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Abstract
The critical behavior of the three-dimensional n-vector model in the presence
of an external field is investigated. The mathematical description is performed
with the collective variables method in the framework of the ρ4 model
approximation at the microscopic level without any adjustable parameters. The
recurrence relations of the renormalization group as functions of the external
field and temperature were found. The analytical expression for the free energy
of the system for the temperatures T > Tc and different n was obtained. The
equation of state of the n-vector model for the general case of small and large
external fields was written. The explicit form of the correspondent scaling
function for different values of the order parameter was derived. The obtained
results are in qualitative agreement with the data of Monte Carlo simulations.

PACS numbers: 05.50.+q, 05.70.Ce, 64.60.Fr, 75.10.Hk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The investigation of the critical behavior of the real three-dimensional (3D) magnets is one
of the most important problems of condensed matter physics. This work is connected with
investigation of the classical n-vector model on the simple 3D cubic lattice in the presence of
an external magnetic field by the collective variables (CV) method. Originally this method
was introduced by Bom [1], then used by Zubarev for systems of charged particles [2] and
later developed for calculation of the thermodynamic and structural characteristics of the 3D
systems near the phase transition (PT) point [3]. The above-mentioned model is well known as
the classical O(n)-vector model or, in field-theoretic language, as the O(n)-invariant nonlinear
σ -model. Depending on components of an order parameter this model can describe a number
of physical systems such as polymers, ferromagnets, antiferromagnets, the critical point of the
liquid–vapor transition, the Bose-condensation, PTs in binary alloys, etc.
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The investigations of the critical properties of the O(n)-vector models and their partial
cases were carried out by various methods such as: high- and low-temperature expansions,
the field theory, the semi-microscopic scaling field theory and Monte Carlo (MC) simulations.
In general, much attention was devoted to investigation of the universal characteristics of the
system such as critical exponents and relations of the critical amplitudes of the thermodynamic
functions.

The CV method as well as Wilson’s approach [4] is based on use of the hypothesis of
scaling invariance and the renormalization group (RG) method for the PT theory suggested by
Patashynskii, Pokrovskii [5] and Kadonoff [6].

The RG method was used to obtain the equation of state of the Ising system up to the order
ε2 by Avdeiva and Migdal [7] and by Bresin et al [8]. The obtained results were generalized
for the case of the n-vector model [9].

Besides, the positive results were achieved by calculation of the thermodynamic functions
near the critical point. In Wegner’s work [10] an expression was obtained for the free energy by
taking into account the so-called irrelevant operators in Wilson’s approach. Riedel and Wegner
[11] suggested the method of scaling fields for obtaining the crossover scaling functions of the
free energy and the susceptibility. The works of Fisher and Aharony [12], Nicoll and Albright
[13] and also Nelson [14] are dedicated to the crossover scaling functions for T > Tc in the
zero magnetic field near four dimensions. In the framework of the massive field theory by
Bagnuls and Bervillier [15] the explicit results for the correlation length, the susceptibility
and the heat capacity as functions of the temperature in the disordered phase along the critical
isochore for one-, two- and three-component systems were obtained. The nonasymptotic
behavior was described as crossover between Wilson–Fisher’s (near the critical temperature
Tc) and the mean field’s (far from Tc) behaviors using three adjustable parameters. But this
crossover cannot realistically describe the situation in the system, because there are some
physical restrictions of the model. Thus, in the works of Dohm and co-workers [16, 17]
the calculation of the thermodynamical characteristics of the system without ε-expansion
was performed in the framework of some minimal subtraction scheme based on the high-
ordered perturbation theory and Borel’s resummation. This minimizing scheme is related
to the use of the general relations between the heat capacity coefficients for approximation
of the temperature dependence of the coefficient u(t) near the fourth term in the Ginsburg–
Landau Hamiltonian. This method allows us to obtain the nonuniversal critical behavior of the
thermodynamic functions below and above the critical temperature, such as the heat capacity
and the susceptibility as functions of u(t) without any adjustable parameters. But it does not
provide the possibility of analyzing the dependence of the thermodynamic variables on the
microscopic parameters of the interaction potential.

Besides, the essential success was achieved in calculation of the universal relations of the
critical amplitudes. Okabe and Ohno [18], and Okabe and Ideura [19] investigated the relations
of the critical amplitudes of the susceptibility by high-temperature, 1/n- and ε-expansion up
to the order O(ε2). Bresin, Le Guillon and Zinn-Justin [20] calculated the universal relations
of the critical amplitudes for the heat capacity, the susceptibility and the correlation length by
Wilson–Fisher’s ε-expansion.

It should be mentioned that PT is actively investigated by the MC method. Thus,
Ferrenberg and Landau [21, 22] found the critical temperature and critical exponents for
the Ising and classical Heisenberg models using the high-resolution MC method. Besides, the
universal relations of the critical amplitudes and the equation of state were obtained by Engels
for the O(1), O(2), O(4) models [23–25] and by Campostrini et al for the O(3) model [26].

A number of new results were obtained using for the description of the PT the CV
method. The specificity of the CV method is a successive microscopic approach and the
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method of integration of the partition function by short-wave fluctuations without applying
the perturbation theory. In the framework of this method the general recurrence relations (RR)
which correspond to the RG equations, the critical exponents and the relation of the critical
amplitudes of the Ising model were obtained.

The investigation of the O(n) model allows us to obtain, in the unified form, results for
the critical behavior of whole class of systems such as polymers in n → 0 limit, the Ising
model for n = 1, the XY-model for n = 2, the Heisenberg model for n = 3, the model with
n = 4 is important for quantum chromodynamics with two degenerate light-quark flavors at
finite temperature and the spherical model in the case n → ∞ which has the exact solution.

The quantity n is related to the dimensionality of the order parameter of the system.
The investigation of the n-vector model was carried out by the CV method in [27] using the
Stratanovich–Hubbard representation. The CV method was used for the investigation of the
properties of the pre-transition behavior and description of the structural PT in the system with
the n-component order parameter [28]. The thermodynamical characteristics of the n-vector
model in the zero magnetic field were found in [29, 30] using the CV method.

In general, the real physical systems are characterized by the presence of the external
fields. The description of systems with the n-component order parameter in the presence of
the external fields is a complicated task and needs detailed study. Thus, taking into account
the results obtained in [29, 30], we investigate the influence of the external field on the critical
behavior of the n-vector model.

2. The model

The Hamiltonian H of the n-vector model in the presence of the external field has the form

H = −1

2

∑
i

∑
j

�(|i − j|)SiSj − H
∑

i

Si, (2.1)

where Si = (
S

(1)
i , . . . , S

(n)
i

)
is the classical n-component spin of length m localized at the N

sites of d-dimensional cubic lattice with coordinates i, �(|i − j|) is the interaction potential.
The partition function of the model (2.1) is the functional integral over all possible

orientations of the spin vector and can be written in the form

Z =
∫ ∏

i

dSiδ(Si − m) e−βH , m > 0, (2.2)

where we take into account the condition that length of the spin is m. We will integrate the
partition function in the space of the CV. Let us introduce the variables

ρ̂c
k = 1√

N

∑
i

cos(ki)Si, (2.3)

ρ̂s
k = 1√

N

∑
i

sin(ki)Si, (2.4)

ρ̂0 = 1√
N

∑
i

Si, (2.5)

which are the n-component vectors. The CV ρk are introduced as a functional representation
for the operators of the fluctuation of the spin density:

ρ̂k =
∫

ρkJ (ρ − ρ̂)(dρk)
N . (2.6)
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In the CV representation the partition function of the model [3] is

Z =
∫

exp

[
1

2

∑
k

β�(k)ρkρ−k + hρ0

]
J [ρ](dρk)

N , (2.7)

where

h = βH.

The Jacobian of transition from the spin variables to the CV has the form

J [ρ] =
∫ ∏

i

dSiδ(Si − m)δ(ρ0 − ρ̂0)
∏́

k

δ
(
ρc

k − ρ̂c
k

)
δ
(
ρs

k − ρ̂s
k

)
. (2.8)

Calculation of the partition function is performed in the general framework [29, 30]. The
main idea is that the phase space is divided into the intervals (layers) to depend on the value
k and the interaction potential is averaged on each of this intervals. The Fourier transform of
the interaction potential is replaced by the following approximation [29–31]:

�(k) =
{
�(0)(1 − 2b2k2), k ∈ B′

�̄ = const, k ∈ B/B′.
(2.9)

Here B is the Brillouin zone of a simple cubic lattice with the spacing c:

B =
{

k = (kx, ky, kz) |ki = π

c

(
2ni

Ni

− 1

)
; ni = 1, 2. . . . , Ni; i = x, y, z

}
, (2.10)

where N = NxNyNz is a number of cells. And B′ defines the new Brillouin zone with the
spacing c ′ = cs0, and number of cells N ′ = Ns−d

0 . The parameter s0 characterizes the
parabolic approximation. We assume �̄ = 0. Such cutting of the potential do not affect the
general picture of the critical behavior but is appreciable when we want to estimate the critical
temperature. We use the method suggested in [32] for integration of the partition function
in the presence of the external field. It should be mentioned that in our work we use the
quartic measure density that allows us to describe the PT on qualitative good level [33]. After
integration by l layers we obtain the partition function Z in the form

Z = 2
n
2 (Nl+1−1)Q0Q1 . . . QlQ

Nl+1(Pl)Zl+1, (2.11)

where Ql is the partial partition function of the l’s layer

Q0 = QN ′
(u)QN ′

(d0),

QN ′
(u) = J ′[0] exp(u′

0N
′), (2.12)

Ql = QNl (Pl−1)Q
Nl (dl).

The number of variables on the l’s layer is

Nl = N ′s−dl, (2.13)

and the following definitions for the values Q(dl) and Q(Pl) were introduced:

Q(dl) = (2π)
n
2

(
3

a
(l)
4

) n
4

U

(
n − 1

2
, xl

)
exp

(
x2

l

4

)
,

(2.14)

Q(Pl) = (2π)−
n
2

[
sd n + 2

3

a
(l)
4

ϕ(xl)

] n
4

U

(
n − 1

2
, yl

)
exp

(
y2

l

4

)
.
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Here U(a, x) is Weber’s parabolic cylinder function, the function ϕ(xl) is defined in the
appendix. The nonintegrated part of Z has the form

Zl+1 =
∫

(dρk)
Nl+1 exp

⎧⎨
⎩√

Nhρ0 − 1

2

∑
k<Bl+1

d (l+1)(k)ρkρ−k

− a
(l+1)
4

4!Nl+1

∑
k1...k4<Bl+1

ρk1
. . . ρk4

δk1...k4

⎫⎬
⎭ . (2.15)

The presence of the external field results in appearance of the linear term in the exponent. Let
us assume that the external field is oriented along one of the coordinate axes (e.g. x axes).
Thus, we receive

Zl+1 =
∫

(dρk)
Nl+1 exp

⎧⎨
⎩√

Nl+1a
(l+1)
1 ρ

(1)
0 − 1

2

∑
k<Bl+1

d (l+1)(k)ρkρ−k

− a
(l+1)
4

4!Nl+1

∑
k1...k4<Bl+1

ρk1
. . . ρk4

δk1...k4

⎫⎬
⎭ . (2.16)

For the coefficients near different powers of ρk we have the following RR:

a
(l+1)
1 = a

(l)
1 s

d
2 ,

a
(l+1)
2 = a

(l)
2 + d (l)(Bl+1,Bl )M(xl), (2.17)

a
(l+1)
4 = a

(l)
4 s−dE(xl),

where

M(xl) = N(xl) − 1, N(xl) = ylUn(yl)

xlUn(xl)
, E(xl) = s2d ϕ(yl)

ϕ(xl)
, (2.18)

and the arguments xl and yl are

xl =
√

3

a
(l)
4

d (l)(Bl+1,B), yl = s
d
2 Un(xl)

√
n + 2

ϕ(xl)
. (2.19)

For convenience the following designation were introduced:

d (l)(Bl+1,B) = d (l)(0) + qs−2l , q = β�(0)q̄,
(2.20)

a
(l)
1 = s−lωl, d (l)(0) = s−2lrl, a

(l)
4 = s−4lul .

Thus, the RR (2.17) can be written in the form

ωl+1 = s
d+2

2 ωl,

rl+1 = s2[(rl + q)N(xl) − q], (2.21)

ul+1 = s4−dulE(xl).

The initial values of ωl, rl, ul are (for l = 0):

ω0 = s
d
2

0 h′, r0 = a2 − β�(0), u0 = a4. (2.22)

In that way we passed to the parametric space of the RG transformation. The PT point is
represented by the fixed point with coordinates

ω∗ = 0, r∗ = −fnβ�(0), u∗ = φn[β�(0)]2, (2.23)
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where

fn = q̄
s2[N(x∗) − 1]

s2N(x∗) − 1
, φn = q̄2 3

x∗2

[
1 − s−2

N(x∗) − s−2

]2

. (2.24)

Here x∗ is the solution of equation [29]

s4+dϕ(y∗) = ϕ(x∗). (2.25)

So, when τ = 0, h = 0 and l → ∞ the system is in the fixed point. It is obvious that near
the critical point when τ → 0, h → 0 and for large l in the parametric space the system will
be near the fixed point. This case is called the critical regime (CR). In the CR the RR may be
expanded by the deviation from the fixed point⎛

⎝ωl+1 − ω∗

rl+1 − r∗

ul+1 − u∗

⎞
⎠ = R

⎛
⎝ωl − ω∗

rl − r∗

ul − u∗

⎞
⎠ . (2.26)

The elements of matrix R in a linear by the (xl − x∗) approximation have the form

R11 = s
d+2

2 , R12 = R21 = R13 = R31,

R22 =
√

3s2μ1, R23 = s2

2
√

u∗ (μ0 − μ1x
∗), (2.27)

R32 =
√

3u∗s4−dω1, R33 = s4−d

(
ω0 − ω1x

∗

2

)
,

where the coefficients are

μ0 =
√

n + 2

3ϕ(x∗)
s

d
2 Un(y

∗), μ1 = μ0

(
a1 − q1

2

)
,

(2.28)
ω0 = s2d ϕ(y∗)

ϕ(x∗)
, ω1 = ω0(b1 − q1).

Here we made the designations

a1 = P̃1y
∗r1, r1 = ∂1 − q1

2
, b1 = Q̃1y

∗r1. (2.29)

For the derivatives P̃m, Q̃l, r1, q1 which appear in equation (2.29) we have

P̃m = 1

Un(y∗)

[
dmUn(yl)

dym
l

]
y∗

, Q̃m = 1

ϕ(y∗)

[
dmϕ(yl)

dym
l

]
y∗

,

(2.30)
∂m = 1

Un(x∗)

[
dmUn(xl)

dxm
l

]
x∗

, qm = 1

ϕ(x∗)

[
dmϕ(xl)

dxm
l

]
x∗

.

An action of the matrix R allows us to receive the coefficients of the partition function of the
next layer. In order to receive the coefficient of the l’s layer we need to act by R l times on
the coefficients of the zero layer:⎛

⎝ωl − ω∗

rl − r∗

ul − u∗

⎞
⎠ = R l

⎛
⎝ω0 − ω∗

r0 − r∗

u0 − u∗

⎞
⎠ . (2.31)

It is easy to obtain the form of the matrix R l when the matrix R is reduced to the diagonal
form. In order to do it, we must pass to the base from the eigenvectors of R. The eigenvalues
of R are universal quantities:

E1 = R11, E2,3 = 1
2 [R22 + R33 ±

√
(R22 − R33)2 + 4R23R32]. (2.32)

6
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The eigenvectors have the form

ω1 =
⎛
⎝1

0
0

⎞
⎠ , ω2 =

⎛
⎝0

1
R1

⎞
⎠ , ω3 =

⎛
⎝0

R

1

⎞
⎠ . (2.33)

The inverse vectors are written as

v1 = (1 0 0 ), v2 = 1

D
(0 1 − R), v3 = 1

D
(0 − R1 1),

(2.34)
R = R23

E3 − R22
, R1 = E2 − R22

R23
.

The determinant of the inverse matrix is

D = E3 − E2

E3 − R22
. (2.35)

After expanding the coefficients in (2.21) by eigenvectors we obtain

ωl = s
d
2

0 hE l
1 ,

rl = r∗ + c1E
l

2 + c2RE l
3 , (2.36)

ul = u∗ + c1R1E
l

2 + c2E
l

3 .

The coefficients c1, c2 can be found from the initial conditions at l = 0.

c1 = 1

D
[r0 − r∗ − R(u0 − u∗)],

(2.37)
c2 = 1

D
[(u0 − u∗) − R1(r0 − r∗)].

The eigenvalue E2 > 1 is responsible for the deviation from the fixed point, the E3 < 1 is
much more smaller than E2 and we can neglect it. This approximation neglects the confluent
corrections. Taking into account that at the PT point rl = r∗, we obtain the equation for the
critical temperature in the form [29]

[βc�(0)]2(1 − fn − R∗√φn) − a2βc�(0) + a4R
∗/
√

φn = 0, (2.38)

R∗ = R
√

u∗. (2.39)

This equation allows us to write the solutions of the RR as a function of the temperature and
the external field for the CR:

ωl = s
d
2

0 h′El
1,

rl = β�(0)
(−fn + c1T τEl

2 + R∗c2T El
3

/√
φn

)
, (2.40)

ul = [β�(0)]2
(
φn + c1T τ

√
φnR

∗
1E

l
2 + c2T El

3

)
.

The obtained coefficients are exponential functions of l. For small l their values are
small and then increase rapidly. For big l, the value of rl (the coefficient near the square
term in the partition function) is bigger than ul (the coefficient near the quartic term in
the partition function). Thus, we can integrate the partition function in this region using the
Gaussian approximation. But in the CR we must use the distributions of fluctuations higher
than Gaussian’s one and take into account the quartic term in the partition function. So let us
find the number l after what we can pass from accounting quartic to accounting only quadratic
terms. We call this number as the exit point from the CR. In zero magnetic field this point has

7
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been already studied [31]. Let us designate it as mτ and find it from the condition of deviation
from the fixed point:

rmτ +1 − r∗ = −δr∗, δ = τ

|τ | . (2.41)

As a result we obtain

mτ = − ln |τ̃ |
ln E2

− 1, (2.42)

where

τ̃ = τ
c1k

fn

(2.43)

is the renormalized reduced temperature. In the presence of the external field the exit point
from the CR is found from the condition

ωnh+1 − ω∗ = h0. (2.44)

From this we found [34, 35]

nh = − ln h̃

ln E1
− 1, h̃ = s

d
2

0

h′

h0
. (2.45)

The quantity h0 is found from the normalization condition for the scaling function.
If there are both the temperature and field the exit point depends on the relation between

τ and h. Some boundary temperature field hc which divides the values of fields on strong and
weak was found in [33, 36]. The condition of this division on strong and week fields has the
form

mτ = nh. (2.46)

After substituting the equations for the exit points from the CR we obtain

hc = |τ̃ |p0 , (2.47)

where the critical exponent p0 has the form

p0 = ln E1

ln E2
= ν

μ
, μ = 2

d + 2
. (2.48)

The critical exponent of the correlation length ν for h = 0 is

ν = ln s

ln E2
. (2.49)

The critical exponent μ describes the dependence of the correlation length on the field for
T = Tc. Therefore we can rewrite (2.42) in the form

mτ = − ln hc

ln E1
− 1. (2.50)

In the general case deviations by the temperature and by the field from the fixed point should
be united. This united point np can be found from the equation [36](

s
d/2
0 h′Enp+1

1

)2
+
(
c1T τβ�(0)E

np+1
2

)2 = r∗2. (2.51)

The value of np can be found numerically. But numerical solution does not allow us to take
into account the influence of the temperature and the field on the critical behavior analytically.
The formula for united exit point from the CR was introduced in [34]. The above-mentioned

8
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equation for united exit point from the CR depends on the field and temperature and in the
limit of zero field or zero temperature it passes to the equation (2.45) or (2.50), respectively

np = − ln
(
h̃2 + h2

c

)
2 ln E1

− 1. (2.52)

Information about the exit point from the CR allows us to divide the integration of the partition
function on two stages: integration by quartic distribution in the CR, where values of rl and
ul are commensurable and integration by the Gaussian distribution (the Gaussian regime) for
the phase space layers with l > np. But deviation from the fixed point occurs not so sharp
to exactly distinguish the critical and the Gaussian regimes. Therefore, we should take into
account the transition regime (TR) in which rl exceeds ul but we still cannot use the Gaussian
distribution. In order to integrate the partition function in the TR one must use the quartic
measure density. Fortunately, there is only one layer in the phase space for which rl and ul

behave like described for the TR. The number of this layer is next after the CR (np + 1), so
from the layer with np + 2 the Gaussian region is present. Thus, the partition function has the
form

Z = Q0Q1 . . . Qnp︸ ︷︷ ︸
CR

Qnp+1︸ ︷︷ ︸
TR

2
n
2 (Nnp+2−1)QNnp+2(Pnp+1)Znp+2︸ ︷︷ ︸

LGR

, (2.53)

where CR designates the critical region, TR is the transition region and LGR is the limiting
Gaussian region.

The coefficients near the CV change their behavior for l > np. It simplifies calculations.
Let us take l = np + 1 in (2.14). Then in order to integrate Znp+2 is important to know below
or above Tc is the system. The coefficients

rnp+2 = β�(0)fn(−1 + E2Hc),

unp+2 = [β�(0)]2φn(1 + �E2Hc),

� = fn/
√

φnR
∗
1 , Hc = τ̃E

np+1
2 (2.54)

depend on the temperature and field. The values of unp+2 are always positive that provide
convergence of (2.53). The coefficient rnp+2 is positive and exceeds unp+2 for large τ (hc � h̃).
In this case the partition function can be integrated in the Gaussian approximation. But
for small τ (hc 	 h̃), rnp+2 decreases and becomes negative. In this case the Gaussian
approximation is useless. This problem can be solved by introduction of the substitution

ρα
k = ηα

k +
√

Nσα
+ δk, 
σ+ = (σ+, . . . , 0). (2.55)

Thus, Znp+2 can be written in the form

Znp+2 = eNE0(σ+)

∫
(dη)Nnp+2 exp

⎡
⎣−1

2

∑
k∈Bnp+2

d(np+2)(k)ηkη−k

−a
(np+2)

4

12
s3

0s
3(np+2)σ 2

⎛
⎝ ∑

k∈Bnp+2

ηkη−k + 2
∑

k∈Bnp+2

η
(1)
k η

(1)
−k

⎞
⎠

− a
(np+2)

4

6
√

Nnp+2
s

3
2

0 s
3
2 (np+2)σ+

∑
k1...k3∈Bnp+2

η
(1)
k1

ηk2
ηk3

δk1+k2+k3

− a
(np+2)

4

24Nnp+2

∑
k1...k4∈Bnp+2

ηk1
. . . ηk4

δk1+···+k4

⎤
⎦ , (2.56)
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where

E0(σ+) = h′σ+ − 1

2
dnp+2(0)σ 2

+ − a4

24
s3

0s
3(np+2)σ 4

+ . (2.57)

The shift σ+ is found from the condition

∂E0(σ+)

∂σ+
= 0. (2.58)

This condition causes the coefficient near the first power of η
(1)
0 equal to zero and results to a

cubic equation for σ+. The solution of this equation can be found in the form

σ+ = σ0s
(np+2)/2. (2.59)

Finally one obtains

σ 3
0 + pσ0 + q = 0, (2.60)

where the following designations were introduced:

p = 6rnp+2

unp+2s
3
0

, q = − 6h0s
5
2

unp+2s
9
2

0

h̃√
h̃2 + h2

c

. (2.61)

Solutions of a cubic equation depend on the sign of the discriminant

Q =
(p

3

)3
+
(q

2

)2
. (2.62)

For T > Tc the value of Q is always positive. So equation (2.60) has one real and two complex
roots. We select the real one:

σ0 = A + B,
(2.63)

A =
(
−q

2
+
√

Q
) 1

3
, B =

(
−q

2
−

√
Q
) 1

3
.

Integral (2.56) is calculated in the Gaussian approximation. This integration terminates the
calculation of the partition function:

Znp+2 = eNE0(σ+)
(π

2

)n(Nnp+2)
√

π

d1(0)

√
π

d2(0)

n−1 ′∏
k>0

1

d1(k)

(
1

d2(k)

)(n−1)

, (2.64)

where

di(k) = r
(i)
R + β�(0)b2k 2,

r
(1)
R = s−2(np+2) r̃

(1)
R

2
, r̃

(1)
R = rnp+2 +

1

2
s3

0σ
2
0 unp+2, (2.65)

r
(2)
R = s−2(np+2) r̃

(2)
R

2
, r̃

(2)
R = rnp+2 +

1

6
s3

0σ
2
0 unp+2.

Thus, dividing the phase space of the CV on layers depending on the values of the wave
vector, we distinguished two main states of the system to refer to the critical behavior:
the critical region which corresponds to short-wave fluctuations and the Gaussian region
which corresponds to long-wave fluctuations. Short-wave fluctuations are connected with
the microscopic parameters of the model and long-wave fluctuations determine the critical
behavior. In contrast to earlier approaches we pay attention to both irrelevant short-wave and
long-wave fluctuations.

10
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3. The free energy

After calculation of the partition function we can find the free energy of the system:

F = −kT ln Z. (3.1)

Described above structure of the partition function allows us to present the free energy as a
sum of terms which correspond to different regimes of fluctuations:

F = F0 + FCR + FTR + FLGR. (3.2)

Here

F0 = −kT N ln

[
(2π)

n
2 mn−1

�(n/2)

]
(3.3)

is the free energy of noninteracting spins,

FCR = −kT

np∑
l=0

ln Ql (3.4)

is the energy to refer to the critical region,

FTR = −kT Qnp+1 (3.5)

is the contribution which corresponds to the transition region and, respectively,

FLGR = −kT ln
[
2

n
2 (Nnp+1−Nnp )QNnp+2

(
Pnp+1

)
Znp+2

]
(3.6)

is the contribution which comes from the Gaussian region.
Equation (3.4) depends on the exit point from the CR. In order to know this dependence

explicitly we need to sum up elements Ql. For this purpose let us extract dependence on index
l in Ql. The quantity Ql is a function of yl. The variable y is bigger than 1 (yl � 1) for any
temperature. Thus, we can use the expansion for Weber’s parabolic cylinder function U(a, x)
in Ql by inverse powers of yl. Using appropriate expansions we have

FCR = −kT N ′f 0
CR − kT

np∑
l=1

Nlfl, (3.7)

where

f 0
CR = u′

0 +
x2

0

4
+

3u
′2
2

4u′
4

+ ln U

(
n − 1

2
, z′

)

+ ln U

(
n − 1

2
, x0

)
+

n

4

[
ln

(
3

u′
4

)
+ ln

(
3

a4

)]
, (3.8)

fl = ln U

(
n − 1

2
, xl

)
+

x2
l

4
+

n

2
ln yl−1 +

n

4y2
l−1

(2n + 7).

To extract the dependence on l from fl we expand it by powers of xl − x∗ and substitute in
obtained formula the solutions of the RR. After summing up we obtain

FCR = −kT N ′[γ ′
01 + γ1τ + γ2τ

2 − γ ′(h̃2 + h2
c

) d
d+2

]
, (3.9)

where

γ ′ = γ̄1 + γ̄2Hc + γ̄3H
2
c , (3.10)

and the coefficients near powers of Hc have the form

γ̄1 = f ∗
CR

1 − s−3
, γ̄2 = fnd1δ

2

1 − s−3E2
, γ̄3 = f 2

n d3δ
4

1 − s−3E2
2

. (3.11)

11
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For the free energy of the TR we obtain

FTR = −kT N ′fnp+1
(
h̃2 + h2

c

) d
d+2 , (3.12)

with

fnp+1 = ln U

(
n − 1

2
, xnp+1

)
+

x2
np+1

4
+

n

2
ln ynp

+
n

4y2
np

(2n + 7). (3.13)

For the LGR we have

ln Znp+2 = NE0(σ+) +
n

2
(Nnp+2 − 1) ln

π

2
+

n

2
ln π − 1

2
ln d1(0)

−n − 1

2
ln d2(0) −

′∑
k>0

ln d1(k) − (n − 1)

′∑
k>0

ln d2(k). (3.14)

In order to sum up by k we change the summation by integration that results in

FLGR =F
(+)
0 − kT Nnp+2

{
n

[
−1

2
ln 2 + ln s − 1

4
ln 3 +

1

4
ln unp + 1 − 1

2
ln U

(
xnp + 1

)− n + 2

8y2
np+1

]

− 1

2

[
ln r̃

(1)
R + f ′

G1
+ (n − 1)

(
ln r̃

(2)
R + f ′

G2

)]}
, (3.15)

where

f ′
Gi

= ln
(
a2

i + 1
) − 2

3
+

2

a2
i

− 2

a3
i

arctan ai,

(3.16)

ai = πb

c0

√
β�(0)

r̃
(i)
R

.

For the convenience FLGR were split into the two parts:

FLGR = F
(+)
0 + FG, (3.17)

where

F
(+)
0 = −kT NE0(σ+), FG = −kT Nnp+2fG, (3.18)

and

fG = n

[
−1

2
ln 2 + ln s − 1

4
ln 3 +

1

4
ln unp+1 − 1

2
ln U(xnp+1) − n + 2

8y2
np+1

]

− 1

2

[
ln r̃

(1)
R + f ′

G1
+ (n − 1)

(
ln r̃

(2)
R + f ′

G2

)]
. (3.19)

Finally, we obtain the free energy which is dependent on the temperature and the external
field:

F = −kT N

{
ln

[
(2π)

n
2 mn−1

�
(

n
2

)
]

− 1

s3
0

(γ ′
01 + γ1τ + γ2τ

2)

− e0h
′ (h̃2 + h2

c

) 1
2δ − (

γ +
s − e2

) (
h̃2 + h2

c

) d
d+2

}
, (3.20)

where

e0 = σ0√
s
, e2 = σ 2

0

2s3

(
rnp+2 +

1

12
unp+2s

3
0σ

2
0

)
(3.21)

γ +
s = 1

s3
0

(
fnp+1 − γ ′ +

fG

s3

)
.

12
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4. The order parameter

From the formula for the free energy we obtain the order parameter of the system by direct
differentiation by field:

M = − 1

N

(
dF

dh

)
T

.

The structure of the free energy allows us to separately differentiate parts connected with
different fluctuation processes. The result reduces to the form

M = σ +
00

(
h̃2 + h2

c

) 1
2δ . (4.1)

The quantity σ +
00 depends on the variable α which represents the ratio between the field and

the temperature:

σ +
00 = e0

(
1 +

1

5

α2

1 + α2

)
+ e00

α√
1 + α2

+ e02,

(4.2)
α = h̃/hc.

Below, there are equations for the coefficients that depend on α, n and other parameters of the
model. The method of calculation of the order parameter for the n-vector model is analogous
to the method for the Ising model [32]. For convenience we use the same designations, but in
n-vector model there appears dependence on n. Thus, we obtain

e00 = 6s
3/2
0

5h0

(
γ +

s − e2
)
,

(4.3)

e02 = s
3/2
0

h0

(
fγ1 + σ 2

0 qs

[
1 +

1

12
qlσ

2
0

])
,

where the following designations were introduced:

qs = β�(0)

2s3
HcdE2fn, ql = β�(0)�φn

s3
0

fn

. (4.4)

The coefficient fγ1 appears as a result of differentiation of the corresponding parts of equation
(3.21) by field. According to equation (3.21) the derivation of γ +

s is

fγ1 = 1

s3
0

(
γp + fp +

fgv

s3

)
, (4.5)

where γp is the derivation of γ ′ (see equation (3.10)):

γp = Hcd(γ̄2 + 2γ̄3Hc). (4.6)

The part corresponding to the LGR is

fgv = −n

4

�Hcd

1 + �Hcd

+

[
n(n + 2)

4

rp+1

y2
np+1

− nU ′(xnp+1
)

2U
(
xnp+1

)
]

gp+1

−1

2

[
g̃

(1)
R

r̃
(1)
R

+ a(1)
g g(1)

a + (n − 1)

(
g̃

(2)
R

r̃
(2)
R

+ a(2)
g g(2)

a

)]
, (4.7)

and the part from the TR is

fp = n

2

[
rpgp

(
1 − 2n + 7

y2
np

)
− gp+1Un

(
xnp+1

)]
. (4.8)

The rest of coefficients can be found in the appendix.
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Figure 1. The dependence of the order parameter on the field for τ = 0 and n = 1.

Figure 2. The dependence of the order parameter on the field for τ = 0 and n = 2.

Thus, we obtained explicitly the equation of state of the n-vector model in the presence
of the external field. Its form allows easily to pass to boundary cases of dependence only on
the temperature or on the field. So this equation is called the crossover equation. The quantity
σ +

00 is the scaling function of the crossover equation of state. It depends on the ratio of the
field to the temperature α. Equation (4.1) allows us to obtain a graph of dependence of the
order parameter on the field for T = Tc and compare it with the results of MC simulations for
analogous models. Graphs of such dependences for different n and different parameters of the
interaction potential are presented in figures 1–4. As we can see from these figures the order
parameter M decreases as the number of components n of the model increases.

There are different forms of the equation of state. Some discussion about convenience of
the correspondent forms of the equation of state is presented in [32]. The equation of state

14
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Figure 3. The dependence of the order parameter on the field for τ = 0 and n = 3.

Figure 4. The dependence of the order parameter on the field for τ = 0 and n = 4.

(4.1) can be reduced to the form [23–25]

M = h1/δfG(z), (4.9)

where

h = H/H0, z = t̄

hβδ
, t̄ = τ

Tc

T0
, (4.10)

and fG is the scaling function. The explicit form of fG can be found from extrapolation of
the MC data obtained in [23–26]. H0 and T0 are the normalization constants. Such form is
equivalent to the Widom–Griffiths equation of state [37]:

y = f (x), (4.11)

where

y ≡ h/Mδ, x ≡ t/M1/β . (4.12)
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Figure 5. The scaling function for n = 1 and b/c = 0.5, solid curve—our results, dashed
curve—Monte Carlo data [23].

Figure 6. The scaling function for n = 2 and b/c = 0.5, solid curve—our results, dashed
curve—Monte Carlo data [24].

The scaling function obtained from equation (4.1) has the form

fG = (
s

3/2
0

/
ho

) 1
δ σ00(1 + α−2)

1
2δ . (4.13)

It depends on α

α = h̃

τ̃ p0
. (4.14)

The variables α and z are connected with the ratio:

α = s
3/2
0

ho

(
fn

c1k

)p0

z−p0 , (4.15)
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Figure 7. The scaling function for n = 3 and b/c = 0.5, solid curve—our results, dashed
curve—Monte Carlo data [26].

Figure 8. The scaling function for n = 4 and b/c = 0.5, solid curve—our results, dashed
curve—Monte Carlo data [25].

that allows us to compare our results with the MC data. Figures 5–8 present graphs of the
scaling functions for different n, where the dashed curves are the results of MC simulations.

The comparison of the obtained results shows good agreement between the MC data
[23–26] and our results for small and big z. But there is some distinction for intermediate
values of the scaling variable, where values of the field and temperature are commensurable.
We believe the deviation is caused by two reasons. The first one is that we put the value
of critical exponent η equal to zero in our calculation. The second is that we neglect the
eigenvalue E3 of the matrix R (2.31) when use solutions of RR (2.40). It corresponds to
neglecting corrections to the scaling.
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5. Conclusions

We obtained the partition function of the n-vector model in the presence of the external field
above the critical temperature by the CV method. The method of calculation corresponds to
the general scheme of the RG approach. Taking into account the explicit form of the interaction
potential allows us to obtain the explicit dependence of the coefficients of the linearized RR
on the temperature and the microscopic parameters of the model.

The explicit form of the exit point from the CR allows us to obtain the equations for the
RR in the CR suitable for any ratios of the temperature and the field. The structure of the
partition function as a product of the partial partition functions that present different fluctuation
processes allows us to obtain the explicit form for the free energy of the system. The order
parameter of the model was found by direct differentiation by the field.

The formulas to describe the field dependences of the order parameter of the n-vector
model with exponentially decreasing interaction potential for different ratios b/c (b is range
of the interaction potential, c is period of the simple cubic lattice) were obtained. It was found
that for each value of n there is an appropriate value of b for which our dependences are close
to the MC data (see figures 5–8).

The explicit form of the scaling function (4.13) was found. The comparison with the
MC data shows some difference for the behavior of fG(z) for intermediate values of z. It
may be caused by used approximation in which the critical exponent η = 0 and corrections
to scaling were neglected. But further specification of calculations is a subject of a separate
investigation.

Appendix

Here we present the designations made in the second section:

a4 = −3sd
0

n2

m4

(
1 − z′Un(z

′) − U 2
o

)
,

(A.1)

U0 =
√

n + 2

2
Un(z

′), z′ =
√

3

u′
4

u′
2,

where

Un(x) = U
(

n+1
2 , x

)
U

(
n−1

2 , x
) , x =

√
3

a4
d(B1, B

′),

and for the function ϕ(x) we have

ϕ(x) = (n + 2)U 2
n (x) + 2xUn(x) − 2. (A.2)

The coefficients that appear in equation (4.8) are

rp+m = U ′
n

(
xnp+m

)
Un

(
xnp+m

) − 1

2

ϕ′(xnp+m

)
ϕ
(
xnp+m

) ,

gp+m = − x̄Em−1
2 Hcd√

1 + �Em−1
2 Hc

(
1 − Hc�Em−1

2

2
[
1 + �Em−1

2 Hc

]
)

,

x̄ = fn

√
3

φn

.
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