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1. Introduction

In the previous paper [1] the time-asymmetric model of the relativistic
two-particle system with confining interaction was proposed, and the
classical dynamics of this system was analyzed. Semiclassical estimates
of the mass spectrum shown that the model can be a good candidate for
the relativistic potential model of mesons. The present paper is devoted
to a quantization of this model.

Nonrelativistic models of hadrons involve potential which consists of
the short-range and long-range parts (for example, the Coulomb + lin-
ear potential) [2]. The short-range potential follows from the perturba-
tive quantum chromodynamics (QCD) while the long-range one is built
rather phenomenologically. Simplest relativistic models are constructed
as single-particle wave equations [3] with the nonrelativistic potential
and, possibly, spin corrections. More consistent models are based on
the relativistic direct interaction theory (RDIT) [4], mainly, in various
Hamiltonian versions [5-7]. Given a nonrelativistic potential, RDIT al-
lows one to construct (although non-uniquely) the consistent relativistic
model of few-body system. The examples of such potential models of
hadrons are presented in Refs [8].

We are based on another approach to RDIT, the formalism of Fokker-
type action integrals [9]. It permits the treatment of particle interaction
in terms of the retarded and advanced solutions of classical field equa-
tions. In the considered time-asymmetric model the short-range inter-
action was built with the Lienard-Wiechert potentials which satisfy the
Yang-Mills equations with moving point-like sources [1]. For the long-
range interaction we proceeded with the classical 4th-order equations for
the effective Yang—Mills field averaged over quantum fluctuations [10].
Abelian retarded and advanced solutions to these equations obtained in
Ref. [1] provide the confinement of interacting particles.

Both the short- and long-range interactions were chosen as the time-
asymmetric ones, i.e., as if the first particle perceives the retarded field
of the second particle while the latter senses the advanced field of the
first particle. From the physical point of view the time-asymmetric inter-
action is not too artificial for mesons which are quark-antiquark systems.
Indeed, following the Dirac treatment an antiparticle can be considered
as a particle moving backwards in time and thus generating the advanced
field. On the other hand, this choice allowed us to reduce the Fokker-type
integral to a single-time action. Then we constructed various Hamilto-
nian descriptions of the model which are the base for a quantization.

Here we use the three-dimensional Hamiltonian description of the
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model in the point form of relativistic dynamics [5]. The complexity of
the total mass of the system as a function of canonical variables does not
permit us (even in the case without short-range interaction) to construct
a relevant Hermitian operator leading to a solvable quantum model.
Instead, we modify a quantization procedure by the construction of the
mass-shell equation. It has a structure of stationary Schrédinger equation
with potential depending on the energy (i.e., the total mass in our case).

The solution to the mass-shell equation is search as the expansion
series in the Jacobi polynomials. This allow us to reduce the eigenvalue
problem to an algebraic equation in terms of continued fraction. Then
we analyze the asymptotic behaviour of the mass spectrum and present
numerical results.

The paper is organized as follows. In Sec.2 we consider the classi-
cal time-asymmetric model with purely confining (long-range) interac-
tion. Following Refs [1,11] we reformulate the Fokker-type version of the
model into the canonical formalism with constraints and then into the
three-dimensional Hamiltonian formalism (see also Appendix A). The
canonical quantization is performed in Sec.3. It leads to the mass-shell
equation analyzed in Sec.4. The eigenvalue problem is reduced to an al-
gebraic equation expressed via the continued fraction (some remarks on
continued fractions are collected in Appendix B). The spectrum mass for
¢ =0 and £ > 0 is analyzed in Subsec. 4.1 and 4.2, respectively. In Sec.5
we include the short-range interaction in the model. Numerical results
are presented in Sec.6.

2. Classical time—asymmetric model with confining
interaction

We begin our consideration with the time-asymmetric two-particle model
with purely confining (i.e., long-range) interaction. It is based on the
time-asymmetric Fokker-type action of the following form [1]:

I= Ifree + Iconf: (1)

where .
fiee == > ma [ /3 2)
a=1

is a free-particle term, and

Leont = —5//dﬁd72(z “21)(2 - 22)Dy(2) (3)
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describes the confining interaction with the coupling constant 3. Here
mg (a = 1,2) is the rest mass of ath particle; 2 (7,) (1 =0, ...,3) are the
covariant coordinates of ath particle in the Minkowski space My ; 7, is an
arbitrary evolution parameter on the ath world line; 24(7,) = dz¥ /dr,;
2 =2l =2 Dy(z) = 20(nz°)d(2?) is the retarded (for n = +1) or
advanced (n = —1) Green’s function of d’Alembert equation. The time-
like Minkowski metrics, i.e., |1, || = diag(+, —, —, —), is chosen, and the
light speed is put to be unit.

The model makes the sense if particle world lines are timelike, i.e.,
22 > 0. In the nonrelativistic limit this model gives the linear potential
Ucont = ﬁ’l“.

Following Refs [1,11] we reformulate the model into the single-time
manifestly covariant Hamiltonian formalism on the 16-dimensional phase
space T*Mj3 parameterized by the particle positions z# and conjugated
momenta pg,. The canonical generators of Poincaré group acting onto
this space have the standard kinematic form:

2

2
P, = Zpaw Juv = Z(Zaupav — ZavPap)- (4)
a=1

a=1

Due to the parametric invariance of the description the canonical Hamil-
tonian vanishes while there are two first class constraints. One of them,
the light-cone constraint, is holonomic:

22=0, 1z°>0, ie., n2° = |z|. (5)
Here z = (2; = —z%) (i = 1,2,3). Another, the mass-shell constraint,
determines the dynamics of the model. It has the following form:

¢(P2= U27 Pz, U'Z) = Ptree + Peont = 0, (6)

where v, =w, — 2, P-w/P-z, w, = (p1y — P2u)/2,

Piree = %Pz — %(mf +m3) + (m? — m%)% + 02, (7)
b1bo
n = -2 )
¢co f /67]PZ (8)
be = (Pz—(-)N0z),  a=12 ©)

The Poincaré-invariance of these constraints guarantees that the gener-
ators (4) are conserved.

The Hamiltonian description is equivalent to the Fokker one provided
the following conditions hold:

P?2>0, Py >0, by > 0, a=1,2. (10)
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They determine a physical domain in the phase space T*M2.

The next step towards quantization is the construction of the three-
dimensional Hamiltonian description of the model. The reformulation
of the time-asymmetric models into the three-dimensional Hamiltonian
formalism was described in Ref [11]. It consists in the elimination of four
timelike canonical variables by means of the pair of first-class constraints
and the pair of gauge-fixing constraints. The choice of one of the gauge-
fixing constraints determines the evolution parameter ¢ as well as the
form of relativistic dynamics [5—7] in the reduced 12-dimensional phase
space P. In Refs [1,11] the instant form of dynamics was built. Here we
fix the evolution parameter by the following constraint:

2
Zq * Pa
_t=0, (11)
2 1P|

a=1

where |P| = v/P2. This choice leads to the description which is very
close to the point form of dynamics [5].

The technique of the reduction procedure uses two successive canon-
ical transformations in T*M? which are concerted with the structure of
constraints and provide the parameterization of P with canonical vari-
ables. Transformations relevant to the choice (11) are written down in
Appendix A.

We use the external Q¢, P; and the internal p’, 7; centre-of-mass
canonical variables (i = 1,2, 3) satisfying standard Poisson-bracket (PB)
relations: {Q, P;} = 6%, {p*,7;} = & (other PB vanish). In these terms
the dynamics of the model in P is determined by canonical generators of
Poincaré group:

P, = MG, Go=V1+G2
J; = Eijkg]jk = Eiijij + S;,
(G X S),
K, = Jop=GQ;+ ——. 12
12 i0 OQz + 1+ GO ( )
Here S = p x 7 is the total spin (the internal angular momentum) of
the system, and M (p, ) is the total mass of the system which takes the
role of Hamiltonian, i.e., it generates the evolution in ¢.
Hereafter we consider the system of equal rest masses, m; = ms = m.
Then the function M(p,n) is determined by the following mass-shell
equation:

M* M?*m? S?
LM, p,m) =(1-p) <W—W§>—W—F:0: (13)
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where p = |p|, S =S|, 7, = 7 -n and n = p/p. The equation (13) must
be complemented by the condition |m,| < $M?/3 which follows from
(10). Then the only positive solution of this equation,

m2 2 9 52 m4
M = 2<1_p+\/4ﬂ <7Tp+(1_p)p2>+(1_p)2>7 (14)

satisfies the inequality M > 2m. It exists in the domain

O0<p<l. (15)

Particle trajectories possessing nonrelativistic and free-particle limits en-
tirely belong to this domain.

Besides the canonical realization of the Poincaré group, the equations
(A.4), (A.7) permit to obtain the particle positions z¥ as functions of the
canonical variables, what makes it possible to build particle world lines
in the Minkowski space My . They was analyzed in Ref [1]. Here we note
that in the centre-of-mass reference frame (where P = 0) the relative
distance between particles 7 = $Mp/3. Then it follows from (15) that
the classical system does not exceeds the extension %M /6.

3. Quantization

Let us put A = 1 and introduce quantum operators Qi, ]52-, pl, #; sat-
isfying commutational relations: [Q", P;] =10}, [p*, 7;] = id] (other com-
mutators vanish). Using (G, p)-representation with the basis |G, p) =
1G) @ 1p),

A~

G|G) GIG), (G'|G) =Gy’ (G' - G), (16)
ploy = plp),  (P'lp) =80~ p), (17)

splits the Hilbert space H,

7) = / dG—G /d3p UG, p)Gp), [WeH,  (18)

with the Poincaré-invariant inner product

@) = [ [Eov@auGn.  [Ewmi<e )

into the external and internal spaces, H = Hext ® Hint-
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The unitary representation of Poincaré group is generated by the
Hermitian operators:

Py =MG,, P=MG,

. o )
J=i—xG+S8S

1 pre X + 5,
. 0 G xS
K=iGo— + —— 20

156 T1r Gy (20)

where § = —ip x 9/dp. R

The mass operator M is supposed to be the positively defined
Poincaré-invariant Hermitian operator acting in Hip:

[M, (52,85, G)] = 0. (21)

Thus any eigenfunction of M can be split as follows: ¥(G,p) =
Vet (G)¥int (p), where Ueyt(G) € Hext is arbitrary, and Uiy (p) € Hine
satisfies the stationary Schrodinger equation:

Mini(p) = M T (p). (22)

Then separating variables Ui, (p) = ¥(p)Yir(n), where Yy, (n) are the
spherical harmonics:

S$?Y;e(m) = L(l+1)Y,(m), £=0,1,..,
SB)/ZU(H) = 0—1/[0'([1)7 o= _ga "'767 (23)

reduces equation (22) to a one-dimensional problem for radial eigenfunc-
tion ¢ (p) in the Hilbert space L?(R; ) with the inner product

(olhread = /0°°p2dp¢*(p)¢(p), (ol)mal < 00 (24)

The cumbersome classical expression (14) for the mass function com-
plicates the construction of relevant Hermitian operator. Moreover, the
eigenvalue problem obtained in this way is not expected to be solv-
able. Thus we use another quantization procedure which is inspired by
quasipotential approach [12].

Let us construct the Hermitian operator f‘(M ) corresponding to clas-
sical function I'(M, p, 7), where M is treated as a constant. Then one can
consider, instead of the Schrédinger equation (22), the quantum analog
of the mass-shell equation (13):

(M)W =0, (25)




7 IIpenpunT

where M is a spectral parameter. If f‘(M ) involves M non-linearly, the
eigenfunctions ¥y, are not orthogonal. The orthogonality can be renewed
by the following redefinition of inner product [12]:

D(M') —T(M)

(‘I’M’|‘I’M) - ((\I’M’|\I’M)) = <\I’M' M — M

11/M>. (26)

In our case, after separating variables, the mass-shell equation can
be presented in the form:

BoDw(p) = 0. (27)
where

- - M* M2m? (41

PM) == (1=} + (= Py~ g — o (2)

must be the Hermitian operator. Thus the operator (1 — p)r> should
be an ordered construction of p and the radial momentum 7, which are
Hermitian in L%(Ry) (24). We use the following symmetrization rule:
T 5 1-26 5 - id
(A =p)m, = A =p)°w,(1 = p) 7 (1=p)° 7Ty =———p, (29)
pdp
where the quantization parameter 6 ~ 1 can be adjusted to physical
demands.

4. Analysis of the mass-shell equation

The mass-shell equation (27) has the form of ordinary differential equa-

tion:
¢ 2-3pd
1— p)— =2
{( p)dp2+ p dp
. 62 1 €(€+1)}
+p21—p)—2uy — —— — = — P(p) =0, (30
w=p) =2 = = S - (p) (30)
where A 5
= —m
Iu:4ﬂ7 V_2ﬂ7 (31)

and p is the dimensionless spectral parameter of the problem. Since
equation (30) includes the quantization parameter as 62, one can put
0> 0.
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The equation (30) has three critical points p = 0,1, 00 at which the
eigenfunction 1 (p) behaves as follows:

p—0:  (p) ~porp (HV

p=1:  p(p)~ (1—p)*;
p—oo:  th(p) ~ exp(£ipp). (32)

)

We require of ¢)(p) be a continuous function belonging to L?(R, ). This
demand does not contradict to estimates (32) if the following boundary
conditions are imposed:

p— 40 w(p) ~ o

p—=1-0:  (p)~(1—=p)°, >0
p=1:  P(p)=0. (33)
In such a way the confinement condition (15) is naturally brought onto a
quantum level. In fact, we restrict the Hilbert space L*(Ry) to L*([0,1])
in which the operator I';(M) remains to be Hermitian provided the con-

ditions (33) hold.
Using the substitution:

b(p) = exp(Eipp)p (1 - p)°x(p), (34)

and then expanding x(p) € L?([0,1]) into the series in the Jacobi poly-
nomials [13]:

xX(p) =" CePE" ) (2p — 1), (35)
k=0

reduces the eigenfunction problem (30) to the infinite three-diagonal set
of linear homogeneous equations for Cl:

EkCrr1 + i Cr + G Cr—1 =0, k=0,1,.., (36)

where (p = 0 and

o _ip(R+20+2)(k+25+1) iv
b = 2k +£+0+2) < k+€+6+3/2>’
m = (k+L€+D)(kE+0+20+1)
L+6+1/2)((—-56+1/2)
+l“/<1+(k+€+6+1/2)(k+£+6+3/2)>’

Ch

ipk(k +20+20+1) iv
T ok +0) Thriror12) (37)




9 IIpenpunT

It is known [14] that the determinant of three-diagonal linear set can
be expressed in terms of continued fractions (see [15]; basic notions are
collected in Appendix B). The secular equation for the set (36) reads:

A[(,u) =by + K (ak/bk) =0, (38)
k=1

where by = i, and

Wok(k+20)(k+20+1)(k+20+25+1)
4k+0+0)(k+C++1)

X<1+(k+€+5+1/2)2> (39)

are real functions of the spectral parameter p (in despite of the coeffi-
cients &, (; be complex). Since the continued fraction Ay(u) meets the
criterium of conventional convergence (B.5), it represents a real function
of p. Then positive solutions of the algebraic equation (38) form the
spectrum of the system.

ap = —&—1Ck = —

4.1. Spectrum of S-states

In the case £ = 0 the continued fraction Ag(u) simplifies by means of
the equivalence transformation (B.6) with some ry:

C oo
Ag(p) = m <55+1/2 +K (ak+5+1/2/5k+5+1/2)>
k=1
Ca6+1/2

o -1
= — <K (Oék+5+1/2//3k+6+1/2)> ) (40)
H k=0

here C is a constant, and

N DV 42 8 @A+ D+ AN+ 1) /4]
WY/ Wri e W/ Wi s R

Then using the continued fraction representation of Coulomb wave func-
tions [15]:

(41)

F)\ (Va :u)
_— = — [0 5 42
P (v, ) /Eio( KA/ Braa) (42)
reduces equation (38) to the form:
Fy 1) =0, p>0. (43)
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This equation has an infinite number of positive roots p = pu,,(v) la-
belled by the radial quantum number n, =0,1,... .

Let us consider the spectrum of S-states in two limiting cases.

Nonrelativistic spectrum. In the chosen units of measurement the cou-
pling constant 3 has the dimension of mass (or energy) squared. Then in
the nonrelativistic case the binding energy £ = M — 2m is comparable
to v/B while the rest mass is large: m > /8. In dimensionless terms
this corresponds to u ~ 2v > 0. Using for this case the asymptotic
representation of the Coulomb wave function [13]:

F(v, ) ~ Ai(a), (44)
where Ai(z) is the Airy function, and
== p/p)l’ + XA+ DIV, p=v+ V2 AN+ 1), (45)
and solving the equation (43) gives
Vi = V2 + 1(20) Yo%, 1+ 050, (46)
or (in dimensional terms),
E=M-2m~ (82/m)?z, .1, (47)

where (—x,) are zeros of the Airy function. Equation (47) describes
the well-known nonrelativistic S-spectrum of two-particle system with
a linear potential. We note that the dependence on the quantization
parameter appears as O(v~3/?), i.e., far from the area of nonrelativistic
approximation.

Ultrarelativistic spectrum: M — oo. In the case p — co we have [13]:

Fx(v,p) ~sin(p —vIn2pu — An/2 + o)), (48)
where oy = argI'(A + 1 + iv). Then equation (43) yields:
M? = 7f3(4n, + 26 + 3) + 2m* In[27(n, + 1)] — 05_1/2 + O(n, ). (49)

The dependence of M? on n, > 0 becomes asymptotically linear.

4.2. Regge trajectories in the oscillator approximation
Here we consider the asymptotic behaviour of the mass spectrum for

£ > 0. For this purpose we use the substitution

b(p) = pj%’ olp) <0 P, pp) R (1= p) T2 (50)
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reducing the mass-shell equation to a two-term form:
d>p(p) { o 2pv 8 —1/4  L(L+1) } () =0
dp? 1—=p (1-p?* (1-p)p? '
Let us put for simplicity 6 = 1/2. Then equation (51) has a Schrodinger-
like form with the potential

(51)

_ 2uv +/p?
Sl P p
depending on the spectral parameter p. If £ > 0, this potential has a local
minimum at some point py € (0,2/3) depending on p and satisfying the
condition:

Up) Lyl (52)

U'(po) o 2pvpg +v(3po — 2) = 0. (53)

Thus one can expand the potential (52) at the minimum,

2y 3y 2
=+ ——(p—po)?, (54)
py (1= po)ps °

and search a solution of this oscillator problem. A quantization condition

then reads:
/11— po ( 2’y>
2 2
p w——=1]=2n,+1. 55
0 3 3 14 ( )

If n, ~ 1, the approximate solution differs exponentially little from the
exact solutions of eq. (51).

Eqgs (53) and (55) form the set of algebraic equations with p and pg
to be found. Solving this set with the usage of power series in £ leads to
the asymptotic formula:

U(p) = U(po) + %U”(po)(p - p0)2 =

M? =6V3B( +n,+ 1) +6m> +0(™") (56)

which represents the spectrum of the system at £ > n,. This spectrum
falls on the family of the leading (for n, = 0) and daughter’s (n, > 0)
linear Regge trajectories. In the case of arbitrary quantization parameter
one obtains the same result since d-dependent terms occur as O(¢£71).

5. Accounting a short-range interaction

The short-range interaction is introduced in the model by adding to the
Fokker-type action (1) the following term [1]:

Lee = a / drdrs (31 - 32) Dy (2). (57)
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It corresponds to the vector-type interaction which in the nonrelativistic
limit is described by the Coulomb potential Uqen = /7 with a coupling
constant . Then the mass-shell constraint takes the form:

stree + Qsconf + stec - 2a6 =0, (58)
where ¢yec is rather complicated function. Here we restrict ourselves by
linear approximation in «:

a(P? —mi —m3)

stec = + O(az)' (59)

nP-z
Then the analysis of the model is quite similar to the purely confinement
case.
The operator I'y(M) (28) involved in the quantum mass-shell equa-
tion (27) should be modified as follows:

— 2 _ 2
Po(M) = Fo(M;0) = Po(M) + 0l p%p =

This leads to the secular equation of the form (38) where the modified
continued fraction A,(u; @) is defined by the elements:

~ WPk(k+20)(k + 20+ 1)(k + 20+ 26 +1)

(60)

W= A+ C+0)(k+L+06+1)
(v +a)?
x<1+(k+€+6+1/2)2 ’
b = (k+0+1)(k+0+25+ 1)+ 2aw

(Wt a)(l+5+1/2)(—6+1/2)
(”_“ (k+€+6+1/2)(k+€+6+3/2)>' (61)

In the oscillator approximation one obtains the asymptotic mass spec-
trum:

M?* =6V3B(L+n,+1)+6(m? —af) +0(7Y), €>mn,  (62)

It coincides with the semiclassical result of Ref. [1].

6. Numerical results and discussion

The model with long- and short-range interactions represents the rel-
ativistic generalization of Coulomb + linear potential model. Both the

I The author asks pardon for errors made in eqs.(77) and (93) of Ref.[1] where the
expression ... —3af3)...istoberead as ... — af)...
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relativistic and nonrelativistic problems are not exactly solvable. But
the former has that advantage it admits of the algebraic secular equa-
tion Ay(p;a) = 0. Since the function A,(u;«) is expressed exactly in
terms of continued fraction, standard numerical algorithms can be ap-
plied to solve the secular equation with arbitrary accuracy [14,15]. As a
result one obtains the mass spectrum or (if to let £ € Ry ) the family of
leading and daughter’s Regge trajectories.

In the Figs 1-4 we present few examples of Regge trajectories. They
are obtained by adjusting the parameters m, o and [ to the masses
of some unflavoured mesons. All these parameters (especially, m) are
flavour-dependent (see Tabl. 1) while the quantization parameter ¢
weakly influences spectra. Thus here we do not use § as an adjustable
parameter and put = 1/2 (in this case the operator (29) simplifies).

Up to spin effects the obtained masses of mesons and quarks corre-
late well with the experimental data [16]. This is concerned especially
with the Regge trajectories for heavy bb and cZ mesons (Figs 1 and 2,
respectively). For light mesons spin effects are essential, but they cannot
be described by the present model. In this case the validity of the model
can be estimated by the consideration of Regge trajectories for mesons
with a similar spin structure. Here we choose those light mesons which
can be treated as 3£y, states. Corresponding Regge trajectories for s5
and Il mesons (I means u or d) are presented in Figs 3 and 4, respectively.
They agree well with the linear asymptotic formula (62) even at £ ~ 1.

The presented here mathematics and numerical results suggest the
further elaboration of the model. The generalization to the case of differ-
ent rest masses is straightforward. More important task is the accounting
spin effects. It implies, firstly, the construction of the Fokker-type action
for confining system of spinning particles and, secondly, the hamiltoniza-
tion and quantization of this model. As a guideline to this task one can
take the description of relativistic spinning particles within the frame-
work of Wheeler-Feynman dynamics [17].
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Table 1
Figure No Mesons qq m [GeV] a B [GeV?]
Figure 1 T, x» bb 4.73 0.45 0.20
Figure 2 Nes hey, Y, X cC 1.25 0.37 0.21
Figure 3 6, f' 55 0.10 0.40 0.12
Figure 4 P, a I 0.005 0.80 0.11

Appendix

A. Transition into the three-dimensional Hamiltonian formal-
ism in the point form of relativistic dynamics

The first canonical transformation
(y”7 PN: xl‘, wu) = (QIJ, M: Gi: PN: le): (Al)
is determined by means of the generating function:

Wiy, M,G,z,w) = MG, y" + (28/M)w, A(G)", =", (A.2)

where y* = (21 + 24)/2, Go = V1 + G2, and the matrix [|A(G)",]] €
SO(1, 3) has the form:

Go ‘ G,

IA% [ = (A.3)

GG,
ii 4+ — 0
it 1+ Gy

i

Using the relations
P, = 0oW/oy" = MG,,
Q" = OW/OM =G -y— (26/M?*)w, A", 2",
Q' = OW/OG; = M(y" —y°G'/Go) + (2B/M)w, =" oMY, ]0G,,
w, = O0W/[0zF = (28/M)w, A",
pt = OW/0w, = (28/M)A*, 2" (A.4)

one can obtain this transformation in an explicit form.
The second canonical transformation

(Q07 Qia M7 Gi; p07 Pi; wo, wi)
= (QO, Qia M: Pi: ﬁoa Pi: wo, ﬂ-i) (A5)
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which is determined by the generating function:
W = M(Q° —t) + GiQ" + wo(p® — nlp|) + mip'. (A.6)
has the following explicit form:

Q' =Q"—t, p"=p"—nlpl, 7 =wi—nwopi/lpl (A7)

(the remaining variables do not change). It reduces the light-cone con-
straint (5) to the canonical form p° = 0. Choosing one of the gauge-fixing
constraint in the form Q° = 0 allows us to eliminate the timelike vari-
ables p°, Q° together with conjugated ones wg, M and to obtain the
description on the reduced phase space P with the canonical variables
Qla Pi; pla T (Z = 17273)

The transformation (A.5) depends explicitly on the evolution param-
eter t. Thus it generates the Hamiltonian H = —9W /0t = M which is
the total mass of the system. On the reduced phase space M becomes
the function of canonical variables. It is the positive solution of the mass-
shell equation

AP M2
r(M,pmzqs(M?, ST A —p-w) —0,  (A)

where the function ¢ is defined by eqs (6)—(8).

B. Basic notions on continued fractions

Let {ar # 0} and {bg,bx} (kK = 1,2,...) be two sequences of real or
complex numbers. A finite continued fraction

n
a
anbo +K (ak/bk) = by + 1a2 (B.l)
k=1 bl +
b2 +
L
bn
(we follow the Ref. [15]) can be converted into an ordinary fraction

In :An/Bna (BQ)

where the numerator A, and denominator B, are determined by the
following recurrent relations:

A,1 = ]., AO = bo, B,1 = 0, BO = ].,

Ap =brAp_1 + arAg_s,

By = by Br_1 + apBp_o, k=1,2,...,n. (B3)
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A continued fraction (i.e., an infinite continued fraction)

o0 n
f=bo+ K (ak/bk) = by + nli)IIC}OK (ak/bk) (B.4)
k=1 k=1
is the limit f = li_>m fn of the sequence {f,}, where f, is called the nth
n o0

appropriate fraction of continued fraction, and A,, B, are called the nth
numerator and denominator, respectively.
If the condition (Worpitski criterium)

ar,
br_1bg

< i (B.5)

holds for k > 1, the continued fraction is convergent, i.e., |lim f,| <
oo. If (B.5) holds starting from some ko > 1, the continued fraction is
conventionally convergent, i.e., | lim f,| < co or lim f,, = £00. Otherwise
the fraction can be divergent, i.e, lim f,, can be not existing.

Let {ro = 1,7 # 0} (k = 1,2,...) be a sequence of real or complex
numbers. The equivalency transformation

bk — IN)k = ’I“kbk, ar — (le =Tp_1Tra (BG)

does not change the continued fraction: f = f. If ro # 1 then f = rof.

References

1. Duviryak A. Fokker-type confinement models from effective La-
grangian in classical Yang-Mills theory // Internat. J. Modern Phys.
A, 1999, Vol 14, No 28, p. 4519-4547.

2. Lucha W., Schoberl F.F. Die Starke Wechselwirkung. FEine
Einfiihrung in nichtrelativistische Potentialmodelle. Mannheim, Bib-
liographishches Institut & F. A. Brockhaus, 1989.

3. Feynman R.P., Kislinger N., Ravndel F. Current matrix elements
from a relativistic quark model // Phys. Rev. D, 1971, Vol 3, No 11,
p. 2706-2715;

Ono S. Relativistic and nonrelativistic quarkonium models // Phys.
Rev. D, 1981, Vol 26, No 9, p. 2510-2513;

Goebel C., LaCourse D., Olsson M.G. Systematics of some ultra-
relativistic potential models // Phys. Rev. D, 1989, Vol 41, No 9,
p. 2917-2923;

Haysak I.I., Lengyel V.I., Shpenik A.O. Fine splitting of two-quark




19

IIpenpunT

systems from the Dirac equation. In: Hadrons-94. Proc. of work-
shop on soft physics (strong interaction at large distance). Uzhgorod,
Ukraine, September 7-11, 1994. Kiev, 1994, p. 267-271;

Chalupka S., Lengyel V.1., Salak M., Shpenik A.O. The Dirac equa-
tion with CJP potential. In: Hadrons-94. Proc. of workshop on soft
physics (strong interaction at large distance). Uzhgorod, Ukraine,
September 7-11, 1994. Kiev, 1994, p. 272-279.

. Llosa J. (ed.) Relativistic Action at a Distance: Classical and Quan-

tum Aspects. Proc. Workshop. Barcelona, 1981. Springer, 1982.
Sokolov S.N. Example of the single-time many-particle relativistic
wave equation // Teor. Mat. Fiz., 1974, Vol 18, No 1, p. 56-65;
Sokolov S.N. Physical equivalence of the point and instant forms
of the relativistic dynamics // Teor. Mat. Fiz., 1975, Vol 24, No 2,
p. 236-241.

Leutwyler H., Stern J. Relativistic dynamics on a null plane. // Ann.
Phys. (N.Y.), 1978, Vol 112, No 1, p. 94-164;

Polyzou W.N. Relativistic two-body models // Ann. Phys. (N.Y.),
1989, Vol 193, No 2, p. 367-418.

Longhi G., Lusanna L. (eds.) Constraint’s Theory and Relativistic
Dynamics. Proc. Workshop. Firenze, 1986. World Sci. Publ., 1987.
Takabayasi T. Relativistic mechanics of confined particles as ex-
tended model of hadrons // Supp. Pr. Theor. Phys., 1979, No 67,
p. 1-68;

Rohrlich F. Relativistic particle systems with confining interaction
// Physica, 1979, Vol 96A, No 1-2, p. 290-299;

King M., Rohrlich F. Dynamic confinement from velocity-dependent
interaction // Phys. Rev. Lett., 1980, Vol 44, No 10, p. 621-624;
Biswas T., Rohrlich F. A relativistic quark model for hadrons //
Nuovo Cimento, 1984, Vol 88A, No 2, p. 125-144;

Biswas T. Fully relativistic hadron spectroscopy // Nuovo Cimento,
1984, Vol 88A, No 2, p. 145-160;

Crater H.W., Van Alstine P. Relativistic naive quark model for spin-
ning quarks in mesons // Phys. Rev. Lett., 1984, Vol 53, No 16,
p. 1527-1530;

Crater H-W., Van Alstine P. Relativistic constraint dynamics for
spinning quarks in mesons // In [7], p.171-195;

Sazdjian H. Relativistic quarkonium dynamics // Phys. Rev. D,
1985, Vol 33, No 11, p. 3425-3434;

Brayshaw D.D. Relativistic description of quarkonium // Phys.
Rev. D, 1986, Vol 36, No 5, p. 1465-1478;

Aboud N.A., Hiller J.R. Meson properties in a light-cone quark

ICMP-00-13E 20

10.

11.

12.

13.

14.

15.

16.

17.

model // Phys. Rev. D, 1990, Vol 41, No 3, p. 937-945;
Ishida S., Oda M. A universal spring and meson orbital Regge tra-
jectories // Nuovo Cimento, 1994, Vol 107A, No 11, p. 2519-2525.

. Havas P. Galilei- and Lorentz-invariant particle systems and their

conservation laws. In: Problems in the Foundations of Physics.
Berlin, Springer, 1971, p. 31-48;

Ramond P. Action-at-a-distance theories and dual models // Phys.
Rev. D, 1973, Vol 7, No 2, p. 449-458;

Tretyak V.I. Fokker-type action integrals and forms of relativistic
Lagrangian dynamics. Thesis on search of the degree of doctore
of physical and mathematical sciences. Lviv State University, Lviv,
1996. 306 p. (in Ukrainian);

Tretyak V.I. Fokker-type action integrals and classical relativis-
tic fields. Preprint of the Institute for Condensed Matter Physics,
ICMP-98-03U, Lviv, 1998, 28 p. (in Ukrainian).

Alekseev AL, Arbuzov B.A. Classical theory of Yang-Mills field for
nonstandard Lagrangians // Teor. Mat. Fiz., 1984, Vol 59, No 1,
p. 80-90.

Duviryak A. The time-asymmetric Fokker-type integrals and the rel-
ativistic mechanics on the light cone // Acta Phys. Polon. B, 1997,
Vol 28, No 5, p. 1087-1109.

Rizov V.A., Sazdjian H., Todorov I.T. On the relativistic quantum
mechanics of two interacting spinless particles // Ann. Phys. (NY),
1985, Vol. 165, No 1, p. 59-97.

Handbook of mathematical functions. Ed. by M. Abramowitz and
I.A. Stegun. National Bureau of Standards. Applied Mathematics
Series - 55, 1964.

Komarov L.V., Ponomaryov L.I., Slavianov S.Yu. Spheroidal and
Coulomb spheroidal functions. Moscow, “Nauka” 1976 (in Russian).
Jones W.B., Thron W.J. Continued fractions. Analytic theory and
applications. London, Addison-Wesley 1980.

Groom D.E. et al. (Particle Data Group). Review of particle physics
// Eur. Phys. J. C, 2000, Vol 15, No 14, p. 1-878.

Alstine P.V., Crater HW. Wheeler-Feynman dynamics of spin—%
particles // Phys. Rev. D, 1985, Vol 33, No 4, p. 1037-1047;
Crater HW., Yang D. A covariant extrapolation of the noncovari-
ant two particle Wheeler-Feynman Hamiltonian from the Todorov
equation and Dirac’s constraint mechanics // J. Math. Phys., 1991,
Vol 32, No 9, p. 2374-2394.




Ipenpunrn Incruryry disuku konnencoBanux cucrem HAH Ykpainu
PO3IOBCIOKYIOTHC Cepell HAyKoBuX Ta indopmartiitiux ycranos. Bonn
TAKOXK HOCTYIIHI IO eJIeKTPOHHIi#T KoM toTepHili mepexi Ha WWW-cep-
Bepi iHcTHTYTY 32 agpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Hysipsak Ackoasn AuapifioBud

I BOYACTUHKOBA YACO-ACUMETPUYHA PEJIATUBICTUYHA MOIEJIb
3 YTPUMVYIOYOIO B3AEMOIIEI0. KBAHTYBAHHA

Pobory orpumano 9 sucronama 2000 p.

Barsepmxkeno 10 apyky Buenoio panoio IOKC HAH Ykpaiau

PekomennoBano mo IpyKy cemMiHaApoM BifIiiy Teopil MeTasTiB Ta
CTIIaBiB

Burorossieno npu I®OKC HAH Yxkpainu
© Vci npaBa 3acrepexeni



