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riti
al behaviour of random anisotropy magnets: 
ubi
anisotropyMaxym Dudka, Reinhard Folk, Yurij Holovat
hAbstra
t. The 
riti
al behaviour of an m-ve
tor model with a lo
alanisotropy axis of random orientation is studied within the �eld-theore-ti
al renormalization group approa
h for 
ubi
 distribution of anisotropyaxis. Expressions for the renormalisation group fun
tions are 
al
ulatedup to the two-loop order and investigated both by an " = 4� d expan-sion and dire
tly at spa
e dimension d = 3 by means of the Pad�e-Borelresummation. One a

essible stable �xed point indi
ating a 2nd orderferromagneti
 phase transition with dilute Ising-like 
riti
al exponents isobtained.ðÏÄÁ¤ÔØÓÑ × Condensed Matter Physi
sSubmitted to Condensed Matter Physi
s
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionIn statisti
al physi
s, the low-temperature phases of many-parti
le spinmodels may possess qualitatively di�erent features depending on the fa
twhether the 
orresponding spin Hamiltonian is of dis
rete or 
ontinuoussymmetry. As a textbook example may serve an m{ve
tor model de-s
ribed by the Hamiltonian [1℄:H = � XR;R0 JR;R0 ~SR~SR0 ; (1)where ve
tors R,R0 span sites of the d{dimensional (hyper)
ubi
 latti
e,JR;R0 > 0 is a short-range ferromagneti
 intera
tion and ~SR~SR0 is as
alar produ
t of 
lassi
al m{
omponent \spins" ~SR = (S1R0 ; : : : ; SmR0).The Hamiltonian (1) possesses a global O(m) symmetry: it remains in-variant under rotations in the spa
e of ve
tors f~Sg. However, 
ontinuousO(m) symmetry turns to the dis
rete one for m = 1: this 
orrespondsto the invarian
e of the Ising model Hamiltonian under dis
rete turn ofthe Ising spins to opposite dire
tion. The 
onsequen
es are well known:whereas in the Ising model a ferromagneti
 phase exists for latti
e di-mensions greater than 1 [1℄ (i.e. the lower 
riti
al dimension dL = 1),dL = 2 for m � 2 [2℄. For d > 2 
ontinuous symmetry 
an be sponta-neously broken for any m and dU = 4 is the upper 
riti
al dimension ofthe m-ve
tor model: starting from d = 4 the magneti
 phase transitionis governed by the mean-�eld 
riti
al exponents.Implementation of a weak stru
tural (latti
e) disorder into model (1)has a 
ru
ial 
onsequen
es for the existen
e of the ordered phase. Forthe parti
ular reason of the present study of main interest for us will bethe 
ase when distribution of disorder 
an be 
hara
terized by a 
ertainsymmetry. As an example may serve the m-ve
tor model with randomanisotropy (a random anisotropy model, RAM) [3℄:H = �XR;R0 JR;R0 ~SR~SR0 �D0XR (^xR~SR)2: (2)Here, the notations are as in (1), D0 is an anisotropy strength, and ^xRis an unit ve
tor pointing in the lo
al (quen
hed) random dire
tion ofan uniaxial anisotropy.The model Hamiltonian (2) possesses randomness only for m > 1: atm = 1 the se
ond term is a 
onstant and leads to a shift in a free energyof the resulting regular (Ising) model. It means that the randomness-indu
ed behaviour in RAM may be observed only for spins of 
ontin-uous symmetry. The low-temperature ordering in RAM is in
uen
ed
ICMP{01{12E 2in addition to the global variables of a regular magnet (i.e. latti
e di-mension, type of intera
tion and spin symmetry) also by distributionof the random variables ^x � ^xR in (2). For non-
orrelated ^xR the low-temperature ordering depends on the probability distribution p(^x) ofdire
tion of anisotropy on a single site. In parti
ular, for the isotropi
distribution dL = 4: a ferromagneti
 order is absent for the latti
e dimen-sion less than 4. An absen
e of ferromagnetis oredering in isotropi
 RAMwas �rst observed in the renormalization group study of Ref. [4℄ whereno a

essible �xed points of the renormalization group transformationwere obtained for the model within " = 4� d expansion. Re
ently, thisresult was 
orroborated by higher-order 
al
ulations re�ned by a resum-mation te
hnique [5℄. The proof of Refs. [6,7℄ used arguments similar tothose applied by Imry and Ma [8℄ for a random-�eld Ising model andshowed that the sus
eptibility of the ordered state diverges for d < 4,expli
it 
al
ulations for m ! 1 were o�ered in Ref. [6℄. Although thelast appeared to be erroneous [9℄ the value dL = 4 was further supportedby an attempt of a Mermin{Wagner proof of the absen
e of ferromag-netism in RAM with the isotropi
 distribution of an anisotropy axis ford < 4 [10℄. The proof of the Ref. [10℄ uses the repli
a tri
k [11℄ and 
an-not be 
onsidered rigorous. However, the same paper studies RAM atlow temperatures and small anisotropy avoiding appli
ation of repli
asby means of the Migdal{Polyakov renormalization group te
hnique andthe �xed point stru
ture obtained there in d � 4 dimensions 
on�rmsabsen
e of ferromagnetism below d = 4. The upper 
riti
al dimensionfor RAM with the isotropi
 distribution of an anisotropy axis was shownto be dU = 6 [12℄.However, the above arguments do not 
on
ern anisotropi
 distribu-tions p(^x). Here, the possibility of ferromagneti
 ordering is to be studiedfor every parti
ular 
ase. We address the question of existen
e of a ferro-magneti
 se
ond order phase transition and its universal properties fora d = 3 RAM with an anisotropi
 distribution of random axis, when theve
tor ^xR (1) points only along one of the 2m dire
tions of axes ^ki of a
ubi
 latti
e (so-
alled 
ubi
 anisotropy):p(^x) = 12m mXi=1 [Æ(m)(^x� ^ki) + Æ(m)(^x + ^ki)℄; (3)where Æ(^y) is a Krone
ker's delta. Besides a pure a
ademi
 interest su
h a
hoi
e has pra
ti
al appli
ations: typi
al examples of random-anisotropymagnets are amorphous rare-earth { transition metal alloys [13℄ and the
ubi
 distribution (3) of a random axis mimi
s the situation when anamorphous magnet still \remembers" initial (
ubi
) latti
e stru
ture.



3 ðÒÅ�ÒÉÎÔIn the present paper, we study the RAM with the 
ubi
 distributionof a random-anisotropy axis (3) by means of a �eld theoreti
al renormal-ization group (RG) te
hnique [20℄ and analyze the two-loop RG fun
tionsboth by an " = 4� d expansion and dire
tly at spa
e dimension d = 3.We show the existen
e of a se
ond order phase transition and make our
on
lusions about its numeri
al 
hara
teristi
s on the basis of a resum-mation te
hnique applied to the resulting perturbation theory series.The paper is a dire
t 
ontinuation of our pre
eding work [5℄, where weapplied similar tools to study RAM with an isotropi
 distribution p(^x)and we refer the reader there for a more extended review of the RAMgeneral features.The set-up of the paper is the following: in the next se
tion 2 wedes
ribe the model and obtain the RG fun
tions within the massive �eldtheory s
heme. In the RG analysis, presen
e of a se
ond order phasetransition 
orresponds to a presen
e of a rea
hable stable �xed point ofthe RG transformation. The �xed points and their stability are analyzedin the Se
tion 3 by means of an "{expansion to order "2 and by resum-mation of a d = 3 series. We estimate the 
riti
al exponents values anddisplay them in the Se
tion 3 as well. Se
tion 4 
on
ludes our study andsummarizes the results obtained.2. The renormalization group fun
tionsIn order to apply the �eld theoreti
al RG approa
h to study the 
riti-
al behaviour of the RAM (2) with quen
hed lo
al anisotropy axis dis-tributed a

ording to (3) one should get an e�e
tive Hamiltonian of themodel. Following the s
heme of [4℄ for a given 
on�guration of quen
hedrandom variables ^xR in (2) the partition fun
tion of RAM is written inform of a fun
tional integral of a Gibbs distribution with the e�e
tiveHamiltonian:H(^xR; ~�) = � Z ddR�12 hr0j~�j2+j~r~�j2i�D1(^xR~�)2+v0j~�j4+ : : :� ;(4)where D1 is proportional to D0, r0 and v0 are de�ned by D0 and thefamiliar bare 
ouplings of an m-ve
tor model, and ~� � ~�R is a m-dimensional ve
tor. Implying quen
hed disorder and using therefore therepli
a tri
k [11℄ one arrives at the n{repli
ated 
on�guration-dependentpartition fun
tion. Performing then the average over random variablesfor the 
ase of a 
ubi
 distribution (3) one ends up with the e�e
tive
ICMP{01{12E 4Hamiltonian [4℄:Heff = � Z ddR(12 h�02j~'j2+j~r~'j2i+u0j~'j4+v0 nX�=1 j~��j4+w0 mXi=1 nX�;�=1��i 2��i 2+y0 mXi=1 nX�=1��i 49=; ; (5)whi
h in the repli
a n! 0 limit des
ribes 
riti
al behaviour of the model(2) with 
ubi
 anisotropy distribution (3). Here, �0 is bare mass, bare
ouplings u0 > 0, v0 > 0, w0 < 0 are de�ned by D0 and and familiar bare
ouplings of anm-ve
tor model. The y0 term 
ombines the symmetries ofv0 and w0. It does not result from the fun
tional representation of the freeenergy but is generated by further appli
ation of the RG transformation.Therefore y0 
an be of either sign. ��i are the 
omponents of an mn-dimensional order parameter �eld, j'ij2 = P� j��i j2. Values w0 and u0are related to appropriate 
umulants of the distribution fun
tion (3) andtheir ratio w0=u0 = �m determines a region of typi
al initial values inthe u� v � w � y{spa
e of 
ouplings.To get a qualitative pi
ture of a 
riti
al behaviour it is standard nowto rely on the �eld-theoreti
al RG approa
h [20℄. In this approa
h, �nite-ness of the (renormalized) vertex fun
tions �(n)R is ensured by imposing
ertain normalizing 
onditions. In turn, this leads to di�erent renormal-ization s
hemes. Here, we will make use of the renormalization at �xedmass and zero external momenta fkg [14℄. Normalization 
onditions arewritten then for a �xed spa
e dimension d and read:�(2)R (0;�2; u; v; w; y) = �2;��k2 �(2)R (k;�2; u; v; w; y)���k2=0 = 1;�(4)u R(f0g;�2; u; v; w; y) = �4�du;�(4)v R(f0g;�2; u; v; w; y) = �4�dv; (6)�(4)w R(f0g;�2; u; v; w; y) = �4�dw;�(4)y R(f0g;�2; u; v; w; y) = �4�dy;�(2;1)R (p; k;�2; u; v; w; y)���p2=k2=0 = 1:Here, �; u; v; w; y are renormalized mass and dimensionless 
ouplings,�(2;1)R is renormalized vertex fun
tion with �2 insertion, and the verti
es



5 ðÒÅ�ÒÉÎÔ�(4)u , �(4)v ,�(4)w , �(4)y are parts of a full vertex fun
tion�(4)i1i2i3i4�1�2�3�4 = �(4)u Si1i2i3i4�1�2�3�4 + �(4)v Si1i2i3i4F�1�2�3�4 +�(4)w Fi1i2i3i4S�1�2�3�4 + �(4)y Fi1i2i3i4F�1�2�3�4 ; (7)where Fijkl = ÆijÆikÆil;Sijkl = 13 (ÆijÆkl + ÆikÆjl + ÆilÆjk) ; (8)S��
�ijkl = 13 (ÆijÆklÆ��Æ
�+ ÆikÆjlÆ�
Æ��+ ÆilÆjkÆ��Æ�
) ;Æab is Kroneker's delta. Tensors in (8) 
orrespond to terms of di�erentsymmetry in the e�e
tive Hamiltonian (5), the Latin symbols are thespin indi
es and the Greek symbols are the repli
a indi
es.The mass is renormalized by: � = Z��(2)(0;�0; fui;0g), with ui =u; v; w; y and Z� being the �eld renormalizing fa
tor. Finitness of �(2;1)is se
ured by the fa
tor �Z�2 . The renormalizing fa
tors of 
ouplings Zuiare relating the bare 
ouplings to the renormalized onesui;0 = �4�dZuiZ2� ui: (9)All renormalizing fa
tors are de�ned by 
onditions (6). A 
hange of the
ouplings ui and Z{fa
tors under the RG transformation is des
ribed bythe �- and 
-fun
tions:�ui = �ui� ln�; 
� = � lnZ�� ln� ; �
�2 = �� ln �Z�2� ln� ; (10)determining approa
h of the system to 
riti
ality. Namely, the �xed point(FP) fu�i g of the RG transformation de�ned as a solution of equations�ui(fu�jg) = 0 (11)if stable, may 
orrespond to the 
riti
al point. The 
ondition of the FPstability reads: ������ui�uj (fu�jg)� !iÆij���� = 0; !i > 0: (12)However, 
orresponden
e of a stable FP to the 
riti
al point of a sys-tem implies that this FP is rea
hable from the initial 
onditions (initial
ICMP{01{12E 6values of the 
ouplings). In the stable FP the 
orrelation length 
riti
alexponent and the pair 
orrelation fun
tion 
riti
al exponent are de�nedby: ��1 = 2� �
�2(fu�i g)� 
�(fu�i g); (13)� = 
�(fu�i g): (14)The rest of 
riti
al exponents may be derived from the familiar s
alingrelations.Applying the renormalization s
heme (6) we get the RG fun
tions ofthe model (5) in two-loop approximation. In the repli
a limit n = 0 theyread:�u = �"(u�16 �8u2+2 (m+2)uv+2vw+4uw+6uy�+19h44u3+48u2w+12w2u+24 (m+ 2) vu2+2 (3m+6)uv2+4w2v+4v2w+60uvw+18y2u+72u2y+36uvy+36uwyii1 + 29h2u3+6u2y+6uvw+3y2u+2 (m+2) vu2+(m+2)uv2+2w2u+4u2w+6uvy+6uwyii2); (15)�v = �" v(1� 16 [(m+8) v+12u+4w+6y℄+19h2 (5m+22) v2+68vw+8(3m+15)vu+84u2+12w2+72vy+18y2+72uw+108uy+36wyii1+29h(m+2)v2+2 (m+ 2)uv+2u2+2w2+6vw+4uw+6uy+6vy+6wy+3y2ii2); (16)�w = �"w(1� 16 [8w+12u+4v+6y℄ + 19h44w2+84u2+36vy+18y2+2 (m+6)v2+120wu+68vw+72wy+2 (6m+36)uv+108uyii1+29h(m+2)v2+2 (m+ 2)uv+2u2+2w2+6vw+4uw+6uy+6vy+6wy+3y2ii2); (17)



7 ðÒÅ�ÒÉÎÔ�y = �"(y � 16 �9y2+8vw+12uy+12vy+12wy�+19h(4m+ 72) v2w+72w2v+54y3+84u2y+(6m+ 84) v2y+84w2y+144y2u+144y2v+144y2w+96uvw+2 (6m+84)uvy+252vwy+168uwyii1+29h2u2y+2 (m+2)uvy+(m+2) v2y+2w2y+6vwy+4uwy+6y2u+6y2v+6y2w+3y3ii2); (18)
� = �"9 �2u2+2 (m+ 2)uv+(m+ 2)v2+6vw+2w2+4uw+6uy+6vy+6wy+3y2� i2; (19)�
�2 = "3(12�2u+(m+2) v+2w+y�� �2u2+2 (m+2)uv+2w2+(m+ 2) v2+6vw+4uw+6uy+6vy+6wy+3y2� i1); (20)where "=4�d and i1; i2 are loop integrals [15℄ of the diagrams r Æ
�����HHHrrHH��and ��k2 Æ
��rr jk2=0 
orrespondingly. Analysing the RG fun
tions (15){(20) in the �xed d = 3 s
heme [14℄ one substitutes the loop integrals bytheir numeri
al values i1(d = 3) = 1=6 ; i2(d = 3) = �2=27 [17℄ and thendeals with the expansions (15){(20) in renormalized 
ouplings. However,the "-expansion te
hnique [18℄ is also suited for the massive s
heme. Tothis end the loop integrals are to be substituted by their "-expansion:i1 ' 1=2 + "=4 + : : :, i2 ' �"=8 + : : : [19℄ and the perturbation theoryis 
onstru
ted both in " and in renormalized 
ouplings. Both s
hemeswill be applied in our analysis of the expressions (15){(20) in the nextse
tion.To 
on
lude this se
tion let us note that the one-loop parts of theRG fun
tions (15){(20) reprodu
e "-expansion results of the Refs. [4,21℄.Moreover, the RAM with the 
ubi
 distribution of random axis maybe regained from the more general model of the Ref. [22℄ des
ribingphase transition in 
rystals with low-symmetry point defe
ts. There, the
orresponding RG fun
tions were written to order "2. The "{expansion of
ICMP{01{12E 8RG fun
tions (15){(20) does not 
oin
ide with the appropriate fun
tionsof the Ref. [22℄ as far as the renormalization s
hemes di�er. However,as it will be shown in the next se
tion, the observables obtained in "-expansion on their basis do 
oin
ide, as expe
ted.3. The �xed points and the 
riti
al exponentsAn "-expansion. The �rst RG study of the RAM [4℄ reported an eviden
eof 14 FPs for the 
ubi
 distribution of an anisotropy axis. This resultwas obtained in the �rst order in " and may be easily reprodu
ed on thebasis of the fun
tions (15){(18) putting two-loop 
ontributions equal tozero and applying the "-expansion s
heme as des
ribed at the end of theSe
tion 2. We list 
oordinates of the FPs I{XIV in the Table 1 (in orderto re
over results of Ref. [4℄ we extra
t the value of the one-loop integral� 1=" from 
onventionally normalized 
ouplings: see note [15℄).Table 1. FPs of the RAM with the random 
ubi
 anisotropy distribu-tion. Here, �� = (m�4�pm2 + 48)=8, �� = �(m+12�pm2 + 48)=6,A�� = 6��+3��+m+6. Note, that the �xed points XV-XVII appearonly in the two-loop approximation due to the degenera
y of the 
or-responding one-loop fun
tions. Expressions for some two-loop 
ontribu-tions (indexed by Roman numbers) are too 
umbersome, their numeri
alvalues are listed in the Table 2 for some m.u� v� w� y�I. 0 0 0 0II. 0 6m+8 "+18 (3m+14)(m+8)3 "2 0 0III. 68 " + 63128 "2 0 0 0IV. 0 0 68 "+ 63128 "2 0V. 0 0 0 69 " + 3481 "2VI. 6(m�4)16(m�1) "+uV I"2 64(m�1) " + vV I"2 0 0VII. 32 " + 34 "2 0 � 32 "� 34 "2 0VIII. 0 2m "+ vV III"2 0 2(m�4)3m "+yV III"2IX. m�44(m�2) "+uIX"2 1m�2 "+ vIX"2 0 m�43(m�2) "+ yIX"2X. 12 " + 25108 "2 0 � 12 " � 25108 "2 23 " + 3481 "2XI.�+�+ 3�+A++ "+ uXI"2 3A++ "+ vXI"2 3(m+4)4A++ " + wXI"2 3�+A++ "+ yXI"2XII.�+�� 3�+A+� " + uXII"2 3A+� "+ vXII"2 3(m+4)4A+� "+ wXII"2 3��A+� " + yXII"2XIII.���+ 3��A�+ "+uXIII"2 3A�+ "+ vXIII"2 3(m+4)4A�+ "+wXIII"2 3�+A�+ " + yXIII"2XIV.���� 3��A�� "+ uIV "2 3A�� " + vIV "2 3(m+4)4A�� " + wIV "2 3��A�� "+ yIV "2XV. 0 0 �p 5453 " � 43p 5453 "XVI. �p 5453 " 0 0 � 43p 5453 "XVII.m = 2 �p 5453 " �2p 5453 " 0 � 43p 5453 "



9 ðÒÅ�ÒÉÎÔThe results of linear in " analysis [4℄ state that among the FPs withu > 0; v > 0; w < 0 only a "polymer" O(n = 0) FP III is stable at allm for " > 0, but it is not rea
hable from the initial values of 
ouplings(see Fig. 1). The reason is a separatrix joining the unstable FPs I andVII and separating initial values of 
ouplings (shown by a 
ross in theFigure 1) and FP III. Possible runaway behaviour of a RG 
ow leadAharony [4℄ to the 
on
lusion about smearing of the phase transition asT
 approa
hes.Table 2. Numeri
al values of some 
ontributions to the �xed points 
o-ordinates of the Table 1 for m = 2; 3; 4.m uIV uIX uXI uXII uXIII uXIV2� -3.8906 �1 -29.0018 0.2158 0.0598 0.38383 -0.6665 1.2133 -5.3683 0.2319 -0.0161 -9.55944� -0.2292 0.5 -2.1797 0.2433 -0.0120 �1vIV vV III vIX vXI vXII vXIII2� 3.2578 0.6296 �1 -29.4605 0.1785 0.03723 0.8346 0.2689 -1.6030 -2.9857 0.1277 0.13954 0.5 0.1042 -0.3958 -0.7266 0.0923 0.2959vXIV wXI wXII wXIII wXIV yV III2 -0.0627 -54.2734 0.2556 -0.1332 -0.2614 -0.41983 10.3646 -8.8086 0.2288 -0.0863 18.5654 0.10794� �1 -3.5156 0.2054 0.0762 �1 0.3333yIX yXI yXII yXIII yXIV2� �1 135.4989 -0.1911 0.4562 0.22003 0.9788 20.9753 -0.1543 0.3749 -12.56124� 0.3333 8.1563 0.1231 0.1289 �1However, the subsequent study of Mukamel and Grinstein [21℄ bro-ught about a possibility of a se
ond order phase transition with thes
enario of a weakly diluted quen
hed Ising model [23℄. Indeed, perform-ing perturbation theory expansion to the order "2 we get not only the
orre
tions to the 
oordinates of the FPs I{XIV (listed in the Tables1, 2) but the new FPs XV, XVI, XVII (see the bottom of the Table1). The appearan
e of the pairs of the FPs XV and XVI is 
aused bythe well known fa
t that the �-fun
tions �w, �y at u = v = 0 (�u, �vat w = y = 0, 
orrespondingly) are degenerated at the one loop level.Expressions of FPs 
oordinates XV, XVI in the Table 1 are familiar p"expansion of the FP of weakly diluted quen
hed Ising model [23℄. The
ICMP{01{12E 10p" expansion of the FP XVII holds for m = 2 and is 
aused by the one-loop degenera
y of the �u, �v, �y fun
tions for w = 0 (
. f. singularityat m = 2 in the "-expansion of the FP IX).Che
king the stability of new FPs XV{XVIII we �nd that all of themare unstable ex
ept of the FP with w < 0; y > 0 from the pair XV. More-over, this point is rea
hable from the initial values of the 
ouplings. Asfar as it is the FP of the diluted Ising model one 
on
ludes, that in the
riti
al region RAM with 
ubi
 distribution of random anisotropy axis(3) de
ouples into m independent dilute Ising models and the phase tra-sition is governed by the familiar random Ising model 
riti
al exponents[24℄.However, let us keep in mind that above pi
ture is obtained in theframes of the \naive" analysis of " (and p") expansion and it is highlydesirable to 
on�rm it by a more reliable analysis of FPs and their sta-bility. This will be done below.u uu w u

`uy u uIVXV X III
VII

Figure 1. Fixed points of the RAM with 
ubi
 distribution of a lo
alanisotropy axis for v = 0. The only FPs lo
ated in the region u > 0; w <0 are shown. Filled boxes show the stable FPs, a 
ross denotes the regionof the typi
al initial values of 
ouplings.A d = 3 series. The next step in our analysis will be to 
onsider theseries (15){(20) for the RG fun
tions dire
tly at �xed spa
e dimension



11 ðÒÅ�ÒÉÎÔd = 3. In �eld theory, expansions in renormalized 
ouplings are knownto be asymptoti
 at best and 
ertain resummation pro
edure is neededin order to obtain reliable data on their basis. Here, we will make use ofthe Pad�e-Borel resummation te
hniques [16℄. It 
onsists in the followingsteps. For the given initial polynomial in several (in our 
ase in four)variables for any series of � = �ui from the expressions (15)-(18)�(u; v; w; y) = X1�i+j+k+l�3ai;j;k;l uivjwkyl (21)one introdu
es a \resolvent" polynomial [25℄ in one auxiliary variable �by: F (u; v; w; y;�) = X1�i+j+k+l�3ai;j;k;l uivjwkyl�i+j+k+l�1 : (22)with obvious relation F (u; v; w; y;� = 1) = �(u; v; w; y). Then, the Borelimage of (22) is de�ned as:FB(u; v; w; y;�) = X1�i+j+k+l�3ai;j;k;luivjwkyl�i+j+k+l�1(i+ j + k + l� 1)! : (23)Trun
ated series (23) is approximated by Pad�e-approximant [1=1℄(�).Then the resummed �-fun
tion is obtained from the formula:�res(u; v; w; y) = Z 10 dt exp(�t)[1=1℄(t): (24)Similar te
hnique is used for resummation of the expression ��1 = 2 �
�(fu�i g) � �
�2(fu�i g). The pair 
orrelation fun
tion 
riti
al exponent �is obtained by dire
t substitution of FPs values into (14).Applying the resummation pro
edure (22){(24) to the �-fun
tions(15){(18) we get 16 FPs. In the Table 3 we present numeri
al valuesof FPs 
oordinates with u� > 0, v� > 0, w� < 0. We visualise the FPpi
ture in Fig. 1 for v = 0. The last FP XV in Table 3 
orresponds thestable FP of p"-expansion of pair XV in the Table 1. It has 
oordinateswith u� = v� = 0, w� < 0 and y� > 0 and is a

essible from the typi
alinitial values of 
ouplings (marked by a 
ross in the Fig. 1).Applying the resummation pro
edure (22){(24) we have not foundany other stable FPs in the region of interest.Thus we are drown to the
on
lusion that the e�e
tive Hamiltonian (5) in 
riti
al regime redu
esto a produ
t of m e�e
tive Hamiltonians of a weakly diluted quen
hedrandom site Ising model. This means that for any value of m the system
ICMP{01{12E 12is 
hara
terized by the same set of 
riti
al exponents whi
h are those ofa weakly diluted random site quen
hed Ising model [24℄.In the other FPs, we re
over the familiar two-loop numeri
al resultsfor the Gaussian (FPs I, VII), m{ve
tor (FP II), polymer O(n = 0) (FPIII), Ising (FPs V, X), diluted m{ve
tor (FP VI), and 
ubi
 (FP VIII)models. FP IX belongs to the new universality 
lass. In the Table 3 wegive the numeri
al values of the 
riti
al exponents in these FPs as well:if the 
ow from the initial values of 
ouplings pass near these FPs onemay observe an e�e
tive 
riti
al behaviour governed by these 
riti
alexponents.Table 3. Resummed values of the FPs and 
riti
al exponents for the
ubi
 distribution in the two-loop approximation at d = 3. Only FPswith u� > 0, v� > 0, w� < 0 are shown. The only FPs III and XV arestable.FP m u� v� w� y� � �I 8m 0 0 0 0 1/2 02 0 0.9107 0 0 0.663 0.027II 3 0 0.8102 0 0 0.693 0.0274 0 0.7275 0 0 0.720 0.026III 8m 1.1857 0 0 0 0.590 0.023V 8m 0 0 0 1.0339 0.628 0.026VI 3 0.1733 0.6460 0 0 0.659 0.0274 0.2867 0.4851 0 0 0.653 0.027VII 8m 2.1112 0 -2.1112 0 1/2 02 0 1.5508 0 -1.0339 0.628 0.026VIII 3 0 0.8393 0 -0.0485 0.693 0.0274 0 0.5259 0 0.3624 0.709 0.026IX 3 0.1695 0.7096 0 -0.1022 0.659 0.0274 0.2751 0.4190 0 0.1432 0.653 0.027X 8m 0.6678 0 -0.6678 1.0339 0.628 0.026XV 8m 0 0 -0.4401 1.5933 0.676 0.0314. Con
lusionsIn this paper, we presented an analysis of an m-ve
tor model withquen
hed disorder of a random anisotropy type as des
ribed by theHamiltonian (2). It possesses randomness only for m > 1 and the rand-



13 ðÒÅ�ÒÉÎÔomness-indu
ed behaviour in RAM may be observed only for spins of
ontinuous symmetry. We were interested in a possibility of a ferro-magneti
 ordering of RAM for 
ertain anisotropi
 distribution of a ran-dom anisotropy axis. In parti
ular, we studied the 
ase when the lo
alanisotropy axis points along the edges of an m-dimensional hyper
ube.We applied the �eld theoreti
al RG approa
h, obtaining RG fun
-tions in the two-loop approximation and analysing them both by an"-expansion as well as by resummation of the expansion for �xed spa
edimension d = 3. In the RG language, the 
riti
al point of a system
orresponds to the a

esible stable FP of the RG transformation. In ouranalysis, we get two stable FPs. One of them (FP III in Fig 1) is nota

essible for 
ows from the region of initial values of 
ouplings, but theother one FP XV may be rea
hed from these values. Taken that the FPXV is of the random site Ising type we 
on
lude that RAM with 
ubi
distribution of random anisotropy axis is governed by a set of 
riti
alexponents of a weakly diluted quen
hed Ising model [24℄. There is a sim-ple physi
al interpretation of the phenomena observed: sin
e the m easyaxes of RAM with 
ubi
 distribution are mutually orthogonal a spin ori-ented along a given axis feels only the presen
e of near-neighbour spins
onstrained to lie upon the same axis. The system therefore de
omposesintom independent diluted Ising models [21,22,26℄. Note on
e more, thatthis behaviour is 
hara
teristi
 only for RAM with 
ubi
 distribution ofrandom anisotropy axis, des
ribed by the e�e
tive Hamiltonian (5). Adistribution of random anisotropy axis is relevant: for isotropi
 distribu-tion all investigations bring about an absen
e of a se
ond order phasetransition for d � 4 [4℄-[10℄,[12℄.To 
on
lude we want to attra
t attention to 
ertain similarity in the
riti
al behaviour of both random-site [23℄ and random-anisotropy [3℄quen
hed magnets: if at all there appears new 
riti
al behaviour it al-ways is governed by 
riti
al exponents of site-diluted Ising type. Thusin random-anisotropy system the situation may o

ur that the 
riti
albehaviour of system of spins of 
ontinuous symmetry is the same as thatof a random-site system with dis
rete (Ising) spins. The above 
al
ula-tions of a 
riti
al behaviour of RAM where based on two-loop expansionimproved by a resummation te
hnique. On
e the qualitative pi
ture be-
ame 
lear there is no need to go into higher orders of a perturbationtheory as far as the 
riti
al exponents of the site-diluted Ising model areknown by now with high a

ura
y [24℄.As a possible generalization of the RAM one may 
onsider a 
asewhen quen
hed randomness is present in both random-site and random-anisotropy forms. Then one arrives [4℄ to the e�e
tive Hamiltonian (3)
ICMP{01{12E 14where the 
oupling u0 may be of either sign. We have 
he
ked the regionu < 0 for the presen
e of new FPs and veri�ed that they are absent.Therefore, again FP XV is the only one rea
hable stable FP and theobserved 
riti
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