value of corre-
sponding wave number

khd � � �c�
2 − cs

2�
DL�DL + DT − �� − 1���
1/2

. �18�

One can see that the width of the hydrodynamic regime is
mainly controlled by the kinematic viscosity. When the vis-
cosity diverges like at the glass transition, the hydrodynamic
region vanishes, i.e., the region of wave numbers �even on
macroscopic spatial scales� where one can observe viscous
properties, sound propagation with the adiabatic speed of
sound and other hydrodynamic asymptotes specific for the
liquid state disappears.

In connection with our study of positive and negative
dispersion, the Eq. �18� estimates the range of validity of
expressions for factor 
. Namely, within this region of wave
numbers the effect of nonhydrodynamic relaxation processes
on dispersion of collective modes is clearly seen, because in
the limit k→0 the effect of nonhydrodynamic processes is
absent, and for k�khd it is already completely taken into
account. As we have mentioned above, for k�khd the calcu-
lated dispersion curve can show another bending up, even
after initial “negative dispersion,” which implies another
process making an effect on sound propagation on specific
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FIG. 8. Dependence of factor 
 �Eq. �16�� on density for two temperatures
T�=4.78 and T�=1.71 �closed boxes�. Open circles correspond to viscoelas-
tic contribution to the 
.
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spatial scales. Our theoretical approach took into account the
effects of structural �-relaxation, while another nonhydrody-
namic process of �-relaxation28,29 was not explicitly taken in
the theoretical treatment in long-wavelength limit. It is pos-
sible that the �-process, connected with topological
disorder28,29 makes an effect on sound dispersion curves, be-
ing responsible for observed maxima on �s�k� in the region
k�khd. Another possibility for additional bending-up of the
sound dispersion for wave numbers k�khd is the coupling to
heat waves,21 which do not exist in long-wavelength region
and emerge in the fluids usually in the region of wave num-
bers �0.5–0.8 Å−1.

IV. CONCLUSIONS

We performed a numerical and analytical GCM study of
dispersion of collective excitations in pure fluids aiming to
explain the origin and density dependence of positive disper-
sion of long-wavelength acoustic modes. The GCM approach
is based on extended basis sets of dynamic variables, which
permits to take explicitly into account local coupling effects
between hydrodynamic and nonhydrodynamic processes. In
this study we solved analytically in the long-wavelength re-
gion a three-variable viscoelastic model, which permits to
take into account coupling of longitudinal collective modes
with nonhydrodynamic process of structural relaxation in
complete neglect of thermal processes. More sophisticated
dynamic model, a five-variable thermoviscoelastic one, gen-
eralizes results of the three-variable treatment on the case
with thermal fluctuations are turned on. Main results of our
study can be formulated as follows:

�i� Positive dispersion reduces with decrease of density
�and pressure�, in contrast to prediction of MCT
within the precision of O�k5/2�.10 Our simulations and
analytical results are in complete agreement with re-
cent IXS experiments on supercritical Ar �Ref. 12�.

�ii� Analytical expression �15� for the correction to hydro-
dynamic dispersion law derived for the case when
thermal fluctuations are neglected gives evidence that
structural relaxation can be responsible for both posi-
tive and negative dispersion depending on the ratio of
high-frequency to adiabatic speeds of sound;

�iii� Thermal contribution to the correction to linear hydro-
dynamic dispersion law is negative and can be very
strong for densities close to critical point because of
large value of ratio of specific heats �. The GCM
approach predicts possible observation of the negative
dispersion for long-wavelength collective excitations
in the region of densities close to the critical point.
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