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õäë: 536; 537PACS: 05.20.Jj, 61.20.Ja, 61.20.L, 61.25.Mv�Å�ÌÏ×� È×ÉÌ� × p�ÄËÉÈ ÍÅÔÁÌÁÈ ÔÁ ÎÁ��×ÍÅÔÁÌÁÈ�.âÒÉË, I.ípÉÇÌÏÄáÎÏÔÁ��Ñ. ðpÏ�ÏÎÕ¤ÔØÓÑ Í�ËÏÓËÏ��ÞÎÉÊ ��ÄÈ�Ä ÄÏ ÄÏÓÌ�ÄÖÅÎÎÑ ÔÅ�-ÌÏ×ÉÈ ËÏÌÅËÔÉ×ÎÉÈ ÚÂÕÄÖÅÎØ × �pÏÓÔÉÈ p�ÄÉÎÁÈ. ó�ÅËÔpÉ ËÏÌÅËÔÉ×-ÎÉÈ ÚÂÕÄÖÅÎØ ÍÅÔÁÌ�ÞÎÉÈ p�ÄÉÎ Pb � Cs, ÔÁ ÎÁ��×ÍÅÔÁÌ�ÞÎÏÇÏ Bi ÏÔpÉ-ÍÁÎ� × pÁÍËÁÈ ÍÅÔÏÄÕ ÕÚÁÇÁÌØÎÅÎÉÈ ËÏÌÅËÔÉ×ÎÉÈ ÍÏÄ. ðÏËÁÚÁÎÏ, ÝÏ× p�ÄÉÎ� ÍÏÖÕÔØ �ÓÎÕ×ÁÔÉ Ä×� (×ÉÓÏËÏ- � ÎÉÚØËÏÞÁÓÔÏÔÎ�) ×�ÔËÉ ÔÅ�-ÌÏ×ÉÈ È×ÉÌØ.Heat Waves in Liquid Metals and SemimetalsT.Bryk, I.MryglodAbstrat. A mirosopi approah to investigation of heat olletiveexitations in pure liquids is developed. Spetra of olletive exitationsof metalli liquids Pb and Cs, and semimetalli Bi are obtained withinthe generalized olletive mode method. It is found, that there an existtwo (high- and low-frequeny) branhes of heat waves in liquid.
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1 ðÒÅ�ÒÉÎÔ1. IntrodutionHeat waves are for long time the subjet of ative study in ontinuummehanis [1℄, whih is based on phenomenologial di�erential equations.Heat waves are also known as the `seond sound' exitations in solids [2℄and two-liquid model of He [3℄. However, we ould not �nd any refereneon a study on mirosopi nature of heat waves in ordinary liquids. Inthe ase of liquids the hydrodynami set of equations derives only twomehanisms of heat transmission in a liquid: via thermodi�usion andby means of propagating sound waves. Sine propagating heat wavesannot be obtained within hydrodynami treatment, they belong to so-alled kineti olletive exitations, whih have a �nite time of life andare loated in the spetrum beyond the hydrodynami region. Hydro-dynami equations, whih reet loal onservation laws, desribe themost long-time proesses in liquid. However, the short-time kinetis forsome liquid systems annot be negleted, beause it ontributes into dy-nami struture fators. The 'fast sound' and opti-like modes in binaryliquids with disparate masses are the examples of kineti modes, whihannot be obtained within the standard hydrodynami treatment. Thetheoretial approah, whih enables to investigate kineti olletive ex-itations, was proposed in [4℄ and developed into parameter-free methodof generalized olletive modes (GCM) in [5℄. This method threates inaddition to three hydrodynami variables ( the density n(k; t), densityof longitudinal urrent Jl(k; t) and density of energy e(k; t)) also theirtime derivatives, whih are supposed to desribe short-time proessesin liquids. The reent results on 'fast sound' in He65Ne35 [6℄ and opti-like exitations in binary Lennard-Jones liquids and metalli alloys [7℄showed the reliability of the GCM method for investigation of kinetimodes.It is not known a priori the type of dispersion for heat waves inordinary liquids. The most interesting question an be formulated asfollows: where the branh of heat waves is loated in the spetrum ofolletive exitations relatively to the aousti branh ? The answer isquite impossible to obtain within the regular approah to the studyof heat waves based on the phenomenologial di�erential equations [1℄.Therefore, the mirosopi approah to this problem is of great interest.In this Letter we report an analysis of spetra of liquid metals anda semimetal, whih enables to identify heat waves in the system. To ourknowledge this is the �rst report, when starting from moleular dynamissimulations and the generalized Langevin equation for time orrelationfuntions one obtains the dispersion and damping of kineti heat waves
ICMP{00{03E 2in liquids. We investigated three liquids: metals Cs ( n = 0:0083�A�3,T = 308K) and Pb ( n = 0:03094�A�3,T = 623K), and a semimetal Bi( n = 0:0289�A�3,T = 578K). Interatomi potentials were taken from[8{10℄, respetively.2. Spetra of olletive exitationsIn this study we apply for solving the generalized Langevin equation thefolowing basis set of dynamial variables:A(9)(k; t) = (1)nn(k; t); Jl(k; t); e(k; t); _Jl(k; t); _e(k; t); �Jl(k; t); �e(k; t); :::Jl(k; t); :::e(k; t)o ;where the three operators n(k; t), Jl(k; t), and e(k; t) are the hydrody-nami variables. In (1) the dots denote the order of time derivatives ofrelevant operator, whih are used for treatment of short-time proesses.The basis set (1) is used to generate the 9 � 9 eigenvalue problem forthe generalized hydrodynami matrix T(k) (see [4,5℄). Nine eigenvaluesz�(k) form the spetrum of olletive relaxing and propagating modesof liquids studied.In Figures 1,2 and 3 we show dispersion (imaginary parts od omplexeigenvalues) of propagating modes for Pb, Cs and Bi, respetively. Thereare three pairs of omplex onjugated numbers (propagating modes) andthree purely real ones (relaxing modes) among the nine eigenvalues ob-tained for these three liquids in small-k region. In the ase of liquidmetals Pb and Cs there emerges another low-frequeny branh of prop-agating exitations at � 0:3�A�1 and � 2:0�A�1, respetively. It is quiteeasy to identify the branh with almost linear dispersion in small-k region(shown by asterisks in Figures 1-3) as the generalized aousti exita-tions.To �nd the origin of eah branh in the spetra of olletive exi-tations, we will apply the same treatment of time-dependent proessesby separated subsets of dynamial variables, as we did for the ase oftransverse propagating modes in binary liquids [7℄. We will divide theset of nine dynamial variables (1) into two subsets, whih orrespond tothermal and visoelasti properties of pure liquids. To expet the smalloupling e�ets between di�erent proesses, we will use the dynamialvariable of heat densityh(k; t) = e(k; t)� fnefnnn(k; t) ; (2)



3 ðÒÅ�ÒÉÎÔwhih is orthogonal, in ontrast to the energy density e(k; t), to thedynamial variable of density n(k; t) in the sene of thermodynami the-ory of utuations. In (2) fne(k) and fnn(k) are the `energy-density'and `density-density' stati orrelation funtions, respetively. The four-variable subsetA(4h)(k; t) = nh(k; t); _h(k; t); �h(k; t); :::h(k; t)o ; (3)an be used for separated treatment of thermal proesses. It allows togenerate the 4�4 eigenvalue problem for the generalized thermodynamimatrix T(k) and to ompare four eigenvalues obtained with the nine-variable spetra. Another �ve-variable subset of dynamial variablesA(5)(k; t) = �n(k; t); Jl(k; t); _Jl(k; t); �Jl(k; t); :::Jl (k; t)� ; (4)is often alled as `visoelasti approximation', when the oupling withthermal proesses is negleted. Two subsets A(4h) and A(5) form to-gether the nine-variable `oupled' set of dynamial variables, whih anbe obatined from 1 by a simple linear transformation. In Figures 1,2and 3 we show the imaginary parts of eigenvalues obtained by treatmentof separated subsets A(4h) and A(5) by dashed and solid lines, respe-tively. One an immediately estimate, that in the ase of liquid metalsPb and Cs two branhes orrespond to propagating heat exitations.The low-frequeny branh has a propagation gap in small-k region. Inthe ase of liquid semimetalli Bi we did not �nd the low-frequeny heatwaves. At least, in the region k < 3�A�1 they are absent. Inside thepropagation gap one obtains two relaxing modes instead of two omplexonjugated eigenvalues. The lower relaxing mode is the generalized ther-modi�usive eigenvalue. This is in omplete agreement with preditionsof hydrodynami treatment: there annot exist in hydrodynami region(small wavenumbers and frequenies) eigenvalues other than thermo�f-fusive mode and aousti waves.The high-frequeny branh of heat waves emerges due to treatmentof very short-time thermal proesses, mainly due to taking into aountdynamial variables �h(k; t) and :::h(k; t). One an estimate from the dif-ferene between results for the four- and and nine-variable treatments,shown by dashed line and ross symbols in Figures 1-3, respetively, thatin the ase of liquid Pb the oupling between thermal and visoelastiproesses is stronger than for Cs or Bi. This is onsistent with estimatedvalues of ratio of spei� heats , whih are 1:22, 1:10 and 1:12 for Pb,Csand Bi, respetively.

ICMP{00{03E 43. Analytial treatment of low-frequeny heat wavesWhen one an neglet the oupling between heat- and visoelasti pro-esses (approximation, when the ratio of spei� heats is supposed tobe  � 1), the treatment of heat waves is in omplete analogy with thease of shear waves. To perform theoretial estimates for heat exitationswe will onsider a two-variable approximation negleting the oupling ofthermal proesses with density and urrent utuations. In this ase, asingle-variable treatment immediately would derive an exponential formof time orrelation funtion [11℄F (1)hh (k; t)=F (1)hh (k; 0) = e� �nCV k2t; (5)where � is the oe��ient of thermal ondutivity, n is the numerialdensity and CV is the spei� heat at onstant volume. In fat, theMD-derived funtions Fhh(k; t) ontain osillations, whih are due toontributions of aousti-like exitations. However, at k ! 0 the timeorrelation funtions `heat density { heat density' tend to an single-exponential form modulated by weak osillations with a normalized on-tribution � (1� 1=).One an write down the expression for the generalized hydrodynamimatrix T(k) [5℄ evaluated by means of two-variable basis set A(2h) =fh(k; t); _h(k; t)g, whih is the simplest nontrivial ase for the treatmentof heat utuations: T(k) = � 0 �1�!2;h�!2;h�h� ; (6)where the k-dependent Maxwell-like time of relaxation �h(k) is evalu-ated from (5) using the de�nition of orrelation times within the GCMapproah [5℄: �h(k) = 1Fhh(k; t = 0) Z 10 Fhh(k; t)dt : (7)In (6) �!2;h(k) is the seond-order frequeny moment of the `heat density{heat density' spetral funtion:�!2;h(k) = h _h(k) _h(�k)ihh(k)h(�k)i :In Figure 4 one an see, that the funtions �!2;h(k)=k2 tend to �nitenonzero values in small-k region for the three liquids under study. We



5 ðÒÅ�ÒÉÎÔwill use this fat to rewrite the seond-order frequeny moment �!2;h(k)as follows: �!2;h(k) = k2Gh(k)� : (8)In an analogy with the ase of transverse dynamis we introdued inEq. (8) a quantity Gh(k), whih has the same dimension as rigiditymodulus G(k). Thus, we an all the quantity Gh(k) as a k-dependentheat-rigidity modulus. Obviously, that Gh(k) tends to a onstant in hy-drodynami limit. The formal analogy in treatment between heat- andshear-proesses is known in ontinuum mehanis [1℄.One an immediately obtain the two-mode spetrum of heat exita-tions as eigenvalues of the generalized hydrodynami matrix (6):z�h (k) = �!2;h(k)�h(k)2 � " �!22;h(k)�2h(k)4 � �!2;h(k)# 12 ;or using (8) and expression for �h(k) obtained from (5):z�h (k) = Æ(k)2 � �Æ2(k)4 � k2Gh(k)� � 12 : (9)The funtion Æ(k) = CVGh(k)m� :tends in longwave limit Æ(k) to a onstant. One an see, that the Eq. (9)has two di�erent kinds of solutions. In the ase, whenÆ(k)�h(k)4 < 1 (10)one obtains two omplex onjugated eigenvaluesz�h = �i!h(k) + �h(k) ;whih orrespond to propagating in opposite diretions heat waves withfrequeny !h(k) and damping �h(k). The ondition for existene of heatwaves in the system (10) de�nes a limiting k-value, whih is, in fat, thewidth of propagating gap for low-frequeny heat-waves:kH ' CV2�rnGhm : (11)Sine the left side of ondition (10) ontains �h(k) � k�2, it will alwaysnot be valid for small k-values. Inside the propagation gap, for k < kH ,
ICMP{00{03E 6Eq. (10) derives two purely real eigenvalues, whih in longwave limitbehave as:z+h (k) = z2Rh (k) = CVGhm� � �nCV k2; z�t (k) = z1Rt (k) = �nCV k2 :One an see, that the lowest real eigenvalue z�t (k) is just the thermod-i�usive hydrodynami eigenvalue for the ase, when the oupling withvisoelasti proesses is negleted (see [11℄).Within our two-variable treatment of heat utuations, one an im-prove the analytial hydrodynami expression for time orrelation fun-tions (5). The basis setA2;h allows to derive the time orrelation funtionFhh(k; t) within the preision of the seond order frequeny moment:F (2)hh (k; t)F (2)hh (k; 0) = � z�h (k)z+h (k)� z�h (k) e�z+h (k)t + z+h (k)z+h (k)� z�h (k) e�z�h (k)t : (12)It is possible to perform a self-onsistent loop, taking for evaluation oforrelation time �h(k) expression (12), what would allow to get someorretions to expressions obtained above. However, the general piturewill remain the same: there always exists a propagation gap for low-frequeny heat waves in a liquid. Its width depends on the values ofthermal ondutivity, spei� heat at onstant volume and heat-rigiditymodulus.4. ConlusionsThe main results of this study are the following:(i) We were able to identify in the spetra of propagating olle-tive exitations of liquid metals and semimetals branhes, whih orre-sponded heat waves. For metalli Cs and Pb there exist two (high- andlow-frequeny) branhes of heat waves, that is in perfet agreement withresults obtained within the ontinuum mehanis. This explains "fastwaves arrying small amounts of heat and slower speeds arrying largeramounts of heat" [1℄;(ii) There exists a propagation gap for low-frequeny heat waves inliquids in the region of small wavenumbers, that is in agreement with hy-drodynami treatment. Inside the propagation gap instead of two om-plex onjugated eigenvalues one obtains two relaxing modes, the lowerof whih is the generalized thermodi�usive eigenvalue;(iii) A simple analytial two-variable treatment within the GCM ap-proah allows to explain propagation gap for low-frequeny heat wavesand to obtain the ondition for their existene.
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Figure 1. Dispersion of propagating olletive exitations in liquid Pb.Imaginary parts of eigenvalues, obtained by nine-variable basis setA(9)(k; t) are shown by di�erent symbols. Results for separated sub-sets A(5)(k; t) and A(4h)(k; t) are shown by spline interpolated solid anddashed lines, respetively.
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