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1 ðÒÅ�ÒÉÎÔ1. IntrodutionDue to the widening of experimental investigations of the ion (proton)ondutivity phenomena in rystalline and moleular systems and thedisovery of new materials (superioni rystals with hydrogen bonds,systems with rystallization water, quasi-one-dimensional proton on-dutors), the problem of searh and investigations of the physial meh-anism of the proton transport, analysis of features of thermodynamisand energy spetrum of suh objets beomes atual. Along with thetraditional onepts of formation and motion of ioni and orientationaldefets there exist some approahes expliitly taking into aount thedynamis of proton jumps (whih an have two-stage nature (Grotthussmehanism)), as well as the short-range and long-range proton-protoninterations. These interations an lead to the proton ordering and or-responding phase transitions. At the same time the strong short-rangeorrelations an signi�antly rebuild the proton energy spetrum whenthe values of parameters of suh interations exeed the proton trans-fer energies. This fat has to be taken into aount when investigatingthe mehanism of formation of proton transport ativation energy in theabove-mentioned systems.The aim of the present work is to analyze the inuene of short-rangeinterations on the proton energy spetrum in the one-dimensional ase,when one onsiders moleular hain with the ioni groups onsequtivelyonneted by the hydrogen bonds. We take into aount the possibilityof the dynamial proton jumps whih an be diretly inluded in theHamiltonian of the system. We use the basi approah where the strongshort-range interations are taken into aount exatly in the zero ap-proximation. The alulations of proton spetrum at di�erent averageproton onentrations are performed and statistis of the proton distri-bution is also investigated. The inuene of proton orrelations on theativation energy of proton transport is analyzed.2. The modelInvestigation of the energy spetrum and thermodynamis of the pro-ton subsystem of the moleular hydrogen-bonded hain is based on theorientational-tunneling model. This model was introdued in [1℄ (see also[2℄) to desribe moleular omplexes with hydrogen bonds. Later it wasused for desription of the proton transport and alulation of ondu-tivity oeÆient in the Me3H(XO4)3 (Me=Cs,Rb,NH4 ; X=S,Se) groupof superioni rystals [3,4℄. It inludes two types of transfer aording
ICMP{00{07E 2to Grotthuss mehanism: tunneling on the bond 
0 and reorientationalhopping 
R. Short-range interations aused by the di�erenes betweenthe energies of the proton on�gurations near ioni groups and addi-tional interations, whih determine the energies of formation of D- anL-defets, are taken into aount.
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Figure 1. Proton ondutor model. Large irles orrespond to the iongroups (A), small ones to the possible positions of protons.We onsider one-dimensional proton ondutor whih onsists of ionigroups onneted by hydrogen bonds (Fig. 1). Two equilibrium positions(i; a) and (i; b) on eah bond (i - is a onsequtive number of the bond)are taken into aount. The Hamiltonian of suh system in the seondquantization representation has the following form:H = H +Ht +Hd � �N; (1)where^H = Xi ["(1� nib)ni+1;a + "nib(1� ni+1;a) + wnibni+1;a++ w0(1� nib)(1� ni+1;a)℄^Ht = Xi �
0(+iaib + +ibia) + 
R(+ibi+1;a + +i+1;aib)�^Hd = Xi [Unianib + V (1� nia)(1� nib)℄ (2)^N = Xi (nia + nib)Here ni�(� = a; b) is the oupation number in � position; U andV are energies of formation of D- (two protons on the bond) and L-



3 ðÒÅ�ÒÉÎÔ

Figure 2. Energies of proton on�gurations.(a broken bond) defets orrespondingly; w, ", w0 are the energies ofon�gurations with two, one or no protons near the ioni group (Fig. 2).The model (1) is the one of the fermioni lattie models with transfer.Its spetrum has a band harater and its struture is determined by theratio of the e�etive transfer parameter 
ef to the energy of short rangeinteration (Uef ). When 
ef � Uef interation between protons anbe taken into aount in the framework of mean �eld approximation(MFA), and it only shifts the proton energy band (suh approah wasutilized in [4℄ when obtaining dispersion laws E(~k) in proton bands,whih desribe the motion of protons in quasi-two-dimensional layersof hydrogen bonds in (NH4)3H(SeO4)2). Otherwise (when 
ef � Uef )orrelation leads to the additional splitting in spetra. These results arewell-known for Hubbard model and the similar ones [5℄ . Correspondingtheoretial investigation annot be performed in the frames of MFA, ithas to be based on the allowane for the short-range interations in thezero approximation. The luster approximation and its generalizationare used for the purpose in the present work.We utilize the perturbation theory to obtain proton energy spetrum,onsidering the operator ^H0 = ^H + ^Hd � � ^N (3)as the zero-order Hamiltonian and making the expansion in terms of ^Ht.Calulation of the energy spetrum at di�erent average onentration ofthe protons are performed using the Green's funtion method.3. Perturbation theory (expansion in terms of Ht)The proton Green's funtionGi�;j�(� � � 0) = �hT�~i�(�)~+j�(� 0)i; (4)
ICMP{00{07E 4is onstruted of the proton reation and annihilation operators given inthe Heisenberg representation (0 � �; � 0 � � = 1kT ). Imaginary part ofthe Fourier-omponent of the funtion (4) haraterizes the density ofthe proton statesgi�(E) = � 2� ImGi�;i�(i!n)ji!n!E+i": (5)Let's utilize thermodynamial perturbation theory [6℄, treating thepart Ht of the Hamiltonian as a perturbation. In the interation repre-sentation Gi�;j�(� � � 0) = �hT�i�(�)+j�(� 0)�(�)i0; (6)�(�) = T� exp8<:� �Z0 Ht(�)d�9=; ; (7)where the average values are alulated with the help of the statistialdistribution with Hamiltonian H0. Expansion in terms of Ht leads toseries Gi�;j�(� � � 0) = �hT�i�(�)+j�(� 0)i0 ++XklÆ tk;lÆhT� i�(�)+j�(� 0) �Z0 d�1+k(�1)lÆ(�1)i0 ��12Xklmn XÆ�� tk;lÆtm�;n�hT�i�(�)+j�(� 0) �Z0 d�1+�(�1)lÆ(�1) �� �Z0 d�2+m�(�2)n�(�2)i0 + : : : (8)where we introdued the transfer matrixtia;ib = 
0; tib;i+1a = 
R: (9)Sine the Hamiltonian H0 inludes the terms whih desribe inter-ation between protons, appliation of the Wik's theorem in its usualform for alulation of the average values of produts of Fermi operatorsis impossible. To avoid additional expansion in terms of interation pa-rameters, we use the method similar to the one used in [7℄ for the Hub-bard type systems, introduing the irreduible many-partile Green's



5 ðÒÅ�ÒÉÎÔfuntions in the following way. Let us de�ne the single partile protonGreen's funtion as�hT�i�(�)+j�(� 0)i0 = g0i�;j�(� � � 0) � ÆijÆ��g0�(� � � 0) (10)or in a shorthand notation:�hT1+2 i0 = g012;thus hT1+2 +3 4i0 = �g012g043 + g013g042 � �(2)12;34�hT1+2 +3 4+5 6i0 =�g012g063g045 � g013g062g045 + �(2)42;56g013 + :::+ �(3)12;34;56 (11)where �(2)i�;j�;k;lÆ = �hT�ai�(�)a+j�(� 0)a+k(�1)alÆ(�1)iir0�(3)i�;j�;k;lÆ;m�;n� =�hT�ai�(�)a+j�(� 0)a+k(�1)alÆ(�1)a+m�(�2)an�(�2)iir0 : (12)are the irreduible parts.The series for the funtion G obtained by this proedure an beformally presented as the in�nite sumG = �+�t�+�t�t� + : : : (13)This orresponds to the Larkin equationG = �+ �tG; (14)where � is the irreduiable self-energy part.Contributions to � an be presented as a umulant expansion:�i�;j�(� � � 0) = g0i�;j�(� � � 0)� �Z0 d�1 Xk;lÆ ~tk;lÆ �� �(2)i�;j�;klÆ(�� 0; �1�1) + : : : ; (15)where ~t = t+ tg0t+ tg0tg0t+ : : : (16)
ICMP{00{07E 6Let us restrit ourselves to the simplest approximation for �, taking� = g0. This orresponds to the approximation, where the satteringproesses are not taken into aount when alulating energy spetrum asit an be seen from the farther onsideration. This approah is analogousto the well-known Hubbard-I approximation for the strongly orrelatedeletron systems [8℄.Equation G = g0+ g0tG after Fourier transformation takes the formG��(k) = g0Æ�� +X g0t�(k)G�(k); (17)where t�(k) =Xi�j ti�;jeik(Ri�Rj) (18)is the Fourier omponent of the transfer matrix. Summation over thenearest proton positions leads to the following resulttab(k) = 
0e�ikÆ +
Reik�tba(k) = 
0eikÆ +
Re�ik�taa(k) = tbb(k) = 0 (19)(Æ is the distane (along the hain) between the equilibrium positions ofthe proton on the bond; � - the distane that orresponds of the 
Rtransfer).One an obtain the expression for the full Green's funtion solvingthe equation (17) Gaa(k) = g0a1� (g0a)2jtab(k)j2 ; (20)where jtab(k)j2 = 
20 +
2R + 2
0
R os ka; (21)a = Æ +� is the period of the hain struture.The band energy spetrum of protons an be obtained from the ex-pression (20), if the zero-order funtion g0 is known, by substitutingi!n ! E.4. The zero-order Green's funtionThe Green's funtion g0 is the one-site funtion and, as a onsequeneof the Hamiltonian additivity, is determined by its part related to the



7 ðÒÅ�ÒÉÎÔluster whih inludes the given site (position) and two nearest neigh-bouring positions (suh is the luster [(i�1; b); (ia); (ib)℄ for the funtiong0ia). The energy of proton on the entral site of the luster depends onthe oupation of the extreme positions. There are four possible on�g-urations: � = 1 : ni�1;b = 0; nib = 0� = 2 : ni�1;b = 0; nib = 1� = 3 : ni�1;b = 1; nib = 0� = 4 : ni�1;b = 1; nib = 1: (22)Corresponding transition energies are:"1 = "� w0 � V ; "2 = "� w0 + U"3 = �"+ w � V ; "4 = �"+ w + U: (23)After performing the standard alulations (for example using themethod of equations of motion) we obtaing0a = 4X�=1 C�E � "� + � (24)where C1 = h(1� ni�1;b)(1� nib)i; C2 = h(1� ni�1;b)nibiC3 = hni�1;b(1� nib)i; C4 = hni�1;bnibi (25)are statistial weights of the orresponding transitions.There are two ways to alulate the orrelation funtions C�. Exatresults an be obtained using the transfer-matrix method, but �rst weshall see what an be obtained in the simple approximation whih ne-glets the orrelations between the next nearest neighbours (the mean�eld approximation):hni�1;bnibi = hni�1;bihnibi = n2=4 (26)Here we introdued a notation for the mean number of protons on theband n =X� hni�i; hniai = hnibi = n=2: (27)In this ase C1 = 1� n+ n2=4; C2 = n=2� n2=4C3 = n=2� n2=4; C4 = n2=4; (28)
ICMP{00{07E 8and C� are temperature independent onstants at a given onentrationof protons.Transfer-matrix method for the in�nite hain leads to the followingexpressions (see Appendix):C1 = (2� n)24 + n(2� n)4 � �2�1 ; C2 = C3 = n(2� n)4 �1� �2�1� ;C4 = n24 + n(2� n)4 � �2�1 ; (29)where �1;2 = a+ b2 �s�a� b2 �2 + d (30)a = e �4 (2"�3w+w0�3U+V )+�� + e �4 (U+V+J)b = e �4 (2"+w�3w0+U�3V )��� + e �4 (U+V+J) = 2h��2 ("� w0 + U � �)�d = 2h��2 (w � "� V � �)� (31)and J = w + w0 � 2".Parameters C� are temperature dependent in this ase and are alsofuntions of hemial potential �. At a zero transfer � and n are on-neted by the following equationhniai = n2 = �1� (�1 � a)(�2 � a)d ��1 (32)ParametersC� as a funtions of proton onentration an be obtainedby exluding the hemial potential from (32). At non-zero temperaturesthis an be done numerially and at T = 0 one an obtain the analytialexpressionsC1 = 2� 3n+ 32n22� n ; C2 = C3 = n(1� n)2� n ; C4 = n22(2� n) (33)when 0 � n � 1 andC1 = 2� 2n+ 12n2n ;C2 = C3 = 3n� n2 � 2n ;C4 = 2� 3n+ 32n2n (34)
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Figure 3. Dependenes of orrelation funtions on proton onentration:a) - in the mean �eld approximation, b) - alulated via transfer matrixmethod.when 1 � n � 2.The plots of the funtions (33), (34) are given in Fig. 3. There are alsoshown dependenes of C�(n) obtained in the mean �eld approximation(28). The di�erene between exat and approximated dependenes is themost essential at intermediate oupation of proton positions (when thenumber of protons per bond is lose to unity).5. Band proton spetrumFour poles of the one site Green's funtion (24) aording to (20) lead tothe eight poles of the full Green's funtion and thus to the formation ofeight energy bands. It's hard to obtain this spetrum analytially, but inthe ase of 
0;
R � w;w0; U; V we an utilize the independent subbandapproximation:Gaa(k) = 12 � g0a1� g0ajtab(k)j + g0a1 + g0ajtab(k)j� �� 12 4X�=1� C�E �E+� (k) + C�E �E�� (k)� ; (35)where E�� (k) = "� � �� C�[
20 +
2R + 2
0
R os ka℄1=2: (36)Bands E�� (k) are grouped into four pairs; the distane between thebands in the pair �E� = 2C�j
R � 
0j is small ompared with the
ICMP{00{07E 10distane between the pairs (Fig. 4) that is of the same order as thetransition energies "�in luster ("3�"1 = "4�"2 = J ; "2�"1 = "4�"3 =U + V ; "4 � "4 = U + V + J ; "2 � "3 = U + V � J). The width of thesubband in the pair is 2C�
0 when 
R > 
0 or 2C�
R when 
0 > 
R.The position of the hemial potential in relation to the obtainedband sheme an be found using equation (27). Calulation of the averagevalue hniai, with the funtion Gaa(k) and use the spetral theorem, leadto the result n = 4X�=1 1N Xk � �e�E+� (k) + 1 + �e�E�� (k) + 1� (37)This relation is the equation for �.The solution of (37) an be found analytially at T = 0. In this ase1N Xk 1e�("�����jtab(k)j) + 1 =12 � 12 � 1� aros�� ("� � �)22� � 
2R � 
20� 12
0
R � (38)There exists a possibility to determine the behaviour of the hemialpotential as a funtion of n in eah band. Obtained results are presentedin Fig. 4 (here J > U+V > 0. All the farther numerial alulations wereperformed at U = 3280m�1; V = 3130m�1; w � " = 10000m�1; J =w+w0�2" = 9400m�1 [1℄). One an see that the hemial potential as afuntion of n jumps three times: at n = 1� 1p5 between the E�4 subbands,at n = 1 - between E+4 and E�1 subbsnds and at n = 1+ 1p5 - between E�1subbands. At these ritial onentrations the lower subbands E�� (k)) areompletely oupied and higher ones are empty at T = 0. This situationis similar to the one in the dieletri or semi-ondutor. Thus protonondutivity is in this ase of a semi-ondutor type with ativationenergies Ea = 2(1�1=p5)(
R�
0) for n� = 1� 1p5 and Ea = U +V +J�(
R+
0) for n� = 1. The harge arriers in the ase n� = 1 are proton"ouples" and "holes" { D- and L-defets. At intermediate values of n theband that holds the hemial potential is partially oupied; ondutivityin this ase is similar to the metalli one (we have to admit here thatinteration between protons and phonons an lead to the formation ofproton polarons; their ontribution to ondutivity has the ativationharater [3℄ even in quasi-metalli state).The next important feature of the obtained dependenes of � on n isthe existene of the regions where d�=dn < 0. This feature takes plae
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0 = 100 m�1, 
R = 2500 m�1, T=0 Kat the ertain proton onentrations, and when the transfer parametersonsiderably di�er one from another (
0=
R � 1 or 
R=
0 � 1) thatorresponds to the small widths of the bands. This fat points out to theinstability of the state with the uniform distribution of protons. It anresult in the some kind of separation in the system.At non-zero temperatures the �(n) dependene beomes smooth(Fig. 5). With the inreasing of T the region with d�=dn < 0 quikly dis-appears and uniform distribution of protons beomes thermodynamiallystable. Fig. 6 also shows the funtion �(n) in the ase when orrelationfuntions C� are alulated approximately (28). In this ase the bandspetrum also inludes four pairs of subbands. The harater of theirdependene on n is di�erent, espeially in the viinity of value n = 1. Inthis ase the hemial potential makes more jumps, but not all of them,as it was seen from the former analysis, are left when one goes to the
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0 = 100 m�1, 
R = 2500m�1, T=100 Kmore aurate solution.We have to emphasize here, that appliation of the mean �eld approx-imation to the initial Hamiltonian leads to ompletely di�erent resultsfor the proton energy spetrum. There are only two subbands in thisase E�(~k) = ~"� �� [
20 +
2R + 2
0
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15 ðÒÅ�ÒÉÎÔba = e �4 (w�3w0+U�3V+2")��� + e �4 (J+U+V )��ha = 2h ��2 ("� w + V � h+ �)�da = 2h ��2 (w0 � "� U � h+ �)�ab = e �4 (w0�3w�3U+V+2")+�� + e �4 (J+U+V )��h (48)bb = e �4 (w�3w0+U�3V+2")��� + e �4 (J+U+V )+�hb = 2h ��2 (w0 � "� U + h+ �)�db = 2h ��2 ("� w + V + h+ �)�The full Green's funtion in the independent subband approximationis given by the following expressionG��(k) = 12 4X�=1� S�;��E �E�� (k) + S�;+�E �E+� (k)� (49)where the poles of Green's funtions areE�� (k) = "� �qh2 + Ca�Cb�jtabj2 � � (50)Corresponding statistial weights are not just orrelation funtions as itwas in the ase of the absene of the asymmetry �eld. They are given bythe following expressionsS�;�� =  1� hph2 + Ca�Cb�jtabj2!C�� (51)Using the method desribed in setion 5 we an obtain the equationn = 4X�=1 1N Xk � P+�e�E+� (k) + 1 + P��e�E�� (k) + 1�P+� = Sa;�� + Sb;+� ; P�� = Sa;+� + Sb;�� (52)To obtain the zero-order dependenes of S�;�� on � we shall onsiderthe low temperature region to get rid of the terms with onsiderablylarge energies in their exponents. Thus onsidering the expressions fororrelation funtions (47) in the viinity of the points where hemial
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