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On the critical behaviour of random anisotropy magnets: cubic
anisotropy

Maxym Dudka, Reinhard Folk, Yurij Holovatch

Abstract. The critical behaviour of an m-vector model with a local
anisotropy axis of random orientation is studied within the field-theore-
tical renormalization group approach for cubic distribution of anisotropy
axis. Expressions for the renormalisation group functions are calculated
up to the two-loop order and investigated both by an ¢ = 4 — d expan-
sion and directly at space dimension d = 3 by means of the Padé-Borel
resummation. One accessible stable fixed point indicating a 2nd order
ferromagnetic phase transition with dilute Ising-like critical exponents is
obtained.
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1. Introduction

In statistical physics, the low-temperature phases of many-particle spin
models may possess qualitatively different features depending on the fact
whether the corresponding spin Hamiltonian is of discrete or continuous
symmetry. As a textbook example may serve an m—vector model de-
scribed by the Hamiltonian [1]:

=- Z JR7R’§R§R’; (1)

R,R’

where vectors R,R’ span sites of the d-dimensional (hyper)cublc lattice,
Jr,rr > 0 is a short-range ferromagnetic interaction and SRSR/ is a
scalar product of classical n—component “spins” Sg = (Sgrs---, SE.
The Hamiltonian (1) possesses a global O(m) symmetry: it remains in-
variant under rotations in the space of vectors {5 }. However, continuous
O(m) symmetry turns to the discrete one for m = 1: this corresponds
to the invariance of the Ising model Hamiltonian under discrete turn of
the Ising spins to opposite direction. The consequences are well known:
whereas in the Ising model a ferromagnetic phase exists for lattice di-
mensions greater than 1 [1] (i.e. the lower critical dimension dj, = 1),
dy, = 2 for m > 2 [2]. For d > 2 continuous symmetry can be sponta-
neously broken for any m and dy = 4 is the upper critical dimension of
the m-vector model: starting from d = 4 the magnetic phase transition
is governed by the mean-field critical exponents.

Implementation of a weak structural (lattice) disorder into model (1)
has a crucial consequences for the existence of the ordered phase. For
the particular reason of the present study of main interest for us will be
the case when distribution of disorder can be characterized by a certain
symmetry. As an example may serve the m-vector model with random
anisotropy (a random anisotropy model, RAM) [3]:

- Z JR7R’§R§R’ — Dy Z(iﬁRgR)Q. (2)

R,R/ R

Here, the notations are as in (1), Dy is an anisotropy strength, and g
is an unit vector pointing in the local (quenched) random direction of
an uniaxial anisotropy.

The model Hamiltonian (2) possesses randomness only for m > 1: at
m = 1 the second term is a constant and leads to a shift in a free energy
of the resulting regular (Ising) model. It means that the randomness-
induced behaviour in RAM may be observed only for spins of contin-
uous symmetry. The low-temperature ordering in RAM is influenced
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in addition to the global variables of a regular magnet (i.e. lattice di-
mension, type of interaction and spin symmetry) also by distribution
of the random variables & = Zg in (2). For non-correlated Zg the low-
temperature ordering depends on the probability distribution p(z) of
direction of anisotropy on a single site. In particular, for the isotropic
distribution d;, = 4: a ferromagnetic order is absent for the lattice dimen-
sion less than 4. An absence of ferromagnetis oredering in isotropic RAM
was first observed in the renormalization group study of Ref. [4] where
no accessible fixed points of the renormalization group transformation
were obtained for the model within ¢ = 4 — d expansion. Recently, this
result was corroborated by higher-order calculations refined by a resum-
mation technique [5]. The proof of Refs. [6,7] used arguments similar to
those applied by Imry and Ma [8] for a random-field Ising model and
showed that the susceptibility of the ordered state diverges for d < 4,
explicit calculations for m — oo were offered in Ref. [6]. Although the
last appeared to be erroneous [9] the value dr, = 4 was further supported
by an attempt of a Mermin—Wagner proof of the absence of ferromag-
netism in RAM with the isotropic distribution of an anisotropy axis for
d < 4 [10]. The proof of the Ref. [10] uses the replica trick [11] and can-
not be considered rigorous. However, the same paper studies RAM at
low temperatures and small anisotropy avoiding application of replicas
by means of the Migdal-Polyakov renormalization group technique and
the fixed point structure obtained there in d — 4 dimensions confirms
absence of ferromagnetism below d = 4. The upper critical dimension
for RAM with the isotropic distribution of an anisotropy axis was shown
to be dy = 6 [12].

However, the above arguments do not concern anisotropic distribu-
tions p(&). Here, the possibility of ferromagnetic ordering is to be studied
for every particular case. We address the question of existence of a ferro-
magnetic second order phase transition and its universal properties for
a d =3 RAM with an anisotropic distribution of random axis, when the
vector Zr (1) points only along one of the 2m directions of axes k; of a
cubic lattice (so-called cubic anisotropy):

p(#) = = S0 (@ — i) + 6™ (& + k), 3)

2m

=1

where §(g) is a Kronecker’s delta. Besides a pure academic interest such a
choice has practical applications: typical examples of random-anisotropy
magnets are amorphous rare-earth — transition metal alloys [13] and the
cubic distribution (3) of a random axis mimics the situation when an
amorphous magnet still “remembers” initial (cubic) lattice structure.
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In the present paper, we study the RAM with the cubic distribution
of a random-anisotropy axis (3) by means of a field theoretical renormal-
ization group (RG) technique [20] and analyze the two-loop RG functions
both by an € = 4 — d expansion and directly at space dimension d = 3.
We show the existence of a second order phase transition and make our
conclusions about its numerical characteristics on the basis of a resum-
mation technique applied to the resulting perturbation theory series.
The paper is a direct continuation of our preceding work [5], where we
applied similar tools to study RAM with an isotropic distribution p(z)
and we refer the reader there for a more extended review of the RAM
general features.

The set-up of the paper is the following: in the next section 2 we
describe the model and obtain the RG functions within the massive field
theory scheme. In the RG analysis, presence of a second order phase
transition corresponds to a presence of a reachable stable fixed point of
the RG transformation. The fixed points and their stability are analyzed
in the Section 3 by means of an e-expansion to order €2 and by resum-
mation of a d = 3 series. We estimate the critical exponents values and
display them in the Section 3 as well. Section 4 concludes our study and
summarizes the results obtained.

2. The renormalization group functions

In order to apply the field theoretical RG approach to study the criti-
cal behaviour of the RAM (2) with quenched local anisotropy axis dis-
tributed according to (3) one should get an effective Hamiltonian of the
model. Following the scheme of [4] for a given configuration of quenched
random variables Zgr in (2) the partition function of RAM is written in
form of a functional integral of a Gibbs distribution with the effective
Hamiltonian:

Hian ) =~ [ @R {5 [rld+190] ~Diond)+ouldli+ .. |

(4)
where D, is proportional to Dy, 9 and vy are deﬁne(j by Do and the
familiar bare couplings of an m-vector model, and ¢ = ¢r is a m-
dimensional vector. Implying quenched disorder and using therefore the
replica trick [11] one arrives at the n—replicated configuration-dependent
partition function. Performing then the average over random variables
for the case of a cubic distribution (3) one ends up with the effective
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Hamiltonian [4]:
LT s o ) "
Hepp = —/ddR{§ [H02|<P|Z+|V<P|Z] +uol @ o Y (6|1 +
a=1

DI A AT DI I S (5)

i=1 a,f=1 i=1 a=1

which in the replica n — 0 limit describes critical behaviour of the model
(2) with cubic anisotropy distribution (3). Here, pg is bare mass, bare
couplings ug > 0, v9 > 0, wy < 0 are defined by Dy and and familiar bare
couplings of an m-vector model. The yg term combines the symmetries of
vo and wy. It does not result from the functional representation of the free
energy but is generated by further application of the RG transformation.
Therefore yo can be of either sign. ¢ are the components of an mn-
dimensional order parameter field, |¢;|* = > [¢2]?. Values wy and ug
are related to appropriate cumulants of the distribution function (3) and
their ratio wo/ugp = —m determines a region of typical initial values in
the u — v — w — y—space of couplings.

To get a qualitative picture of a critical behaviour it is standard now
to rely on the field-theoretical RG approach [20]. In this approach, finite-
ness of the (renormalized) vertex functions Fgg) is ensured by imposing
certain normalizing conditions. In turn, this leads to different renormal-
ization schemes. Here, we will make use of the renormalization at fixed
mass and zero external momenta {k} [14]. Normalization conditions are
written then for a fixed space dimension d and read:

Fg)(o;u27uavaway) = /12,
O 1@ (k. 2
o2 Lr kit wv,wy) o=
F&4)R({0}5N2:U:anay) = H4_du,
Fq(;‘l)R({O}EHZ:U,U,w,y) ,u47dv, (6)
Fq(f)R({O}QMZ;%U;w,Z/) ,u47dw,
Fg(;‘l)R({O}?MZ;U;U;w,y) - ,U47dy;
ngl)(pEkQ,U?:Uaanay) = 1.

p2:k2:0

Here, u,u,v,w,y are renormalized mass and dimensionless couplings,
2,1) . . . . 9 - . .
FSR’ ) is renormalized vertex function with ¢? insertion, and the vertices
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1“5j”, 1"5,4),I‘£f,1), 1"?(,4) are parts of a full vertex function

F(4) 1rete = F(4)S“lzl3l4 + Fg4)si1i2i3i4Fa1a2a3a4 +

a1 Qo3 g u ] o ¥z Qg

D) Figigis Sarasasas + TS Fiyisigis Fayasagas, (7)
where
Fiji = 000,
Sijk = % (040kt + dindjt + dudjn) (8)
SgnT = % (8110k10030~r + ik 0;100n 037 + 010k0ar0p,) ,

dqp is Kroneker’s delta. Tensors in (8) correspond to terms of different
symmetry in the effective Hamiltonian (5), the Latin symbols are the
spin indices and the Greek symbols are the replica indices.

The mass is renormalized by: p = Z¢F(2) (05 po; {wio}), with u; =
u,v,w,y and Z, being the field renormalizing factor. Finitness of ['*1)
is secured by the factor Z2. The renormalizing factors of couplings Z,,
are relating the bare couplings to the renormalized ones

—qZu;
uio = p' dZ—‘;ui- 9)
[

All renormalizing factors are defined by conditions (6). A change of the

couplings u; and Z—factors under the RG transformation is described by
the - and 7-functions:

8ui _ Oln Z¢

/6ui = aln,u’ Yo = 61H,Uz )

61n Z¢2
Olnp

7}/452 = ) (10)

determining approach of the system to criticality. Namely, the fixed point
(FP) {u;} of the RG transformation defined as a solution of equations

Bu;({uj}) =0 (11)

if stable, may correspond to the critical point. The condition of the FP
stability reads:

8uj

({uj}) —widij| =0, w; > 0. (12)

However, correspondence of a stable FP to the critical point of a sys-
tem implies that this FP is reachable from the initial conditions (initial
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values of the couplings). In the stable FP the correlation length critical
exponent and the pair correlation function critical exponent are defined
by:

v o= 29 ({uf}) - w{ur)), (13)
n o= re{ul}). (14)

The rest of critical exponents may be derived from the familiar scaling
relations.

Applying the renormalization scheme (6) we get the RG functions of
the model (5) in two-loop approximation. In the replica limit n = 0 they
read:

1 1
By = —s{u—g [8u2—|—2 (m—l—2)uv+2vw+4uw+6uy] +§ [44u3+48u2w+
12wu+24 (m + 2) vu®+2 (3m+6) uv? +4w?v+4v*w+60uvw+

2 . .
18y2u—|—72u2y—|—36uvy+36uwy]i1 + 9 [2u3—|—6u2y—|—6uvw+3y2u—l—

2 (m+2) vu’+ (m+2) uv2+2w2u+4u2w+6uvy+6uwy] 0o }, (15)

1 1
By = —51}{1 ~ % [(m+8) v+12u+4w+6y] +§ [2 (5m+22) v +68vw+

8(3m+15)vu+84u2+12w2+72vy+18y2+72uw+108uy+36wy} i1+

2 . .
9 [(m+2)v2—|—2 (m + 2) uw+2u?+2w? +6vw+4uw+6uy+6vy+

6wy+3y2}i2}, (16)

1 1 . . A
B = —8w{1 -5 [Sw+12u+4v+6y] + 9 44w +84u”+36vy+18y*+

2 (m+6)v> +120wu+68vw+72wy+2 (6m+36)uv+108uy | i +

2 . . .
9 [(m—|—2)vz—|—2 (m + 2) uw+2u®+2w? +6vw+4uw+6uy+6vy+

6wy+3y2}i2}, (17)
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1 1
By = —s{y ~ % [9y* +8vw—+12uy+12vy+12wy] +§ [(4m + 72) v w+

72w v+54y> +84uy+ (6m + 84) v’ y+84w?y+144y u+144y v+
2
144y w+96uvw—+2 (6m+84)uvy+252va+168uwy} i1+§ [2u2y+

2 (m+2) woy+ (m+2) v>y+2w?y+6vwy+4uwy+6y>u+6y>v+

6y*w-+3y’] ig}, (18)
9 2 2 2
% = Ty (2u+2 (m + 2)uv+(m + 2)v° +6vw+2w’ +
duw—+6uy+6vy+6wy+3y?) iz, (19)

1
Vo2 = %{5(2u+ (m+2) v+2w+y) — (2u®+2 (m+2) uv+2w’+

(m + 2) v*+6vw+4uw+6uy+6vy+6wy+3y*) iy }, (20)

where e =4—d and iy, i3 are loop integrals [15] of the diagrams :

and 52> |x2—o correspondingly. Analysing the RG functions (15)-

(20) in the fixed d = 3 scheme [14] one substitutes the loop integrals by
their numerical values i1 (d = 3) = 1/6, ia(d = 3) = —2/27 [17] and then
deals with the expansions (15)—(20) in renormalized couplings. However,
the e-expansion technique [18] is also suited for the massive scheme. To
this end the loop integrals are to be substituted by their e-expansion:
ih~1/24¢e/4+ ..., 02 ~ —/8+ ... [19] and the perturbation theory
is constructed both in € and in renormalized couplings. Both schemes
will be applied in our analysis of the expressions (15)—(20) in the next
section.

To conclude this section let us note that the one-loop parts of the
RG functions (15)—(20) reproduce e-expansion results of the Refs. [4,21].
Moreover, the RAM with the cubic distribution of random axis may
be regained from the more general model of the Ref. [22] describing
phase transition in crystals with low-symmetry point defects. There, the
corresponding RG functions were written to order £2. The e-expansion of
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RG functions (15)—(20) does not coincide with the appropriate functions
of the Ref. [22] as far as the renormalization schemes differ. However,
as it will be shown in the next section, the observables obtained in e-
expansion on their basis do coincide, as expected.

3. The fixed points and the critical exponents

An e-ezpansion. The first RG study of the RAM [4] reported an evidence
of 14 FPs for the cubic distribution of an anisotropy axis. This result
was obtained in the first order in € and may be easily reproduced on the
basis of the functions (15)—(18) putting two-loop contributions equal to
zero and applying the e-expansion scheme as described at the end of the
Section 2. We list coordinates of the FPs I-XIV in the Table 1 (in order
to recover results of Ref. [4] we extract the value of the one-loop integral
~ 1/e from conventionally normalized couplings: see note [15]).

Table 1. FPs of the RAM with the random cubic anisotropy distribu-
tion. Here, ay = (m—4+£+vm? + 48)/8, f+ = —(m+12+v/m? + 48)/6,
Aty = 6as + 308+ +m+6. Note, that the fixed points XV-XVII appear
only in the two-loop approximation due to the degeneracy of the cor-
responding one-loop functions. Expressions for some two-loop contribu-
tions (indexed by Roman numbers) are too cumbersome, their numerical
values are listed in the Table 2 for some m.

. o - 7
1. 0 0 0 0
6 (Bm+14) 2
IT. 0 mrsetl8 ms)? © 0 0
I11. St e? 0 0 0
v, 0 0 fo+ e 0
6 34 _2
M o(mm) 2 0 2 0 5et 5ie
V1. To(m=1)c TUVIE 4(m6_1)5 +vvre 0 0
VII. Ze+ 3¢2 0 —2c— 3¢2 0
VIII. 0 %EJrUVIIIEQ 0 —2(7;7;4)5+yV11152
IX. %5+”1§52 e +urxe” 0 , —3{&12)6+912x52
1 25 1 25 2 34
X. 525 T d0se 0 3(*4_545)* 08¢ 52" T BIE
+ 2 3 2 m 2 + 2
Xl.ag By ;a++8+’MXI5 A++E+’UXI5 34A+4+ e+ wxre ;B++8+yXIS
XIL.atf- A+J:€+UX1162 Ai_6+vxns2 4(:,"—_:_)E+UJXHE2 T+ —c+yxme’
_ 3B
XILa_ B4 _Ai+—5+u){11152 AE+ e+ uxrre’ —34(:['—:) etwxrrrs’ A_++ €+ yxrrs’
3 3
XIV.aofo| S5=cturve® | gi—etorye® | 3o 4 oyrpe? | ooy ypype?
54 4 54
XV. 0 0 :':1/§5 ig‘/ﬁg
54 4 54
XVL T/ 2e 0 0 1, /8:
54 B 54 4 54
XVILm = 2 /2% T2,/2%c 0 +2, /5.
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The results of linear in e analysis [4] state that among the FPs with
u > 0,v > 0,w < 0 only a ”polymer” O(n = 0) FP III is stable at all
m for £ > 0, but it is not reachable from the initial values of couplings
(see Fig. 1). The reason is a separatrix joining the unstable FPs I and
VII and separating initial values of couplings (shown by a cross in the
Figure 1) and FP III. Possible runaway behaviour of a RG flow lead
Aharony [4] to the conclusion about smearing of the phase transition as
T. approaches.

Table 2. Numerical values of some contributions to the fixed points co-
ordinates of the Table 1 for m = 2, 3, 4.

m ury Urx uxJ UXTT UXTIIT UXIv
2% | -3.8906 +o00 -29.0018 | 0.2158 0.0598 0.3838
3 -0.6665 1.2133 -5.3683 0.2319 -0.0161 | -9.5594
4* | -0.2292 0.5 -2.1797 0.2433 -0.0120 +oo
(4% VVIII VI X VX] VXTI UXIIT
2% | 3.2578 0.6296 Foo -29.4605 | 0.1785 0.0372
3 0.8346 0.2689 -1.6030 | -2.9857 0.1277 0.1395
4 0.5 0.1042 -0.3958 | -0.7266 0.0923 0.2959
VXTIV WX WxJI1 WXIII WXV YviIii
2 -0.0627 | -54.2734 | 0.2556 -0.1332 | -0.2614 | -0.4198
3 10.3646 | -8.8086 0.2288 -0.0863 | 18.5654 | 0.1079
4* Foo -3.5156 0.2054 0.0762 Foo 0.3333
Yrx Yxi YXIT YXIII YXI1v
2+ +o00 135.4989 | -0.1911 0.4562 0.2200
3 0.9788 | 20.9753 | -0.1543 0.3749 | -12.5612
4%+ | 0.3333 8.1563 0.1231 0.1289 +o00

However, the subsequent study of Mukamel and Grinstein [21] bro-
ught about a possibility of a second order phase transition with the
scenario of a weakly diluted quenched Ising model [23]. Indeed, perform-
ing perturbation theory expansion to the order €2 we get not only the
corrections to the coordinates of the FPs I-XIV (listed in the Tables
1, 2) but the new FPs XV, XVI, XVII (see the bottom of the Table
1). The appearance of the pairs of the FPs XV and XVI is caused by
the well known fact that the g-functions B, By at u = v = 0 (B4, Bo
at w = y = 0, correspondingly) are degenerated at the one loop level.
Expressions of FPs coordinates XV, XVI in the Table 1 are familiar /¢
expansion of the FP of weakly diluted quenched Ising model [23]. The
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/€ expansion of the FP XVII holds for m = 2 and is caused by the one-
loop degeneracy of the 8., 3., 8, functions for w = 0 (c. f. singularity
at m = 2 in the e-expansion of the FP IX).

Checking the stability of new FPs XV-XVIII we find that all of them
are unstable except of the FP with w < 0, y > 0 from the pair XV. More-
over, this point is reachable from the initial values of the couplings. As
far as it is the FP of the diluted Ising model one concludes, that in the
critical region RAM with cubic distribution of random anisotropy axis
(3) decouples into m independent dilute Ising models and the phase tra-
sition is governed by the familiar random Ising model critical exponents
[24].

However, let us keep in mind that above picture is obtained in the
frames of the “naive” analysis of € (and /¢) expansion and it is highly
desirable to confirm it by a more reliable analysis of FPs and their sta-
bility. This will be done below.

w
I u
I
. T
% S |
o
vl X

Figure 1. Fixed points of the RAM with cubic distribution of a local
anisotropy axis for v = 0. The only FPs located in the region u > 0,w <
0 are shown. Filled boxes show the stable FPs, a cross denotes the region
of the typical initial values of couplings.

A d = 3 series. The next step in our analysis will be to consider the
series (15)—(20) for the RG functions directly at fixed space dimension
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d = 3. In field theory, expansions in renormalized couplings are known
to be asymptotic at best and certain resummation procedure is needed
in order to obtain reliable data on their basis. Here, we will make use of
the Padé-Borel resummation techniques [16]. It consists in the following
steps. For the given initial polynomial in several (in our case in four)
variables for any series of 8 = ,, from the expressions (15)-(18)

Blu,v,w,y) = Z a; j o uvwty! (21)
1<itj+k+1<3

one introduces a “resolvent” polynomial [25] in one auxiliary variable A
by:

Fu,v,w,y; \) = Z i j g wvlwhy NFHITAEL (22)
1<i+j+k+1<3

with obvious relation F'(u,v,w,y; A = 1) = B(u,v,w,y). Then, the Borel
image of (22) is defined as:
i j put oI wky X

(i+j+k+i—1)

B . — E
F (u,v,w,y,/\) -
1<i+j+k+1<3

(23)

Truncated series (23) is approximated by Padé-approximant [1/1]()).
Then the resummed S-function is obtained from the formula:

87 (u, v, w,y) = /000 dt exp(—t)[1/1](¢). (24)

Similar technique is used for resummation of the expression v~! = 2 —
Yo ({u;}) — Fp2({uf}). The pair correlation function critical exponent 7
is obtained by direct substitution of FPs values into (14).

Applying the resummation procedure (22)—(24) to the [-functions
(15)—(18) we get 16 FPs. In the Table 3 we present numerical values
of FPs coordinates with «* > 0, v* > 0, w* < 0. We visualise the FP
picture in Fig. 1 for v = 0. The last FP XV in Table 3 corresponds the
stable FP of y/z-expansion of pair XV in the Table 1. It has coordinates
with u* =v* =0, w* < 0 and y¥* > 0 and is accessible from the typical
initial values of couplings (marked by a cross in the Fig. 1).

Applying the resummation procedure (22)—(24) we have not found
any other stable FPs in the region of interest.Thus we are drown to the
conclusion that the effective Hamiltonian (5) in critical regime reduces
to a product of m effective Hamiltonians of a weakly diluted quenched
random site Ising model. This means that for any value of m the system
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is characterized by the same set of critical exponents which are those of
a weakly diluted random site quenched Ising model [24].

In the other FPs, we recover the familiar two-loop numerical results
for the Gaussian (FPs I, VII), m-vector (FP II), polymer O(n = 0) (FP
III), Ising (FPs V, X), diluted m—vector (FP VI), and cubic (FP VIII)
models. FP IX belongs to the new universality class. In the Table 3 we
give the numerical values of the critical exponents in these FPs as well:
if the flow from the initial values of couplings pass near these FPs one
may observe an effective critical behaviour governed by these critical
exponents.

Table 3. Resummed values of the FPs and critical exponents for the
cubic distribution in the two-loop approximation at d = 3. Only FPs
with u* > 0, v* > 0, w* < 0 are shown. The only FPs III and XV are
stable.

FP m u* v* w* y* v n

I Vm 0 0 0 0 1/2 0
2 0 0.9107 0 0 0.663 | 0.027
II 3 0 0.8102 0 0 0.693 | 0.027
4 0 0.7275 0 0 0.720 | 0.026
1 | vm | 1.1857 0 0 0 0.590 | 0.023
V | Vm 0 0 0 1.0339 | 0.628 | 0.026
VI 3 | 0.1733 | 0.6460 0 0 0.659 | 0.027
4 | 0.2867 | 0.4851 0 0 0.653 | 0.027

VII | Vm | 2.1112 0 -2.1112 0 1/2 0
2 0 1.5508 0 -1.0339 | 0.628 | 0.026
VIIT | 3 0 0.8393 0 -0.0485 | 0.693 | 0.027
4 0 0.5259 0 0.3624 | 0.709 | 0.026
IX 3 | 0.1695 | 0.7096 0 -0.1022 | 0.659 | 0.027
4 | 0.2751 | 0.4190 0 0.1432 | 0.653 | 0.027
X | Vm | 0.6678 0 -0.6678 | 1.0339 | 0.628 | 0.026
XV | Vm 0 0 -0.4401 | 1.5933 | 0.676 | 0.031

4. Conclusions

In this paper, we presented an analysis of an m-vector model with
quenched disorder of a random anisotropy type as described by the
Hamiltonian (2). It possesses randomness only for m > 1 and the rand-
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omness-induced behaviour in RAM may be observed only for spins of
continuous symmetry. We were interested in a possibility of a ferro-
magnetic ordering of RAM for certain anisotropic distribution of a ran-
dom anisotropy axis. In particular, we studied the case when the local
anisotropy axis points along the edges of an m-dimensional hypercube.

We applied the field theoretical RG approach, obtaining RG func-
tions in the two-loop approximation and analysing them both by an
e-expansion as well as by resummation of the expansion for fixed space
dimension d = 3. In the RG language, the critical point of a system
corresponds to the accesible stable FP of the RG transformation. In our
analysis, we get two stable FPs. One of them (FP III in Fig 1) is not
accessible for flows from the region of initial values of couplings, but the
other one FP XV may be reached from these values. Taken that the FP
XV is of the random site Ising type we conclude that RAM with cubic
distribution of random anisotropy axis is governed by a set of critical
exponents of a weakly diluted quenched Ising model [24]. There is a sim-
ple physical interpretation of the phenomena observed: since the m easy
axes of RAM with cubic distribution are mutually orthogonal a spin ori-
ented along a given axis feels only the presence of near-neighbour spins
constrained to lie upon the same axis. The system therefore decomposes
into m independent diluted Ising models [21,22,26]. Note once more, that
this behaviour is characteristic only for RAM with cubic distribution of
random anisotropy axis, described by the effective Hamiltonian (5). A
distribution of random anisotropy axis is relevant: for isotropic distribu-
tion all investigations bring about an absence of a second order phase
transition for d < 4 [4]-[10],[12].

To conclude we want to attract attention to certain similarity in the
critical behaviour of both random-site [23] and random-anisotropy [3]
quenched magnets: if at all there appears new critical behaviour it al-
ways is governed by critical exponents of site-diluted Ising type. Thus
in random-anisotropy system the situation may occur that the critical
behaviour of system of spins of continuous symmetry is the same as that
of a random-site system with discrete (Ising) spins. The above calcula-
tions of a critical behaviour of RAM where based on two-loop expansion
improved by a resummation technique. Once the qualitative picture be-
came clear there is no need to go into higher orders of a perturbation
theory as far as the critical exponents of the site-diluted Ising model are
known by now with high accuracy [24].

As a possible generalization of the RAM one may consider a case
when quenched randomness is present in both random-site and random-
anisotropy forms. Then one arrives [4] to the effective Hamiltonian (3)
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where the coupling ug may be of either sign. We have checked the region
u < 0 for the presence of new FPs and verified that they are absent.
Therefore, again FP XV is the only one reachable stable FP and the
observed critical behaviour is unique.

This work has been supported in part by ” Osterreichische National-
bank Jubildumsfonds” (Ausria) through the grant No 7694 and by the
MNTC ”Ukryttia” (Ukraine) through project No 02/2001.
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