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Energy spectrum and thermodynamics of one-dimensional pro-
ton conductor

1.V.Stasyuk, O.A. Vorobyov

Abstract. Energy spectrum and thermodynamics of the proton subsys-
tem of the one-dimensional hydrogen-bonded molecular chain is investi-
gated. The consideration is based on orientational-tunneling model which
includes two types of proton transfer according to Grotthuss mechanism.
The method of cluster expansions in the theory of Greens’ functions is
used to calculate the energy spectrum. In the independent subband ap-
proximation the spectrum consists of eight energy bands which edges are
functions of proton concentration. The investigation of chemical poten-
tial behaviour shows that there exist regions where chemical potential is
the decreasing function of proton concentration which points out to the
possibility of separation. The influence of additional asymmetry field is
also investigated.

© Iacruryr disuku konmencoBanux cucrem 2000
Institute for Condensed Matter Physics 2000



1 IIpenpunT

1. Introduction

Due to the widening of experimental investigations of the ion (proton)
conductivity phenomena in crystalline and molecular systems and the
discovery of new materials (superionic crystals with hydrogen bonds,
systems with crystallization water, quasi-one-dimensional proton con-
ductors), the problem of search and investigations of the physical mech-
anism of the proton transport, analysis of features of thermodynamics
and energy spectrum of such objects becomes actual. Along with the
traditional concepts of formation and motion of ionic and orientational
defects there exist some approaches explicitly taking into account the
dynamics of proton jumps (which can have two-stage nature (Grotthuss
mechanism)), as well as the short-range and long-range proton-proton
interactions. These interactions can lead to the proton ordering and cor-
responding phase transitions. At the same time the strong short-range
correlations can significantly rebuild the proton energy spectrum when
the values of parameters of such interactions exceed the proton trans-
fer energies. This fact has to be taken into account when investigating
the mechanism of formation of proton transport activation energy in the
above-mentioned systems.

The aim of the present work is to analyze the influence of short-range
interactions on the proton energy spectrum in the one-dimensional case,
when one considers molecular chain with the ionic groups consequtively
connected by the hydrogen bonds. We take into account the possibility
of the dynamical proton jumps which can be directly included in the
Hamiltonian of the system. We use the basic approach where the strong
short-range interactions are taken into account exactly in the zero ap-
proximation. The calculations of proton spectrum at different average
proton concentrations are performed and statistics of the proton distri-
bution is also investigated. The influence of proton correlations on the
activation energy of proton transport is analyzed.

2. The model

Investigation of the energy spectrum and thermodynamics of the pro-
ton subsystem of the molecular hydrogen-bonded chain is based on the
orientational-tunneling model. This model was introduced in [1] (see also
[2]) to describe molecular complexes with hydrogen bonds. Later it was
used for description of the proton transport and calculation of conduc-
tivity coefficient in the MesH(XO4)3 (Me=Cs,Rb,NH, ; X=S,Se) group
of superionic crystals [3,4]. It includes two types of transfer according
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to Grotthuss mechanism: tunneling on the bond {2y and reorientational
hopping Qg. Short-range interactions caused by the differences between
the energies of the proton configurations near ionic groups and addi-
tional interactions, which determine the energies of formation of D- an
L-defects, are taken into account.

Figure 1. Proton conductor model. Large circles correspond to the ion
groups (A), small ones to the possible positions of protons.

We consider one-dimensional proton conductor which consists of ionic
groups connected by hydrogen bonds (Fig. 1). Two equilibrium positions
(i,a) and (Z,b) on each bond (i - is a consequtive number of the bond)
are taken into account. The Hamiltonian of such system in the second
quantization representation has the following form:

H = H, + Hy + Hy — pN, (1)
where
He = Y [e(l=np)nivia +enap(l = nivie) + wngnizne+
i
+ w'(1=np)(1—nit1,0)]
Ht = Z [QO (szcib + c;gcm) + QR(C;?,Ci-i-l,a + C;;Lacib)]
i
H, = Z [Unianip + V(1 = n40) (1 — 1)) 2)
i
N = > (nia+mna)

i

Here n;o (e = a,b) is the occupation number in a position; U and
V' are energies of formation of D- (two protons on the bond) and L-
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Figure 2. Energies of proton configurations.

(a broken bond) defects correspondingly; w, €, w' are the energies of
configurations with two, one or no protons near the ionic group (Fig. 2).

The model (1) is the one of the fermionic lattice models with transfer.
Its spectrum has a band character and its structure is determined by the
ratio of the effective transfer parameter €).¢ to the energy of short range
interaction (Ues). When Q. > U.y interaction between protons can
be taken into account in the framework of mean field approximation
(MFA), and it only shifts the proton energy band (such approach was
utilized in [4] when obtaining dispersion laws E(k) in proton bands,
which describe the motion of protons in quasi-two-dimensional layers
of hydrogen bonds in (NH4)3H(SeOy4)2). Otherwise (when Q¢; <« Uey)
correlation leads to the additional splitting in spectra. These results are
well-known for Hubbard model and the similar ones [5] . Corresponding
theoretical investigation cannot be performed in the frames of MFA, it
has to be based on the allowance for the short-range interactions in the
zero approximation. The cluster approximation and its generalization
are used for the purpose in the present work.

We utilize the perturbation theory to obtain proton energy spectrum,
considering the operator

Ho = H, + Hy— N 3)

as the zero-order Hamiltonian and making the expansion in terms of Hy.
Calculation of the energy spectrum at different average concentration of
the protons are performed using the Green’s function method.

3. Perturbation theory (expansion in terms of H,;)

The proton Green’s function

Giajp(T —1') = —(T1&ia(1)[5(1")), (4)
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is constructed of the proton creation and annihilation operators given in
the Heisenberg representation (0 < 7,7 < 8 = ) Imaginary part of
the Fourier-component of the function (4) characterizes the density of
the proton states

2 .
Jia (E) = —;I’ITL Gimia (an)|iwn—>E+i6- (5)
Let’s utilize thermodynamical perturbation theory [6], treating the

part H; of the Hamiltonian as a perturbation. In the interaction repre-
sentation

Gia,jp(T = 1') = —(Trcia(T)c}3 (T (B))5, (6)
¢

o(B) = Trexp —/Ht(T)dT , (7
0

where the average values are calculated with the help of the statistical
distribution with Hamiltonian Hy. Expansion in terms of H; leads to
series

Gia,js(1T = 7') = —(Trcia(T)ef5 ()0 +

8
+Ztk%l6 T Cza /dﬁc,w T1 Cld(’rl))O
0

75
B8
- s Z Z tk%lﬁtmu nu T Cza /dTlc 7—1 Cls (Tl)
kim ygvp A
-/dmcgu(m)cw(m»m... (8)

where we introduced the transfer matrix
tia,ib = Qo; tibi+1a = QR- 9)

Since the Hamiltonian Hj includes the terms which describe inter-
action between protons, application of the Wick’s theorem in its usual
form for calculation of the average values of products of Fermi operators
is impossible. To avoid additional expansion in terms of interaction pa-
rameters, we use the method similar to the one used in [7] for the Hub-
bard type systems, introducing the irreducible many-particle Green’s




5 IIpenpunt

functions in the following way. Let us define the single particle proton
Green’s function as

~(Trcia(T)ej5(1"))0 = gin jo (T = ') = 8ij0apga(rT — 7)) (10)

or in a shorthand notation:

—(Teres o = g3

thus
2
(Teres e ea)§ — 912995 + 97593, — 1—‘52)734
<Tclc2 c3 c4c3 Feo)s =
2 3
91296392 g(l)sggzggs + F4(12)7569?3 +...+ I‘52),34,56 (11)
where

) .
T2 a5 = —(Traia(D)al (P)ai (m)as(1)y

(3)
ia,j0B,ky,ld;my np

~(Traia ()t ()af, (M)ais()ah, () an (). (12)

are the irreducible parts.
The series for the function G obtained by this procedure can be
formally presented as the infinite sum

G=Y+3tS + StXtS + ... (13)
This corresponds to the Larkin equation
G=Y+7%G, (14)

where ¥ is the irreduciable self-energy part.
Contributions to ¥ can be presented as a cumulant expansion:

Eia,jﬁ(T - 7") = gm J,B T = 7' /d7'1 Z tkml&

kv,
2
Fga),jﬁ,k’yld(TT 3TITL) e (15)

where
t=t+1tg"t +tgtg%t + ... (16)
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Let us restrict ourselves to the simplest approximation for ¥, taking
Y = g% This corresponds to the approximation, where the scattering
processes are not taken into account when calculating energy spectrum as
it can be seen from the farther consideration. This approach is analogous
to the well-known Hubbard-I approximation for the strongly correlated
electron systems [8].

Equation G = ¢° + ¢°tG after Fourier transformation takes the form

Gap(k) = go(sozﬁ + Z gota’y(k)G’Yﬁ(k): (17)
Y
where .
k) = tia jpe ) (18)
i

is the Fourier component of the transfer matrix. Summation over the
nearest proton positions leads to the following result

tab(k) — Qoefikzi + QReikA
tha(k) = Qoeika + QRe_ikA
taa(k) = tw(k) =0 (19)

(¢ is the distance (along the chain) between the equilibrium positions of
the proton on the bond; A - the distance that corresponds of the Qg
transfer).

One can obtain the expression for the full Green’s function solving
the equation (17)

_ g
Gl = TR .

where
tas(k)]* = Q2 + QF + 2Q0Q5 cos ka, (21)

a = 6 + A is the period of the chain structure.

The band energy spectrum of protons can be obtained from the ex-
pression (20), if the zero-order function ¢° is known, by substituting
tw, — E.

4. The zero-order Green’s function

The Green’s function g° is the one-site function and, as a consequence
of the Hamiltonian additivity, is determined by its part related to the
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cluster which includes the given site (position) and two nearest neigh-
bouring positions (such is the cluster [(i —1,b), (ia), (ib)] for the function
g9 ). The energy of proton on the central site of the cluster depends on
the occupation of the extreme positions. There are four possible config-
urations:

a = 1 Ni—1,6 = 0, Nip = 0
a = 2 ni—1p =0, ngp=1
a = 3: Ni—1,6 = ]., Nip = 0
a = 4 Ni—1,6 = ]., Nip = 1. (22)

Corresponding transition energies are:
e = e—w-V; e=c—w'+U
g3 = —e+w-V; eg=—--<+w+U. (23)

After performing the standard calculations (for example using the
method of equations of motion) we obtain

C
0 _ o
ga_;E—5a+N (24)
where
Ci = ((1—ni—1p)(I—nw)); Co={(1—ni—1,)ni)
C; = <’I’Li_17b(1 — n,-b)>; Cy = (ni—l,bnib) (25)

are statistical weights of the corresponding transitions.

There are two ways to calculate the correlation functions C,. Exact
results can be obtained using the transfer-matrix method, but first we
shall see what can be obtained in the simple approximation which ne-
glects the correlations between the next nearest neighbours (the mean
field approximation):

(ni-1omin) = (ni-1){nip) = n/4 (26)
Here we introduced a notation for the mean number of protons on the

band
n=3 (nia); (nia) = (niv) = n/2. (27)

(e

In this case

Ci = 1-n+n?/4; Cy=n/2-n?/4
C; = n/2-n?/4; Cy =n?/4, (28)
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and C, are temperature independent constants at a given concentration
of protons.

Transfer-matrix method for the infinite chain leads to the following
expressions (see Appendix):

2-n)?2 n2-n) X n(2 —mn) A2
1 1 + 1 A 2 3 1 WA
n? n2-n) A
Cy, = —+——FF-—=, 29
! 4 4 AL (29)
where
a+b a—b\>
= +
)\172 2 < D) > + cd (30)
4 = ei(2e-3wtw —3U+V)+8u + 3 (U+V+)
b — e%(Zs+w73w'+U73V)fﬁp + e%(U+V+J)

c = 2ch[§(z—:—w’+U—u)]
d = w{%m—a—v—m] (31)

and J = w +w' — 2e.

Parameters C, are temperature dependent in this case and are also
functions of chemical potential u. At a zero transfer p and n are con-
nected by the following equation

n {_}M—@@rwq*

(nia) = 5 = n (52)

[\]

Parameters C, as a functions of proton concentration can be obtained
by excluding the chemical potential from (32). At non-zero temperatures
this can be done numerically and at 7' = 0 one can obtain the analytical
expressions

B 2—3n+%n2'

o) = n(l—n) n

; Ca=C3=—""; Ci=——— (33)

2—n 2—n

when 0 <n <1 and

2—2n+ in? :
=TT o — = TR0, = T TR (3
n n n
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Figure 3. Dependences of correlation functions on proton concentration:
a) - in the mean field approximation, b) - calculated via transfer matrix
method.

when 1 <n <2.

The plots of the functions (33), (34) are given in Fig. 3. There are also
shown dependences of C,(n) obtained in the mean field approximation
(28). The difference between exact and approximated dependences is the
most essential at intermediate occupation of proton positions (when the
number of protons per bond is close to unity).

5. Band proton spectrum

Four poles of the one site Green’s function (24) according to (20) lead to
the eight poles of the full Green’s function and thus to the formation of
eight energy bands. It’s hard to obtain this spectrum analytically, but in
the case of Q, Qg € w,w’, U,V we can utilize the independent subband
approximation:

1 90 90 )

Gaa k = 3 4 + 4 ~

(®) 2(1—gg|tab<k)| T g0tar ()]
1 C, C,
~ = + , 35
2;<E—E$(l€) E—Ea(k)> (35)
where
EX (k) = eo — & Co[Q2 + Q% + 2Q0Q5 cos ka]'/2. (36)

Bands E+ (k) are grouped into four pairs; the distance between the
bands in the pair AE, = 2C,|Qr — Q| is small compared with the
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distance between the pairs (Fig. 4) that is of the same order as the
transition energies e,in cluster (e3 —e1 = e4—ey = J;e0—€1 =4 —¢€3 =
U+4Vies—ea=U+V +J,e0—e3 =U+V —J). The width of the
subband in the pair is 2C,Qy when Qg > Qg or 2C, Qg when Qg > Qp.

The position of the chemical potential in relation to the obtained
band scheme can be found using equation (27). Calculation of the average
value (ni,), with the function G, (k) and use the spectral theorem, lead
to the result

4
1 a a
= — 37
" Z N Z LﬁEi(k) +1 + ePEL (k) 11 (37)

a=1 k

This relation is the equation for u.
The solution of (37) can be found analytically at 7" = 0. In this case

1 1
N ; eﬁ(gaf.uia‘tab(k)l) + 1 =

1 1 1 (Ea — 1)? 9 9 1
e e T _0%-Q
g &g T parecos [( 2 B0 120008 (38)

There exists a possibility to determine the behaviour of the chemical
potential as a function of n in each band. Obtained results are presented
in Fig. 4 (here J > U+V > 0. All the farther numerical calculations were
performed at U = 3280cm ™!,V = 3130cm ™!, w — e = 10000cm ™", J =
w+w'—2e = 9400cm ! [1]). One can see that the chemical potential as a
function of n jumps three times: at n = 1— % between the Ef subbands,

atn = 1 - between E; and E; subbsnds and at n = 1+% - between E

subbands. At these critical concentrations the lower subbands EZ(k)) are
completely occupied and higher ones are empty at 7' = 0. This situation
is similar to the one in the dielectric or semi-conductor. Thus proton
conductivity is in this case of a semi-conductor type with activation
energies F, = 2(1—1/v/5)(Qr — Qo) for n* = 1+ % and B, =U+V +
J—(Qr+Q) for n* = 1. The charge carriers in the case n* = 1 are proton
”couples” and "holes” — D- and L-defects. At intermediate values of n the
band that holds the chemical potential is partially occupied; conductivity
in this case is similar to the metallic one (we have to admit here that
interaction between protons and phonons can lead to the formation of
proton polarons; their contribution to conductivity has the activation
character [3] even in quasi-metallic state).

The next important feature of the obtained dependences of p on n is
the existence of the regions where du/dn < 0. This feature takes place
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Figure 4. Energy spectrum and chemical potential of the system as a
function of n: a) the whole spectrum; b) two lowest subbands; c) two
highest subbands. Qg = 100 cm ™!, Qg = 2500 cm ™!, T=0 K

at the certain proton concentrations, and when the transfer parameters
considerably differ one from another (¢/Qr < 1 or Qr/Q¢ < 1) that
corresponds to the small widths of the bands. This fact points out to the
instability of the state with the uniform distribution of protons. It can
result in the some kind of separation in the system.

At non-zero temperatures the p(n) dependence becomes smooth
(Fig. 5). With the increasing of T' the region with du/dn < 0 quickly dis-
appears and uniform distribution of protons becomes thermodynamically
stable. Fig. 6 also shows the function u(n) in the case when correlation
functions C, are calculated approximately (28). In this case the band
spectrum also includes four pairs of subbands. The character of their
dependence on n is different, especially in the vicinity of value n = 1. In
this case the chemical potential makes more jumps, but not all of them,
as it was seen from the former analysis, are left when one goes to the
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Figure 5. Energy spectrum and chemical potential of the system as a
function of n for non zero temperature. Correlation functions are ob-
tained via the transfer matrix method. Qy = 100 cm™', Qz = 2500
em~t, T=100 K

more accurate solution.

We have to emphasize here, that application of the mean field approx-
imation to the initial Hamiltonian leads to completely different results
for the proton energy spectrum. There are only two subbands in this
case

E= (k) € — £ [QF + Q% + 2Q0Q5 cos ka)'/?,
£ = 6—w’—V+g(J+U+V). (39)

Their positions are shifted depending on n due to the influence of the
mean field. Splitting in the spectra can only appear in the case of proton
ordering [4]. Mechanism of formation of the activation energy of con-
ductivity differs from the one, that takes place in the case of correlation
splitting of the bands.

6. Additional asymmetry field

As it is shown by the recent experimental investigations, the transition
to the superionic phase in many superionic conductors is accompanied
with the so-called percursor effect, when conductivity starts to increase
considerably at the temperatures lower than the temperature of supe-
rionic phase transition [9-11]. It means that in this temperature range
(which can be about 30-40 K) a large number of protons are distributed
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Figure 6. Energy spectrum and chemical potential of the system as a
function of n. Correlation functions are obtained in the mean field ap-
proximation. Qg = 100 cm™!, Qp = 250 cm™!, T=100 K

randomly with some probability among the possible positions, like in
superionic phase.

One of those crystals is CsDSOy [12,13]. When this crystal is in or-
dered state, hydrogen bonds form the chain structures S04-D-S04-D-S04-
... Inside the chain deuterons occupy only a (or b) positions, which is the
consequence of existing of the internal ordering field. The mentioned
precursor effect taking place before the superionic phase transitions is
connected with the partial rupture of the bonds (A-positions) and occu-
pation of the new B-positions, disposed in transverse directions between
SOy4 groups, by the deuterons. Here we will consider this effect on the
basis of one-dimensional model described above.

Let’s start with the initial Hamiltonian (1) with the additional term

Hy =" hinig = na) (40)

which describes the influence of the ordering asymmetry field. Ap-
plying the scheme described in the previous sections we can obtain the
energy spectrum in this case. First we have to calculate the zero approx-
imation Green’s function for both a and b sublattices:

90224: Cap
ST E—captp

1
a=1,2,3,4 ; p[f=a,b (41)
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where corresponding energies are:

Elq = e—w —V+h e,=c—w+U+h

€30 = —€+w—-—V4+h e4a=——€+w+U+h (42)
for a sublattice and

e1p = e—w =V —h ep=c—w+U-h

e3p = —€+w—-V—-hy ep=—-<c+w+U-—-h (43)

for b sublattice. As the nearest neighbours for site a are sites b, the
correlation functions for g° are calculated on b sublattice:

Cia = (1=ni—1p)(1—np)); Cra=(1—ni—1,)nw)

Csa = (nicip(l—np)); Cuq = (Niz1 pNip) (44)
Respectively the correlation functions for g are calculated on a sublat-
tice:

Cip = (1 —nw)I=ni1)); Cop = ((1—ni)nit1p)

Csp = (Nig(1—nit1,0)); Cap = (Ni,aNit1,a) (45)

Using the transfer-matrix method we obtain an expressions which are
equivalent to (29):

. . A
- (1— 2 _(n2 _ 22,6
Cis ( ng) (”ﬁ nﬁ)ALB
Ao,
Cop = Cap=ns(l=mg) +(n —ms) T2 (46)
A2 3
C = n%—(n%- —
4,8 3 ( 3 )/\1,,3
where
ag+b ag —bz\ >
Mg=—L 4 <6 5>+%%
2 2
b —b5\?
Aag = w — \/(ag 5 B) + cpdp (47)
and

a, = eiW=3w=3U+VH2)+0u | K (T+U+V)+0h
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b, = ef(w—Bw+U=3V42e)=fu |  G(J+U+V)=0h
Ce = 2ch{g(s—w+V—h+u)]
d, = 2ch{g( '—5—U—h+,u)]
ay = er1(W-3w=BUAVH2)4Bu | o4 (JHUHV)—Bh (48)
by = o4 (w—3w' +U—3V+2e)—Bp + ed (JHUHV)+ph
e = 2ch {g(w'—s—U—f—h—f—u)]
dy = 20h{§(&:—w+V—+—h+u)]

The full Green’s function in the independent subband approximation
is given by the following expression

1 Sa~ Sa*
Gps(k) = 5; (E_E;(k) * E—E;“(k)> )

where the poles of Green’s functions are

EE(k) = eq £ /02 + CLChIt P — 1 (50)

Corresponding statistical weights are not just correlation functions as it
was in the case of the absence of the asymmetry field. They are given by
the following expressions

e h ol (51)
/% £ CaChtunl?

Using the method described in section 5 we can obtain the equation

4
1 P P
n= — E { — +—" ]
N & eﬁEa (k) +1 e/BEa (k) +1

a=1
P =84 480 . P =8%T 450 (52)

To obtain the zero-order dependences of S2'* on p we shall consider
the low temperature region to get rid of the terms with considerably
large energies in their exponents. Thus considering the expressions for
correlation functions (47) in the vicinity of the points where chemical
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Figure 7. Dependences of correlation functions on proton concentration
for a and b sublattice: a) in the absence of the asymmetry field h; b) in
the case of h =40 em ™! .

potential jumps, we obtain the following expressions for parameters in

(47):
)\2_75 n5—1+n5(z+p5)

= . 53
Mg ng+(ng —1)(z +ng) (53)
Here
1 1—2—pg
n = -+
7 2 2/(1—z-pg)?+4z
po = e—26h Loy = e20h 2= eﬁ(fw'+sfvfhfp) (54)
for0<n<1and
1 z+pg—1
n = -+
7 2 2\/(z4+ps—12+4z
pa=€Ph o py=e7h . 5 = PlumetUthop) (55)
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Figure 8. Pﬁi as a function of n at h = 40 em™', Q¢ = 100 em™1,
Qr = 250 cm™'. a) the case of h = 0; b) P;" and P,", h = 40 cm™1; c)
P and Py, h=40 cm™ 1;

forl1<n<2.

These expressions are valid when e 9V « 1, e PV « 1, e Flw—2) «
1, e Pe=v") « 1. Corresponding dependences of Coponn (n=mng+np)
can be seen in Fig. 7.

Thus one can determine the dependences of parameters Poit on n
(Fig. 8) which determine the behaviour of chemical potential with the
change of n.

In Fig. 9 the results obtained by solving the equation (52) in low-
temperature limit are presented.

Comparing this results with the ones for the case of h = 0 one can see
that at the increase of h the point of the chemical potential jump shifts
towards the value n = 1. At intermediate values of h (h < ~ 20 cm !
for Q9 = 100 em™!, Qr = 250 em™!) the concentration range where
Ou/dn < 0 increases with the increasing of h due to the change in the
bands’ shape (Fig. 9). But farther increasing of h leads to the situation
that the statistical weight of the upper of the lowest subbands (Fig. 10
a) becomes much smaller then the weight of the lower one. In this case
the chemical potential jumps at n = 1 from the lowest subband directly
to the highest one (Fig. 10 b) and the region with du/0n < 0 first starts
to decrease (~ 20 em™ < h < ~ 40 ¢m™!) and then disappears (h >
~ 40 em ™! for the taken values of £y and Q). Thus the possibility of
separation into the regions with different values of n exists only at small
values of h (in the range from zero to some critical value).

We considered h as additional parameter of the model. More correct
consideration should take into account the fact that h is temperature
dependent quantity which can be determined in a self-consistent way.
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Figure 9. Energy spectrum and chemical potential of the system as a
function of n at h = 20 em™!, Qy = 100 em~!, Qr = 250 cm~!. a)
shows the whole spectrum, b) - two lowest subbands, c) - two highest
subbands.

If we consider h as proportional to the order parameter (describing the
ordering of protons in the chains) (Fig. 11) we can obtain the explicit
temperature dependence of parameter p = e~2%" (Fig. 12). The region
with Ou/0n < 0 exists when 0.98 < p < 1 (for Qo = 100 em™!, Qg =
2500 em™!). Parameter p starts to exceed the critical value p* = 0.98
(Fig. 11) at a certain temperature which is lower then the temperature of
superionic phase transition 7. Thus there is a possibility of coexistence
of two phases with different proton concentrations.

7. Conclusions

The method of cluster expansions in the theory of Greens’ functions
was used for investigation of the proton spectrum and the behaviour
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Figure 10. Energy spectrum and chemical potential of the system as a
function of n at h = 40 em™*, Qg = 100 em™ !, Qp = 250 cm 1. a)
shows two lowest subbands, b) - two highest subbands.

of chemical potential of one-dimensional proton conductor. The most
important results are:

1) Short range proton correlations lead to the splitting in proton
energy spectrum which has a band character. The edges of the bands
depend on proton concentration;

2) The occupancy of proton subbands can have a quasi-metallic (1) or
dielectric (semi-conductor) (2) character depending on the proton con-
centration. This determines the proton conductivity activation energy
(quasipolaronic conductivity in the case (1) or defect one in the case
(2));

3) Possibility of the decreasing dependence u(n) (Ou/0n < 0) when
n < 1, points out to the instability of the state with the uniform proton
distribution along the chain. This effect appears when the internal or-
dering field decreases, which takes place at the increase of temperature.
This results in the fact that protons (deuterons) partially occupy the
positions outside the chain;

4) In the case of CsDSQy crystal the above mentioned instability can
be one of the reasons for transition of some number of deuterons into
B positions (placed between the chains formed by SO4 groups and A
hydrogen positions), which causes the so-called percursor effect observed
in the wide temperature range below 7T - the superionic phase transition
point.
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Figure 11. Temperature dependence of the order parameter of the system
(r=T/T.).

Figure 12. Temperature dependence of p (9 = 100 ecm™!, Qg = 2500
em™t). a) h = oo or 7 = 0; b) finite values of h, du/On > 0; c) small
values of h, the region of n with du/dn < 0 exists at p > p* = 0.98.
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