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Abstract

The phase transitions at finite temperatures in the systems described by the
Bose—Fermi—Hubbard model are investigated in this work in the framework of the
self-consistent random phase approximation. The case of the hard-core bosons is considered
and the pseudospin formalism is used. The density—density correlator is calculated in the
random phase approximation and the possibilities of transitions from superfluid to supersolid
phases are investigated. It is shown that the transitions between uniform and charge-ordered
phases can be of the second or the first order, depending on the system parameters.

1. Introduction

The properties of systems of ultracold atomic gases confined
in optical lattices have been intensively studied in the last few
years both theoretically and experimentally [1-5]. Special
attention has been paid to the mixture of bosons and spin
polarized fermions (e.g. °Li—"Li, “°K-3"Rb, °Li-*"Rb atoms).
Such systems can be well described by the Bose—Fermi—
Hubbard model (BFHM) [5], which is an extension of the
Bose—Hubbard model. The BFHM can also be considered as a
generalization of the fermionic Hubbard model. It is known for
the case of the Bose-Hubbard model that competition between
two terms, one connected with the on-site energy U and
the other describing the nearest-neighbour hopping with the
tunnelling parameter #, defines the state of the system (when
the kinetic energy dominates the ground state of the system
is superfluid, in the opposite case the ground state is a Mott
insulator) [6, 7]. For the case of the BFHM phase diagrams are
more complicated because, due to the presence of fermions, an
effective interaction between bosons is generated.

The Bose—Fermi mixtures in optical lattices have been
studied using a variety of methods [8-17]. In [8], it
was demonstrated that a two-dimensional mixture of bosons
and fermions develops a supersolid phase (this phase is
characterized by the simultaneous presence of a density wave
and phase order in condensate). The case of small fermion
hopping was investigated in [9] in the framework of the
composite fermion approach and composite fermions were
formed by a fermion and one or several bosons (bosonic holes)
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for attractive (repulsive) Bose—Fermi-interactions. In [10, 11],
inhomogeneous (due to the presence of the trapping potential)
mixtures of bosons and fermions were studied. Enhancement
of the superfluidity due to the presence of fermions was
predicted in [12]. The existence of the supersolid phase was
confirmed in [15] using quantum Monte Carlo simulations.
A mixture of the mean field approximation for a bosonic
part and the dynamical mean field theory for a fermionic
part of the Hamiltonian was applied in [16] and the presence
of a supersolid phase at weak Bose—Fermi interaction was
established. The case of the one-dimensional (1D) Bose—
Fermi—Hubbard model (BFHM) in the limit of large fermion
hopping was investigated in [17] (the case of half-filling was
considered only and they did not observe the supersolid state).

It should be noted that the Bose—Fermi—Hubbard-type
model can also be applied for the description of intercalation
of ions in crystals (for example, lithium intercalation in TiO,
crystals). Theoretical investigations of such a process in most
cases were restricted to the numerical ab initio and density-
functional calculations [18-20]. It was shown that Li is
almost fully ionized once intercalated and reconstruction of
the electron spectrum at intercalation takes place. Thus, ion—
electron interaction can play a significant role in such systems.
Another interesting feature of such crystals is a displacement
of the chemical potential at intercalation into the conduction
band. As a result, these crystals have metallic conductivity. At
intercalation of lithium in TiO,, phase separation into Li-poor
and Li-rich phases occurs and this two-phase behaviour leads
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to a constant value of the electrochemical potential [21, 22]
(this fact is used when constructing batteries).

In our previous works [23, 24] we have formulated the
pseudospin-electron model of intercalation. We have revealed
that the effective interaction between Bose-atoms (ions) can
change its character depending on fermionic band filling,
which leads to the charge-ordered phase or phase separation
into the uniform phases with different concentrations of
bosons and fermions. The ion—electron interaction was also
considered in [25] in the investigation of the thermodynamics
of the spin-1 model of intercalation (the model was similar to
the known Blume-Emery—Griffiths model), but the electron as
well as ion transfer was not taken into account. Models of
pseudospin-electron model type are widely used in the physics
of the strongly correlated electron systems. Application
of such models to high-temperature superconductors allows
one to describe the thermodynamics of anharmonic oxygen
ion subsystem and explain the appearance of inhomogeneous
states and the bistability phenomena (see [26]). Models of a
lattice gas are also used at the description of ionic conductors
and at the calculation of their conductivity starting from works
of Mahan [27] and others [28, 29].

In this work we consider the hard-core limit (infinite
on-site boson—boson interaction) of the BFHM at finite
temperature (most previous investigations considered the zero-
temperature case). Our paper is organized as follows. In
section 2 we present the description of the model and give a
self-consistent scheme for calculation of the density—density
correlator (susceptibility) in the random phase approximation
(RPA). In section 3 we present phase diagrams for different
values of the model parameters. Special attention is paid to the
influence of the temperature change on the phase transitions.
We present our conclusions in section 4.

2. Model and method

We consider the BFHM in the hard-core limit. Using the
pseudospin formalism, the Hamiltonian of the model is written
in the following form

H=— ZQUS;S; - Ztijcjcj + ngizni
ij ij i
> un = hS: ()

The pseudospin variable S} takes two values (S7 = 1/2 when
a boson is present in a site i and S = —1/2 in the opposite
case), while c,T and ¢; are fermionic creation and annihilation
operators, respectively. The first and the second terms in
equation (1) are responsible for the nearest-neighbour boson
and fermion hopping, respectively; the g-term accounts for the
boson—fermion interaction energy. To control the number of
bosons and fermions, we introduce the bosonic and fermionic
chemical potentials /# and p, respectively.

The unperturbed Hamiltonian H, in the mean field
approximation (MFA) 1is obtained using the following
simplification:

gniS; — g(ni)S; + gni(S;) — g{ni)(S;) @)

QS/S; — Q(S))S; +QSH(S;7) — SIS ). B)

The Hamiltonian becomes
H = Hy + Hiy, 4)
Ho=—Y tijcici+ Y (8(S%n; + ¢S (n) — g(5%)(n)

ij i

— Y (ST 4 ) — Y QRSH(SY) — Qiy(S)D), ()
i ij
Hin =) g(S7 — (S*))(ni — (n))
— Y QST — (SIS — (S¥) + 8771 (©6)
ij

It is worth noting that application of the MFA to the strongly
correlated systems in the limit of a weak on-site correlation
(when there is no correlational splitting of the fermionic band)
allows one to satisfactorily describe their properties.

To diagonalize the Hamiltonian H, we pass to the k-
representation and perform the unitary transformation in the
pseudospin subspace:

S7 = o cos® + o} sin, (7
SY =0/ cosf — o sin0, (8)
2Q(S* h —
sinf = — { >, cosf = gn’ )
A A
= (gln) —h)2 + (2Q(5))2, Q = Qm0, (10)
Hy=— Z(lk + I/L)C;:Ck - Z)\Ui
k i
— Ng(S%)(n) + NQ(S*)?, €8))

where N is the number of lattice sites.
To calculate the density—density correlator &;;(t) =
(T, Sf(r)Sj- (0)), we perform an expansion in powers of Hjy

(1.5 050 = T (22()(;)06(’3 Mo, (12)
exp (—BH) = exp (—pHo) (B), (13)
o(B) =T, exp|:— /ﬂ Hiy () d7,'1|, (14)
(TS5 S0)) = (TS DS O

L e (1, 550550 Hm o 4 - (1)

the averaging (- - -)¢ is performed over the distribution with H,
where 77 is the imaginary time ordering operatorand 8 = 1/T
is the inverse temperature.

To calculate the average values of the 7, -products of the
pseudospin and fermion operators, we utilize the diagrammatic
technique based on Wick’s theorem for the spin operators [30]
(besides the usual procedure for the Fermi operators). After
elimination in this way of the nondiagonal o* operators we
perform the semi-invariant expansion in order to calculate the
mean values of the remaining products of the o¢ operators.
At the summation of diagrams we restrict ourselves to the
diagrams having a structure of multi-loop chains in the
spirit of the random phase approximation (see [31]). The
junctions between bosonic (pseudospin) Green’s functions and
semi-invariants are realized by bosonic hopping €2, and the
fermionic loop IT,(w). It is useful to introduce unperturbed
bosonic and fermionic Green’s functions (7% a,+ (t)o,, (0))o =
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Figure 1. Typical RPA diagrams for the Green’s function Ggﬁ (w).
Solid and dashed lines with arrows denote the unperturbed bosonic
and fermionic Green’s functions, respectively. Wavy lines indicate
the energy dispersion for the bosons €24, circles and ovals denote the
average value (0°) and semi-invariants, respectively.

K(w) <o>

—2(0*) K}, () and (T,ck(t)c;(O))O, respectively, and semi-
invariant (T 0/ (1)o7 (0))o = (092 + My,.

Let us consider the Green’s function Gif(r) =
—(T,0f (1)oh (0)) (with &, B = +, —,2). Typical RPA
diagrams for this Green’s function Ggﬁ (w) in the frequency
representation are shown in figure 1. We used the notations for
the unperturbed bosonic Green’s function

1

K(w,) = ,
(@) iw, — A

(16)

the fermionic loop

1 Z n(tg—q) — n(ty)

IT n) = = . 5
q(a)) N % 1wy + 1 — lk—q

a7

semi-invariant M (w,) = ,B(Swmo(i —(6%)?), and average value
of the pseudospin variable (%) = % tanh(BA/2).
The equation for this Green’s function Ggﬂ (wy) is

G (@n) = G{§ (@AY + G (@) Y (@) G (wn()l,g)
where 227 (w,) = Tgf(w,) + QF (with o, B = +,—,2)
and w, is the bosonic Matsubara frequency. These matrix
equations (18) form three independent sets of equations of
the third order and can be separately solved. For the case
of the Green’s functions G;_(wn), G, (@), Gi (w,) the
matrices T1¢° (,), Q%7 and the unperturbed Green’s functions

G‘Zf) o(@n) are

—+ _ ot _ ot
I, " (o) = T, (wp) =TI, " (@n) (19)

-2

sin” 6
=T, (@) = ¢’ TMy(@) ——, (20)
H;Z(wn) = H;Z(wn) = gzl'[q(wn) sinf cos 6, 21
. ot ) sind cos @

M (@) = 05 (@) = =g My(0) ————. 22

N (w,) = =g Mg(wy) cos” 0, QF =2Q,sin’ 6,

(23)

Q=) =-Q,(1+cos’0), (24)
QT =Q, = —Qgcos’ 6 — 1), (25)
Q= Q;Z = 2Q,sin6 cos b, (26)
QL = Qi = —Qgsinf cos, (27)

G (@) = K(wp)(07), G o) (0n) = K(—wn)(07),
(28)
AT =1,

GE()_)(wn) = M(wy), AT =0,

(29)
AT =0.

Similar matrix equations can be written for the Green’s
functions G;IH’ (), G;+ (wn), Gf;r (w,) and G;Z (wn),
G, (@), G¥(w,) with the corresponding matrices Hgﬁ (wn)
and Qgﬁ (we do not present these matrices here). As a result,
we can solve these three sets of equations of the third order
and after some tedious algebra we derive the expression for the
density—density correlator

(1) = (T:07 (t)5}(0)) cos” 6 + (Tr0; (1)o7 (0)) sin 6

+ (T;0f (t)(rf (0)) sin & cos

+ (Ty0; (t)55(0)) sin 6 cos 0, (30)
sin® 0(0%) 4+ AM (w,) cos? 6 — 2QqM (w,)(0%)

G y(w,) = A

X (A —2(6%)y), (31)
A = —(iw,)* + (0 — 2(0%)Q)[A — 2(07) cos® 6K,

+ (0%) g% sin® 011, (w,) — 2M (w,) Q2 sin* 6

+ M(w,)g* A1, (w,) cos* 6

— 2(0%)QqM () (@) g]. (32)

If we use the equation of motion method developed for
the two-time Green’s function ((S%(¢)|S*(¢'))) = —if( —
t")([S%(t), S*(¢')]) and decoupling in the spirit of the Tyablikov
approximation [0}, H] ~ —2i(0%) Y, 0] Qi + iro; we can
obtain the expression for the correlator ({(S*|S%))q,» Which is
similar to equation (31) but differs from it due to the absence
of the terms proportional to §,, o. These terms have appeared
in the diagrammatic technique due to the presence of the semi-
invariants and are important when we investigate the static limit
w — 0. The equation of motion method does not allow us to
take into account these terms and because of this we should
use the diagrammatic technique. It should be noted that such a
peculiarity was also pointed out in [32] at the investigation of
the Bose—Hubbard model in the hard-core case.

3. Phase diagrams

Lines of instability with respect to the transition into the phase
with charge ordering can be obtained using the condition of
divergence of the static density—density correlator &,(w = 0).
We consider two cases: (i) the transition from a normal (NR)
nonsuperfluid uniform to nonsuperfluid charge-density-wave
(CDW) phase (ii) the transition from a superfluid phase to
superfluid phase with long-range ordering (a supersolid phase).
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Figure 2. The lines of instability of the nonsuperfluid phase with respect to the transition into the charge-ordered phase for W = 1, g = —0.4,

Q2 =0,(a) u =0and (b) u =0.3.

The equations for averages (n), (S*), (§*) are obtained in the
mean field approximation. Let us introduce two sublattices:
(Mia) = ng, (S7,) = (SZ), « = 1,2 is a sublattice index, i is
an elementary cell index. Using the Hamiltonian H, we can
obtain the following equations for averages [24]

1 1 + cos(2¢) ( k=1t -1
L L) (e
n A > € +

1 —cos(2p) / g -1
+Xk:f(e ; +1) , 33)
(Sé) _ h ~gna h (,3)‘0() ’ (34)
o 2
L2
(S,) = 5 tanh ( 5 > (35)
with
4 4 Z\ z 2
e = g IS0 +(_1)0(\/(&,<Sl> SC
. —Ik
sin2¢ = - , (37)
\/(g <S;>;<S5>) 2
- 2
fo = \/ o —m2+(22055)) . a#p 69
The grand canonical potential can be written as [24]
[ T Hhg) )
¥ =—N;ln|:(l+e T )(l+e T ):I
—TIn |:4cosh (ﬂ) cosh <&>:|
2 2
— g (Sy) + n2(S83)) + 2Q(S57)(S7)- (39)

The doubling of the unit cell leads to the splitting in the
fermionic spectrum with the gap g[(S7) — (S5)|. The
differences dn = (n|) — (n2), §S* = (S7) — (S5), 8S* =
(S7) — (S7) play the role of the order parameter for the
modulated phase ((§*) # O in the superfluid phase and

0.05
|_
0.02 +
0.3 0.4 0.5 0.6 0.7
Ne

Figure 3. The lines of instability of the superfluid phase with respect
to the transition into the supersolid phase for W =1, g = —0.4,
Q =0.15,and u = 0.

88* # 0 in the supersolid phase). Coming from the set of
equations (33)—(35), we can write the equations for én, 5%,
65" and separate the contributions of the first order. As a result,
we obtain the condition of the appearance of nonzero solutions
for én, 5§8%, and §S*. It can be shown that this condition
coincides with the condition when the static density—density
correlator &,_, (w = 0) diverges. Therefore our scheme for
calculation of the density—density correlator in the RPA and
the corresponding averages (n), (S*), and (S*) in the MFA is a
self-consistent scheme.

During the numerical calculations of the density—density
correlator we consider a three-dimensional case with a lattice
constant a = 1 and in our calculations we choose a half-width
of the fermionic band W to be our energy scale (=W < f;, <
W). First we investigate the uniform phase ((n;) = (n2)).
From the set of equations (33)—(35) it follows that the solutions
of these equations with (§*) # O can be realized when
2 > 2T. Therefore at finite temperature we can consider the
transition from the normal uniform nonsuperfluid phase (at low
temperatures this is a Mott insulating phase) to the CDW phase
for small values of the bosonic hopping parameter (2 < 27).
In figure 2(a), we plot lines of the instability with respect to the
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Figure 4. (a) The lines of the phase transitions of the second (solid lines) and first (dashed lines) order for W = 1, g = —0.4, u = 0, and
2 = 0. (b) The dependence of the bosonic and fermionic concentrations on the bosonic chemical potential at 7 = 0.04.
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Figure 5. (a) The lines of the phase transitions of the second (solid lines) and first (dashed lines) order for W = 1, g = —0.4, u = 0, and
2 = 0.15. (b) The dependence of the bosonic and fermionic concentrations on the bosonic chemical potential at 7 = 0.02.

transition into the charge-ordered phase at the fixed fermionic
chemical potential (the case 4 = 0 corresponds to the half-
filling case) for the case of the nonsuperfluid phase (the bosonic
concentration ng = S° 4 1/2). As seen in figure 2(a), the
highest temperature of the instability is realized for the case of
the chess-board phase with the wavevector ¢ = (7, 7, ). In
figure 2(b) the lines of the instability for the case u = 0.3
(when the system goes away from the half-filling case) are
plotted. From figure 2(b) we observe that the incommensurate
charge-ordered phase with the wavevector ¢ ~ (2, 2, 2) has the
highest temperature of the instability and the system undergoes
the transition to the incommensurate modulated phase. It
should be noted that the condition of the divergence of the
static density—density correlator allows one to investigate phase
transitions of the second order only.

Now let us consider the transition to the supersolid phase.
In figure 3 lines of instability of the superfluid phase with
respect to the transition into the supersolid phase for the half-
filling case u = 0, Q = 0.15 are depicted. As shown in
figure 3, the transition to the supersolid phase with modulation
wavevector ¢ = (7, 7w, 7r) is realized. We revealed that when
the system goes away from the half-filling case and u # 0

01F NR / SF
< 02} cow > s D
03F NR \
0 0.1 0.2 0.3

Figure 6. Phase diagram in the (h—2) plane for W =1, g = —0.4,
n=0,and T = 0.01. Solid (dashed) lines denote the phase
transitions of the second (first) order.

the supersolid phase with the modulation wavevector ¢ =
(7r, r, ) also has the highest temperature of the transition.

It should be emphasized that the appearance of the CDW
and supersolid phases is connected with the presence of the
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effective interaction between bosons which is formed due to
the boson—fermion correlation. This interaction depends on the
filling of the fermionic band.

Now we want to investigate the case of the chess-board
phase in more detail. We use the equations for averages (33)—
(35) and the expression for the grand canonical potential (39)
to find thermodynamically stable states (in this part of our
numerical calculations we use the semi-elliptic density of
states, p(f) = ﬂ%vz ~/W?2 — 12). The phase transition lines and
particle concentrations as functions of the bosonic chemical
potential are shown in figures 4 and 5. The phase transition
from the normal uniform nonsuperfluid to chess-board phase
can be of the second or first order, see figure 4(a). The
existence of the phase transition of the first order leads to phase
separation in the regime of the fixed concentrations into the NR
and CDW phases. As shown in figure 5, a similar picture is
obtained for the transition from the superfluid to the supersolid
phase and the transition from the superfluid to the supersolid
phase can be of the first or second order depending on the
system parameters.

In figure 6, we show the phase diagrams in the plane (h—
2) at low temperature. As temperature increases, the regions
of the existence of the CDW phase and the supersolid phase are
possible for smaller parameter space and the first order phase
transition from the normal uniform nonsuperfluid (superfluid)
into the CDW (SS) phases transforms into the second one. It
should be noted that similar diagrams at 7 = 0 were obtained
in [17], but they did not reveal the possibility of the transition
to the supersolid phase.

4. Conclusions

The phase transitions in the Bose—Fermi—Hubbard model at
finite temperature have been considered in this work. We
studied the hard-core limit and used pseudospin formalism.
The thermodynamics of the model was investigated in the
case of the weak boson—fermion interaction. The analytical
expression for the density—density correlator has been obtained
in the framework of the self-consistent scheme of the RPA. The
effective boson—boson interaction is formed due to the boson
interaction with fermions; this effective interaction depends
on the filling of the fermionic band. It is revealed that at
small values of the bosonic tunnelling amplitude the system
undergoes a phase transition from the uniform nonsuperfluid
phase to the chess-board phase (the case of half-filling of
the fermion band) or to the incommensurate phase (when the
system goes away from the half-filling) at the lowering of the
temperature. At increase of the bosonic hopping parameter the
phase transition from the superfluid phase to the supersolid
phase with a doubly modulated lattice period takes place (it
should be noted that the presence of the supersolid phase at
the weak boson—fermion interaction and zero temperature was
also established in [16] in the framework of a generalized
dynamical mean field theory). The transition from the uniform
to the modulated phase can be of the first or second order,
depending on the model parameters and temperature. The
presence of the first order phase transition means that in
the regime of the fixed fermionic concentrations the phase
separation into the uniform and modulated phases is possible.
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