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oupling 
onstant. The Poin
ar�e generators in the terms of parti
le vari-ables are obtained. The relations between the instant form generatorsand front form ones are examined. The instant form Hamiltonian in theweak-relativisti
 approximation results in the Darwin Hamiltonian.ðÏÄÁ¤ÔØÓÑ × International Journal of Modern Physi
s ASubmitted to International Journal of Modern Physi
s A

 ¶ÎÓÔÉÔÕÔ Æ�ÚÉËÉ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍ 2001Institute for Condensed Matter Physi
s 2001



1 ðÒÅ�ÒÉÎÔ1. Introdu
tionThe �eld-theoreti
al des
ription of relativisti
 system of 
harged parti
lesis formulated by means of the ele
tromagneti
 4{potential A�(x); x 2M 4 , over the Minkowski spa
e{time1. Su
h a system is des
ribed by thesingular Lagrangian, so the Hamiltonian formulation of dynami
s de-mands the use of the Dira
 theory of 
onstraints. Isolating the gaugedegrees of freedom and �nding a des
ription in the terms of physi
alvariables were initiated by Dira
 [1℄. A number of papers is devotedto the sear
h of Dira
's observables (physi
al variables) for ele
trody-nami
s [2℄ and Yang{Mills theory [3℄. Su
h gauge-invariant des
riptions
an be applied to 
onstru
ting statisti
al and quantum me
hani
s of the\parti
le+�eld" system. But often it is desirable to ex
lude the �eld de-grees of freedom and explore the features of su
h a system in the termsof parti
le variables. The elimination of the �eld is based on substitu-tion of a solution to the �eld equations into the equations of motion ofparti
les. This pro
edure has been 
arried out in the 
lassi
al [4{6℄ andquantum [7℄ domains. It yields a des
ription in the terms of the dire
tintera
tion between parti
les. Sin
e the formal solution of the �eld equa-tions depends on 
hoi
e of the Green's fun
tion (advan
ed, retarded orsymmetri
), physi
ally di�erent theories are obtained.Usually, ex
lusion of the �eld is performed in a
tion integral of thesystem. In the 
lassi
al relativisti
 me
hani
s, substitution of the for-mal solution with the symmetri
 Green's fun
tion into the a
tion givesthe Fokker{type a
tion [5℄. Wheeler{Feynman ele
trodynami
s is an in-stan
e of su
h a theory [8℄. Nonlo
ality of the a
tion leads to seriousdiÆ
ulties in transition to the Hamiltonian des
ription. Possible ways toperform Hamiltonization of the system with nonlo
al a
tion by meansof approximation methods have been studied in literature [6,9,10℄. Butwe shall 
onsider an alternative way whi
h 
onsists in elimination ofthe �eld degrees of freedom after transition to the Hamiltonian des
rip-tion [4,11℄. It is true that the �eld equations in the Hamiltonian pi
tureare nonlinear, so the use of the perturbation s
heme is required. Alsothe problem of Green's fun
tion lasts there. Fortunately, di�eren
e be-tween the advan
ed, retarded and symmetri
 Green's fun
tions does notappear in the linear approximation in the 
oupling 
onstant. Attempt1The Minkowski spa
e{time M 4 is endowed with a metri
 k���k =diag(1;�1;�1;�1). The Greek indi
es �; �; : : : run from 0 to 3; the Latin indi
esfrom the middle of alphabet, i; j; k; : : : run from 1 to 3 and both types of indi
esare subje
t of the summation 
onvention. The Latin indi
es from the beginning ofalphabet, a; b, label the parti
les and run from 1 to N . The sum over su
h indi
es isindi
ated expli
itly. The velo
ity of light 
 is equal to unity.

ICMP{01{23E 2to 
arry out the similar s
heme is presented in work [4℄, where 
hargeQa of ath parti
le is des
ribed by Grassman variables, so that Q2a = 0.Clearly, this approa
h 
orresponds to the �rst-order approximation inthe 
oupling 
onstant.We are 
on
erned with ex
lusion of the ele
tromagneti
 �eld degreesof freedom in the 
lassi
al Hamiltonian pi
ture. In the present paperwe start from an a
tion fun
tional S of the 
lassi
al relativisti
 systemof point-like 
harges 
oupled with the ele
tromagneti
 �eld. The systemhas two kinds of the gauge freedom whi
h are known from Dira
's works.The �rst is related with arbitrariness in the parametrization of parti
leworld lines (
hronometri
al freedom). Redu
tion of this type of freedomrequires the 
hoi
e of a 3+ 1 splitting of the Minkowski spa
e{time. Webuild our formalism into three-dimensional des
ription 
orresponding tothe Dira
's instant and front form of dynami
s [12℄. The se
ond freedomis generated by the proper gauge transformations of ele
tromagneti
 po-tentials. At �rst, treating the �eld and parti
le variables on equal level,we �nd the 
anoni
al realization of the Poin
ar�e algebra in a given formof dynami
s. Then we isolate the gauge degrees of freedom and formu-late the dynami
s of our system in a gauge-invariant manner. Further,the pro
edure of elimination of the �eld is performed in three steps: (i)one �nds the solution to the �eld equations in the �rst order in the 
ou-pling 
onstant; (ii) we transit to new 
anoni
al variables whi
h 
ontainthe free �eld 
orresponding to the solution to homogeneous �eld equa-tion; (iii) the free �eld is �xed by imposing additional 
onstraints. These
onstraints are eliminated by means of the Dira
's method. In su
h away, we obtain the 
anoni
al realization of the Poin
ar�e algebra in theterms of parti
le variables. Besides, it is important to demonstrate thatthe instant and the front form des
riptions are related by means of a
anoni
al transformation. The obtained Poin
ar�e generators are studiedin weak-relativisti
 approximation up to the order 
�2.The paper is organized as follows. In se
tion 2 we �x the form ofrelativisti
 dynami
s of the system of parti
les plus �eld and write downthe Lagrangian and the 
onserved quantities. Then, in the instant formof dynami
s, we reformulate the system in the terms of 
anoni
al vari-ables. We �nd the 
onstraints produ
ed by the gauge invarian
e of thea
tion and build the 
anoni
al realization of the Poin
ar�e algebra. Weeliminate the gauge degrees of freedom by suitable 
anoni
al transfor-mations and write down the generators in the terms of gauge-invariantvariables. In se
tion 3 we solve the �eld equations up to the �rst-orderin the 
oupling 
onstant. Also this se
tion is devoted to the redu
tion ofthe �eld variables. The Poin
ar�e generators depending on the 
anoni
al



3 ðÒÅ�ÒÉÎÔparti
le variables are obtained. In se
tion 4 we apply step by step ourpro
edure to the system in the front form dynami
s and demonstratespe
ial features of the 
onstraint stru
ture. In se
tion 5 we 
ompare thegenerators 
orresponding to the instant and front forms of dynami
s. Inse
tion 6 the obtained instant form generators in approximation up to
�2 are 
onsidered.2. Hamiltonian Des
ription in the Instant Form ofDynami
sWe 
onsider a system of N point-like 
harged parti
les whi
h are de-s
ribed by world lines in the Minkowski spa
e{time 
a : � 7! x�a(�). Anintera
tion between 
harges is assumed to be mediated by an ele
tro-magneti
 �eld ~F��(x) = �� ~A�(x) � �� ~A�(x) with the ele
tromagneti
potential ~A�(x); �� � �=�x� . Dynami
s of the system are 
ompletelydetermined by the following a
tion [13{15℄S = � NXa=1 Z d�a nmapu2a(�a) + eau�a(�a) ~A� [xa(�a)℄o� 116� Z d4x ~F��(x) ~F�� (x); (2.1)wherema and ea are the mass and the 
harge of ath parti
le, respe
tively,u�a(�a) = dx�a(�a)=d�a.A
tion (2.1) is manifestly Poin
ar�e-invariant. Its invarian
e leads tothe 
onservation of symmetri
 energy{momentum tensor [13,15℄ whi
his given by���(x) = NXa=1 Z mau�a(�a)u�a(�a)Æ4(x� xa(�a))pu2a(�a) d�a+ 14� �� ~F��(x) ~F ��(x) + 14 ~F��(x) ~F ��(x)���� : (2.2)Also the a
tion is invariant under two kinds of the gauge transforma-tion. The �rst 
onsists in an arbitrary parametrization of parti
le worldlines; the se
ond is gauge transformation ~A�(x) 7! ~A�(x)+���(x). Thegeneral s
heme of ex
lusion of the gauge freedoms is dis
ussed in Ref.16. Here we apply the suggested s
heme to �nding 
anoni
al realizationof the Poin
ar�e generators in the terms of Dira
's observables in a givenform of dynami
s.

ICMP{01{23E 4Using the 
on
ept of the forms of relativisti
 dynami
s,[12℄ we redu
ethe 
hronometri
al freedom. The form of relativisti
 dynami
s is de�nedby the one-parameter foliation � = f�t j t 2 Rg of the Minkowskispa
e{time with the spa
e-like or isotropi
 hypersurfa
es2 �t = fx 2M 4 j x0 = '(t;x); x = (x1; x2; x3)g. The foliation � spe
i�es a 
ertain3 + 1 splitting of the Minkowski spa
e{time f : M 4 ! R � �0 whi
h isdetermined by transformationf : (x0;x) 7! ('(t;x);x): (2.3)In our 
ase the geometri
al de�nition of the form of dynami
s permitsus to perform repla
ement (2.3) in the a
tion.The parametri
 equation of the world line in a given form of dynami
sis x0 = x0a(t) = '(t;xa(t)) � 'a; xi = xia(t): (2.4)The variable t is treated as an evolution parameter of the parti
le system.On the other hand, (2.3) indu
es a transformation of the �eld vari-ables A� = ~A� Æ f�1, F�� = ~F�� Æ f�1.Let us put't(t;x) � �'(t;x)�t > 0; 'i(t;x) � �'(t;x)�xi : (2.5)A

ounting that the Ja
obian of transformation (2.3) is equal to 't(t;x)and introdu
ing notationsEi = A0;i � � _Ai + _A0'i�'�1t ; Hij = Fij + '�1t ( _Ai'j � _Aj'i);Fij = �iAj � �jAi; (2.6)we 
an rewrite a
tion (2.1) into the single-time formS = Z Ldt (2.7)with the Lagrangian fun
tionL = � NXa=1 hmap(D'a)2 � _x2a + ea[A0(t;xa)D'a +Ai(t;xa) _xia℄i� Z 't16� (2EiEi + HijHij)d3x: (2.8)2Generally, the equation of the hypersurfa
e may depend on momenta. In this 
aseanother te
hnique is required [3℄.



5 ðÒÅ�ÒÉÎÔHere _xia(t) = dxia(t)=dt and D = d=dt = �=�t+ NPa=1 _xia�=�xia.The dynami
al variables of our problem are the fun
tions xa(t),A�(t;x) and their �rst-order derivatives _xa(t) and _A�(t;x) with respe
tto the evolution parameter.Conservation of energy{momentum tensor (2.2) leads to ten 
on-served quantities de�ned on �t:P� = Z dP �; M�� = Z (x�dP � � x�dP �); (2.9)where dP� is given bydP � = [��0(t;x)� ��i(t;x)'i(t;x)℄'t(t;x)d3x: (2.10)We intend to 
onsider the two 
ases of the hypersurfa
e in theMinkowski spa
e{time: spa
e-like and isotropi
. We illustrate both 
asesin the instan
e of the Dira
's instant and front forms of relativisti
 dy-nami
s. As shown in Ref. 16, in these forms of dynami
s of the \par-ti
le+�eld" system sets of 
onstraints are di�erent. We shall 
onstru
tthe Hamiltonian des
ription and �nd the 
anoni
al realization of thePoin
ar�e algebra in a given form of relativisti
 dynami
s. The parti
leand �eld degrees of freedom will be treated on equal rights. Further, weaim to suppress the gauge degrees of freedom and to ex
lude physi
al�elds with the help of the Dira
 theory of 
onstraints.In the 
ase of the instant form of dynami
s we put x0 = t. Then the
anoni
al momenta of our problem are given bypai(t) = � �L(t)� _xia(t) = ma _xai(t)p1� _x2a(t) + eaAi(t;xa(t)); (2.11)Ei(t;x) = ÆL(t)Æ _Ai(t;x) = 14�Ei(t;x); (2.12)E0(t;x) = ÆL(t)Æ _A0(t;x) = 0: (2.13)The basi
 Poisson bra
kets arefxia(t); pbj(t)g = �ÆabÆij ; fA�(t;x); E�(t;y)g = Æ��Æ3(x� y); (2.14)all other bra
kets vanish. Equation (2.13) is a primary 
onstraint.The 
anoni
al Hamiltonian of our system is de�ned asH = � NXa=1 pai _xia + Z E� _A�d3x� L: (2.15)
ICMP{01{23E 6The immediate 
al
ulations giveH = NXa=1 �qm2a + [pa � eaA(xa)℄2 + eaA0(xa)�+ Z � 116�FijFij + 2�EiEi �A0�iEi� d3x: (2.16)Constraint (2.13) re
e
ts the gauge invarian
e of the a
tion S. Thepreservation of (2.13) in time produ
es the only se
ondary 
onstraint(Gauss law). The obtained set of 
onstraints [2℄E0 � 0; � � %� �iEi � 0 (2.17)belongs to the �rst 
lass. Here � means \weak equality" in the sense ofDira
 and 
harge density is de�ned as%(t;x) = NXa=1 eaÆ3(x� xa(t)): (2.18)The ten Poin
ar�e generators in the terms of the parti
le and �eld
anoni
al variables areP 0 = NXa=1qm2a + [pa � eaA(xa)℄2+ Z � 116�FijFij + 2�EiEi� d3x; (2.19)P k = NXa=1 �pka � eaAk(xa)�+ Z ElF lkd3x; (2.20)Mk0 = NXa=1xkaqm2a + [pa � eaA(xa)℄2+ Z � 116�FijFij + 2�EiEi�xkd3x� tP k; (2.21)M ik = NXa=1[xia(pka � eaAk(xa))� xka(pia � eaAi(xa))℄+ Z �xiElF lk � xkElF li� d3x: (2.22)We 
an 
he
k dire
tly that they satisfy the 
ommutation relations of thePoin
ar�e algebra in the terms of the Poisson bra
kets (2.14):fP �; P �g = 0; fP�;M��g = ���P � � ���P � ;



7 ðÒÅ�ÒÉÎÔfM�� ;M��g = ����M�� + ���M�� � ���M�� + ���M��: (2.23)In our work we are interested in reformulation of dynami
s and thePoin
ar�e generators in the terms of 
anoni
al parti
le variables withpreservation of 
ommutation relations (2.23).First of all let us eliminate the gauge degrees of freedom whi
hare subje
t of the gauge transformation of ele
tromagneti
 potential.Generally, su
h a redu
tion 
onsists in de
oupling the gauge-varied andgauge-invariant variables by means of suitable Shanmugadhasan trans-formation [17℄. In our problem we have to perform 
anonization of the�rst 
lass 
onstraints E0 and � and to determine the 
anoni
al basis ofDira
's observables. One immediately sees that A0, E0 
onstitute a pairof 
onjugated gauge 
anoni
al variables. Then it needs to transit from(E1; E2; E3) to (�; b1; b2), where b1 and b2 must be gauge-invariant �eld
anoni
al momenta, and to �nd the 
onjugated variables (Q; a1; a2). Letus make the Hodge de
omposition [2,14℄Ei = Ei? + �i��1(�� %) (2.24)with the use of the following proje
torsP ij � Æij + �i��1�j ; �i� � Æi� � Æi3 ���3 ; � = 1; 2: (2.25)The inverse operators to � = �i�i and �3 are de�ned so that��1Æ3(x) = � 14�jxj ;1�3 Æ3(x) � � ��x3��1 Æ3(x) = 12Æ(x1)Æ(x2)sgn(x3): (2.26)Ve
tor Ei? � P ijEj , whose 
omponents are subje
t of relation�iEi? = 0, 
an be expressed in the terms of independent variables asfollows Ei? = �i�b�p4� ; b� = p4�E�; � = 1; 2: (2.27)In order to de
ouple the gauge and gauge-invariant variables, weperform the 
anoni
al transformation((xia; pai); (A�; E�)) 7! ((xia; �ai); (a�; b�); (Q;�); (A0; E0)) (2.28)determined by the generating fun
tionalF = NXa=1xiapai � Z Ai ��i�b�p4� + �i��1(�� %)� d3x: (2.29)
ICMP{01{23E 8One �ndsQ = �ÆFÆ� = ��1�iAi; a� = � ÆFÆb� = �i� Aip4� ; (2.30)�ai = �F�xia = pai � ea�iQ(xa): (2.31)Note that this transformation 
hanges the parti
le momenta. From (2.30)we obtain Ai = A?i + �iQ. It turns out that the transverse part A?i ofAi is related with a� asA?i = p4�Pi�a�; � = 1; 2: (2.32)Therefore the part of the phase spa
e related to the transverse part of thepotential and the 
orresponding momenta is parametrized by means of(a�; b�) whi
h 
onstitute the elements of some Darboux basis. Hereafterit is 
onvenient to des
ribe the �eld by the fun
tions A?i , Ei? of 
anoni
alvariables a� and b�.Taking into a

ount (2.17), we �nd after transformation (2.28) thatthe 
anoni
al Hamiltonian be
omeH = NXa=1qm2a + [�a � eaA?(xa)℄2 � 2� Z %��1%d3x+ Z � 116�F?ij F?ij + 2�Ei?Ei?� d3x; (2.33)where F?ij = �iA?j � �jA?i . As it must be, H does not depend on gaugevariables A0, Q. The se
ond term of H is reformulated without in�niteself-energies by means of mass renormalization [14℄. It leads to mutualCoulomb intera
tion.After 
anoni
al transformation (2.28) is performed, we arrive at thefollowing form of Poin
ar�e generators (2.19){(2.22):P 0 = H; P k = NXa=1�ka + Z El?�kA?l d3x; (2.34)Mk0 = NXa=1xkaqm2a + [�a � eaA?(xa)℄2 � 2� Z xk%��1%d3x+ Z xk � 116�F?ij F?ij + 2�Ei?Ei? + 4�El?�l��1%� d3x�tP k; (2.35)



9 ðÒÅ�ÒÉÎÔM ik = NXa=1(xia�ka � xka�ia) + Z �xiEl?�kA?l � xkEl?�iA?l � d3x� Z (Ai?Ek? �Ak?Ei?)d3x: (2.36)They also are expressed only in the terms of observables. It demonstratesexpli
itly that gauge-varied variables A0, E0, Q and � do not in
uen
ethe dynami
al properties of the system.3. Elimination of the Physi
al Field Degrees of Free-domIn the previous se
tion we have done redu
tion of the gauge degreesof freedom whi
h are related with two kinds of the a
tion invarian
e.The 
hronometri
al freedom has been eliminated by means of �xationx0 = '(t;x) and introdu
ing evolution parameter t. Let us note that thedes
riptions of our system with di�erent '(t;x) must be physi
al equiv-alent. The gauge freedom of the ele
tromagneti
 �eld has been ex
ludedwith the help of transition to the des
ription in the terms of observables.Below we 
onsider another type of redu
tion whi
h eliminates physi
aldegrees of freedom of the �eld. As a result, one obtains des
ription ofour system in the terms of parti
le variables. Su
h a reformulation isespe
ially e�e
tive, when the free radiation is not essential.Our pro
edure of the �eld redu
tion has three steps. (i) It is ne
-essary to �nd a solution to the �eld equations whi
h are 
ompli
atedin the Hamiltonian me
hani
s. We use the 
oupling 
onstant expansion
oming to the problem of 
hoi
e of Green's fun
tion. The same problemarises in the Lagrangian formalism. In parti
ular, it is known that sub-stitution of the formal solution of the �eld equations with the symmetri
Green's fun
tion into the a
tion leads to 
ompensation of the half ofintera
tion by the �eld part of a
tion. We expe
t that this fa
t has tobe re
e
ted on the Hamiltonian level. But the advan
ed, retarded andsymmetri
 solutions 
oin
ide in the linear approximation in the 
oupling
onstant. The general solution must be a sum of the free �eld, whi
hsatis�es the homogeneous equation, and the solution to the inhomoge-neous equation determined by the point-like sour
es. (ii) We intend toperform a 
anoni
al transformation after that the free-�eld terms be-
ome the 
anoni
al variables. (iii) We put the free-�eld variables equalto zero. The obtained 
anoni
al se
ond 
lass 
onstraints are eliminatedby using respe
tive Dira
 bra
ket whi
h 
oin
ides with the parti
le Pois-son bra
ket. The use of the Dira
 bra
ket allows us to ex
lude the �eld
ICMP{01{23E 10from generators.Taking into a

ount relations (2.27), (2.32), let us write down theHamiltonian equations of motion for A?i and Ei?:_A?i = 4�Ei?; (3.1)_Ei? = � NXa=1 ea �ja � eaAj?(xa)pm2a + [�a � eaA?(xa)℄2P ijÆ3(x� xa) + �4�A?i : (3.2)Finding solution to these equations requires the use of approximations
heme. Let us rewrite equations (3.1), (3.2) in the following form:�in A?i = 4�Pijjj ; Ei? = 14� _A?i : (3.3)with the 
urrent density in the linear approximation in the 
oupling
onstant: ji(t;x) = NXa=1 eaviaÆ3(x� xa(t)): (3.4)Here via = �ia=pm2a + �2a is the free-parti
le velo
ity whi
h is time inde-pendent in our approximation.Operator �in � �2t � � is de�ned as the d'Alambertian � �������� in the instant form of dynami
s (\in"). Generally, the formof d'Alambertian is determined by repla
ement (x0;x) 7! (t;x) givenby equation of hypersurfa
e in the Minkowski spa
e{time (see AppendixA).At this point we have 
ome to the linear inhomogeneous �eld equa-tions whi
h 
an be solved by means of the Green's fun
tion method. Thegeneral solution of (3.3) is presented asA?i (t;x) = �?i (t;x) +A?i (t;x); Ei?(t;x) = �i?(t;x) + E i?(t;x): (3.5)A

ording to (2.27) and (2.32), �?i (t;x) and �i?(t;x) are 
onne
ted withindependent free �eld variables ��(t;x); ��(t;x) by means of relations:�?i (t;x) = (4�)1=2Pi���(t;x); �i?(t;x) = (4�)�1=2�i���(t;x):(3.6)These fun
tions are the general solutions to the 
orresponding homoge-neous equations: �in �?i = 0; �i? = 14� _�?i : (3.7)We 
an present solutions A?i and E i? to inhomogeneous equations asA?i = PijAj ; E i? = Pj iEj : (3.8)



11 ðÒÅ�ÒÉÎÔLet us 
al
ulate fun
tions Aj and E i. We 
an �nd Ai by means of sym-metri
 Green's fun
tion:Ai(t;x) = NXa=1 eavaiWa(t;x); (3.9)Wa(t;x) = 4� Z G[(t� t0)2 � (x� xa(t0))2℄dt0: (3.10)By using free-parti
le solutions, integration in (3.10) yieldsWa(t;x) = �[va(x� xa(t))℄2 + (1� v2a)(x� xa(t))2	�1=2 : (3.11)In view of the de�nition of the �eld momenta Ei (2.12), it is 
onve-nient to de�ne A0(t;x) asA0(t;x) = NXa=1 eaWa(t;x); (3.12)so that E i(t;x) = 14� (DtAi(t;x)� �iA0(t;x)) : (3.13)Here we have introdu
ed Dt � NXa=1 via ��xia : (3.14)Fun
tion E i? does not depend on the term �iA0, be
ause of Pj i�i = 0.Sin
e _A�(t;x) = DtA�(t;x), we 
an 
he
k dire
tly that the fun
tionsA0 and Ai satisfy Lorentz gauge 
ondition DtA0��iAi = 0. The trans-formation properties of A0, Ai and E i are 
olle
ted in Appendix B.Now we deal with the 
anoni
al transformation to the new �eld vari-ables �?i , �i? in a

ordan
e with relations (3.5). Su
h a transformation
hanges the parti
le variables (xia; �ia) 7! (yia; ria) asxia = yia + Z ���?k + 12A?k � �Ek?�rai ���k? + 12Ek?� �A?k�rai � d3x; (3.15)�ai = rai � Z ���?k + 12A?k � �Ek?�yia ���k? + 12Ek?� �A?k�yia � d3x: (3.16)In the 
onsidered approximation we haveA�(t;x) � A�(xa(t);�a;x) = A�(ya(t); ra;x): (3.17)
ICMP{01{23E 12In the terms of new variables the Hamiltonian is given byH = NXa=1pm2a + r2a � 2� Z %��1%d3x+ 12 Z jiA?i d3x+ Z � 116��?ij�?ij + 2��i?�i?� d3x; (3.18)where �?ij = �i�?j � �j�?i .The next step of our pro
edure of elimination of the �eld degrees offreedom 
onsists in �xing the following 
onstraints:�� � 0; �� � 0; � = 1; 2: (3.19)Canoni
al 
onstraints (3.19) are of the se
ond 
lass, so they 
an be ex-
luded by means of the Dira
 bra
ket. Therefore, we remain with theparti
le variables yia, rai and Poisson 
ommutation relations:fyia(t); rbj(t)g = �ÆabÆij : (3.20)Now we 
an put �� � 0; �� � 0 in generators before 
al
ulating theDira
 bra
kets.The Hamiltonian formalism is formed by the Dira
 bra
ket (3.20)and the Hamiltonian:H = NXa=1pm2a + r2a � 2� Z %��1%d3x+ 12 Z jiA?i d3x: (3.21)By using relations (B.1){(B.6), the transformed generators may berewritten as a sum of parti
le and free-�eld terms. Thus, elimination ofthe �eld degrees of freedom leads to the result:P 0 = H; P k = NXa=1 rka ; M ik = NXa=1(yiarka � ykaria); (3.22)Mk0 = NXa=1 ykapm2a + r2a � 2� Z xk%��1%d3x+ 12 Z xkjiA?i d3x�2� Z Ek?��1%d3x� tP k: (3.23)These generators satisfy the 
ommutation relations of the Poin
ar�e al-gebra in a given approximation. We immediately see that six generators



13 ðÒÅ�ÒÉÎÔ(P k and M ik) do not 
ontain intera
tion terms. It re
e
ts the generalproperty of the instant form of dynami
s [6℄.It is possible to ex
lude P ij from expressions of H andMk0 by meansof a 
anoni
al transformation:yia = qia + fF; qiag; rai = kai + fF; kaig; (3.24)F = 12 Z %��1�iAid3x: (3.25)This transformation preserves the form of P k and M ik. But the Hamil-tonian and boost be
omeH = NXa=1pm2a + k2a + 12 Z (jiAi + %A0)d3x; (3.26)Mk0 = NXa=1 qkapm2a + k2a + 12 Z xk(jiAi + %A0)d3x� tP k:(3.27)It is easy to see that the �eld part of the Hamiltonian in the parti
leterms has 
ompensated the half of the intera
tion.The generators H and Mk0 have the following �nal formH = NXa=1 k0a+12 NX0a;b=1Vab; Mk0 = NXa=1 qkak0a+12 NX0a;b=1 qkaVab�tP k; (3.28)k0a =pm2a + k2a; Vab = eaebpm2b + k2b � kakb=pm2a + k2ap(kbqab)2 +m2bq2ab ; (3.29)where qab = qa�qb. The prime over the sum symbol means that a 6= b.The terms, whi
h 
orresponds to self-intera
tion (a = b), 
an be elimi-nated by means of the mass renormalization.A

ording to (3.15), (3.24), the 
ovariant parti
le positions xia are
onne
ted with the 
anoni
al variables asxia = qia + 12 Z �Ak �Ek�kai � Ek �Ak�kai � d3x: (3.30)It 
an be veri�ed dire
tly that in a given approximation the expression(3.30) satis�es the world line 
ondition [18℄:fxia;Mk0g = xkafxia; Hg � tÆik: (3.31)
ICMP{01{23E 14Poisson bra
kets between parti
le positions arefxia; xjbg = Z ��Ak�kbj �Ek�kai � �Ek�kbj �Ak�kai� d3x: (3.32)It shows that xia 
annot be the 
anoni
al variable. This fa
t is in fulla

ordan
e with the famous no-intera
tion theorem [18℄.4. Des
ription in the Front Form of Dynami
sHere we deal with relativisti
 system of 
harged parti
les 
oupled withthe ele
tromagneti
 �eld on the isotropi
 hypersurfa
e given byx0 = t+ x3: (4.1)Appli
ation of the elaborated pro
edure of the elimination of the gaugeand physi
al �eld degrees of freedom to the front form of dynami
s [12℄is demonstrated below.In the Hamiltonian formulation of our system we start with 
anon-i
al variables xia(t), A�(t;x) and 
onjugated momenta pai(t), E�(t;x)whi
h are subje
t of the �rst 
lass 
onstraints (2.17). It turns out thatadditional 
onstraints arise in the front form of dynami
s [16℄
� � 4�E� � F�3 � 0; � = 1; 2: (4.2)Let us note some 
ommutation relations between the 
onstraints:f
�(t;x);
�(t;y)g = �8�Æ�� ��x3 Æ3(x� y); f�;
�g = 0: (4.3)Therefore the Hamiltonian formalism 
ontains a pair of the �rst 
lass
onstraints and the se
ond 
lass 
onstraints 
� � 0, � = 1; 2.We isolate gauge degrees of freedom like to the instant form of dynam-i
s (see transformation (2.24){(2.32)). Similarly, we obtain a des
riptionin the terms of the physi
al 
anoni
al variables xia, �ia, a�, b�.Now we intend to eliminate the se
ond 
lass 
onstraints:b� �p4�����1%� �3a� � 0; � = 1; 2: (4.4)Firstly, it is desirable to perform a 
anoni
al transformation for the sakeof simpli
ity of the form of (4.4):((xia; �ai); (a�; b�)) 7! ((xia; ~�ai); (a�;~b�)); (4.5)b� = ~b� +p4�����1%; �ai = ~�ai +p4�ea�i��1��a�(t;xa): (4.6)



15 ðÒÅ�ÒÉÎÔThen the se
ond 
lass 
onstraints be
ome~b� � �3a� � 0; � = 1; 2: (4.7)They are non-lo
al and \self-
onjugated", so its 
anonization 
onstitutea meaningful problem whi
h is not studied here. These 
onstraints areeliminated immediately by means of the Dira
 bra
ket. Nonvanishing
ommutators between variables in the terms of the Dira
 bra
ket arefxia; ~�bjg� = �ÆabÆij ; fa�(t;x);~b�(t;y)g� = 12Æ��Æ3(x � y);fa�(t;x); a�(t;y)g� = �12Æ�� � ��x3��1 Æ3(x� y);f~b�(t;x);~b�(t;y)g� = 12Æ�� ��x3 Æ3(x� y): (4.8)We shall 
onsider a�(t;x) as independent �eld variables and ~b�(t;x) willbe treated as the fun
tionals on the potentials. We are not 
on
entratedon the �nding Darboux basis, be
ause it is the 
ompli
ated problem and,moreover, our aim is 
omplete ex
lusion of the �eld.The physi
al evolution of the system after ex
lusion of the gauge de-grees of freedom and a

ounting the se
ond 
lass 
onstraints is generatedby the following Hamiltonian:H = Z Hd3x; (4.9)where the Hamiltonian density isH = 12 NXa=1"~�a3 + (~�a� �p4�eaa�)2 +m2a~�a3 # Æ3(x� xa)+12 (�ia��ia� � ��a���a�) + 12  p4��3 %� ��a�!2 :(4.10)We remark that dependen
e of H on the �eld variables is quadrati
. Thisfa
t has used in Ref. 16 to 
al
ulating 
lassi
al partition fun
tion, whenthe parti
le and �eld variables are treated on equal rights.The Poin
ar�e generators after de
oupling of the gauge and gauge-invariant degrees of freedom have the formP 0 = H; P k = NXa=1 ~�ka + Z ~b��ka�d3x+ Æk3H; (4.11)
ICMP{01{23E 16Mk0 = � NXa=1x3a~�ka � Z x3~b��ka�d3x+ Z (xk � Æk3x3)Hd3x��k� Z a� �3�~b� + p4��3 %! d3x� tP k; (4.12)M ik = NXa=1(xia~�ka � xka~�ia) + Z (xi~b��ka� � xk~b��ia�)d3x+ Z d3xa� "�k� �i�~b� + Æi3p4��3 %!� �i� �k�~b� + Æk3 p4��3 %!#+ Z (xiÆk3 � xkÆi3)Hd3x: (4.13)They satisfy the 
ommutation relations of the Poin
ar�e algebra (2.23) inthe terms of the Dira
 bra
kets.Now we are 
on
entrated on the elimination of the �eld degrees offreedom. Let us �rst �nd a solution of the Hamiltonian �eld equationswhi
h are written as�fr a� = p4� NXa=1 ea ~�a� �p4�eaa�(t;xa)~�a3 � ���3! Æ3(x�xa); (4.14)�fr = 2�t�3 ��: (4.15)The d'Alambertian �fr in the front form of dynami
s is the �rst-orderdi�erential operator with respe
t to the evolution parameter.In the linear approximation we have equations�fr a� = p4��j� � ���3 %� : (4.16)with the following 
urrent densityji(t;x) = NXa=1 eaviaÆ3(x� xa(t)): (4.17)Here via = (~�ia + Æi3ha)=~�a3 = 
onst, ha = (m2a + ~�2a)=2~�a3.By using the Green's fun
tion method, the general solution of theinhomogeneous equation (4.16) 
an be presented in the forma� = �� + a�; (4.18)a� = �� � ���3 �0; (4.19)



17 ðÒÅ�ÒÉÎÔwhere �� is the general solution to homogeneous equation �fr�� = 0.The solution to inhomogeneous equation, namely, a� depending on par-ti
le variables 
an be written by means of the following fun
tions:�i(t;x) = (4�)�1=2 NXa=1 eavaiWa(t;x);�0(t;x) = (4�)�1=2 NXa=1 eaWa(t;x): (4.20)Here we have introdu
edWa(t;x) � 4� Z G[(t� t0 + x3 � x3a(t0))2 � (x� xa(t0))2℄dt0 (4.21)
ontaining symmetri
 Green's fun
tion G. A

ounting free-parti
le equa-tions, the integration leads to the following expression:Wa(t;x) = �[x3 � x3a(t)� v�a (x� � x�a (t))℄2 + 
�2a (x� � x�a (t))2	�1=2 ;(4.22)where 
�2a � 1 + 2v3a � (v�a )2.It is easy to 
he
k that the fun
tions �� satisfy Lorentz gauge 
on-dition in the linear approximation in the 
oupling 
onstant.A

ording to (4.7), let us introdu
e the following fun
tions:b�(t;x) = �3a�(t;x); ��(t;x) = �3��(t;x): (4.23)Some useful transformation properties of the obtained fun
tions areshown in Appendix B.Transition to the new �eld variables is done by means of the followingtransformation:a�(t;x) = ��(t;x) + a�(t;x); ~b�(t;x) = ��(t;x) + b�(t;x); (4.24)xia = yia + Z ���� + 12a�� �b��rai � ��� + 12b�� �a��rai � d3x; (4.25)~�ai = rai � Z ���� + 12a�� �b��yia ���� + 12b�� �a��yia � d3x; (4.26)whi
h preserves 
ommutation relations in the terms of Dira
 bra
kets.We must remember that ��(t;x) and ��(t;x) are related by 
onstraints�� � �3�� � 0.

ICMP{01{23E 18The Hamiltonian density after the performed transformation isH = NXa=1 r2a +m2a2ra3 Æ3(x� ya) + 12p4��3 %p4��3 %� p4�2 �j� � ���3 %� a�+12 ��i���i�� � �������� + (����)2� : (4.27)In analogy with the s
heme of redu
tion in the instant form, the free�eld degrees of freedom are eliminated by �xing a set of 
onstraints��(t;x) � 0; ��(t;x) � 0 (4.28)and introdu
ing the respe
tive new Dira
 bra
ket.Thus, the Hamiltonian formalism in the terms of yia and rai is formedby the Dira
 bra
ket and the Hamiltonian (4.9) with densityH = NXa=1 r2a +m2a2ra3 Æ3(x� ya) + 12p4��3 %p4��3 %� p4�2 �j� � ���3 %� a�:(4.29)A

ounting transformation properties (B.9){(B.14), appli
ation ofthe pro
edure of the �eld elimination to the Poin
ar�e generators gives:P 0 = H; P k = NXa=1 rka + Æk3H; (4.30)Mk0 = � NXa=1 y3arka + �k�2 Z a�p4��3 %d3x+ Z (xk � Æk3x3)Hd3x� tP k; (4.31)M ik = NXa=1(yiarka � ykaria) + Z (xiÆk3 � xkÆi3)Hd3x+p4�2 Z �Æi�Æk3 � Æk�Æi�� a� 1�3 %d3x: (4.32)These generators a
t on the parti
le phase spa
e and satisfy the 
ommu-tation relations of the Poin
ar�e algebra in a given approximation.In order to avoid the expressions 
ontaining 1=�3, we 
arry out a
anoni
al transformation:yia = qia + fF; qiag; rai = kai + fF; kaig; (4.33)



19 ðÒÅ�ÒÉÎÔF = 12 Z �0p4��3 %d3x: (4.34)Then the Hamiltonian density be
omesH = NXa=1 k2a +m2a2ka3 Æ3(x� qa) + p4�2 [ji�i + (%+ j3)(�0 + �3)℄: (4.35)The Hamiltonian of our system 
an be written as followsH = NXa=1ha + 12 NX0a;b=1Vab; ha = m2a + k2a2ka3 ; (4.36)Vab = eaeb[1 + v3a + v3b � v�a v�b ℄q[q3ab � v�b q�ab℄2 + 
�2b (q�ab)2 ; via = kia + Æi3haka3 : (4.37)It is assumed that self-a
tion terms are redu
ed by means of mass renor-malization.The immediate 
al
ulations give us the �nal form of the Poin
ar�egenerators P 0 = H; P k = NXa=1 kka + Æk3H; (4.38)Mk0 = � NXa=1 q3akka + NXa=1(qka � Æk3q3a)ha+12 NX0a;b=1(qka � Æk3q3a)Vab � tP k; (4.39)M ik = NXa=1(qiakka � qkakia) + NXa=1(qiaÆk3 � qkaÆi3)ha+12 NX0a;b=1(qiaÆk3 � qkaÆi3)Vab: (4.40)One 
an extra
t six intera
tion free generators: P k � Æk3P 0 and M ik +Æi3Mk0 � Æk3M i0. Besides, if t = 0, M30 does not 
ontain the intera
-tion term. In next se
tion we shall demonstrate expli
itly the 
anoni
altransformation whi
h 
onne
ts the 
anoni
al realizations of the Poin
ar�ealgebra in the instant and front forms of dynami
s.
ICMP{01{23E 20In the 
ase of a two-parti
le system in two-dimensional spa
e{time,when q�a = 0 and ka� = 0, nonvanishing generators P 0, P 3, and M30agree with the results of Ref. 19 for ve
tor intera
tion in the linear ap-proximation in the 
oupling 
onstant. Comparing these results, we musttake into a

ount that the front form of dynami
s in Ref. 19 is de�nedas x0 = t� x.From (4.25), (4.28), (4.33) we obtain relation between the 
ovariantparti
le positions xia and the 
anoni
al variables:xia = qia + Z ��j ��j�kai � (�0 + �3)�(�0 + �3)�kai � d3x: (4.41)We 
an 
he
k dire
tly that expression (4.40) satis�es the world line 
on-dition.Taking into a

ount (4.23), the Poisson bra
kets between parti
lepositions arefxia; xjbg = 2 Z � ��k�kbj ��k�kai � �(�0 + �3)�kbj �(�0 + �3)�kai � d3x: (4.42)These expressions show that the relation between xia and qia 
annot 
or-respond to the 
anoni
al transformation. However, it may be illustratedthat in the 
ase of the one-dimensional spa
e the 
ovariant 
oordinatesand 
anoni
al variables 
oin
ide, i.e. xa = qa, and fxa; xbg = 0 (see Refs.20, 21).5. Relation Between the Instant and Front FormsHere we aim to show that the obtained Hamiltonian des
riptions in theinstant and front forms of relativisti
 dynami
s are equivalent. It willbe done by means of �nding a 
anoni
al transformation whi
h relatesthe expressions in the instant and front forms. It is 
onvenient for thefollowing study to denote the parti
le 
anoni
al variables of the instantform as (xia; pia). By using inhomogeneous equations for fun
tions A� inthe terms of parti
le variables (see (3.3))�in A0 = 4�%; �inAi = 4�ji; (5.1)let us rewrite the instant form generators (3.26), (3.27) as followsP k = NXa=1 pka; M ik = NXa=1(xiapka � xkapia); (5.2)



21 ðÒÅ�ÒÉÎÔP 0 = NXa=1 p0a + Z Wd3x; Mk0 = NXa=1xkap0a + Z xkWd3x� tP k; (5.3)p0a =pm2a + p2a; W = 18� (A0 �in A0 �Ai �in Ai): (5.4)Similarly, we 
an reexpress the front form Hamiltonian density asH = NXa=1haÆ3(x� qa) + V ; ha = k2a +m2a2ka3 ; (5.5)whi
h 
ontains the following intera
tion termV � 12 [(�0 + �3)�fr (�0 + �3)� �i �fr �i℄: (5.6)We �rst perform a 
anoni
al transformation (xia; pai) 7! (qia; kai):xia = qia � q3a kia + Æi3haha ; pia = kia + Æi3ha; (5.7)whi
h transits immediately instant form generators without intera
tioninto the front form ones. Then we 
an derive that��xia = Æ3i vja ��qja + ��qia ; (5.8)Dt = NXa=1uia ��xia = NXa=1 via ��qia ; (5.9)where uia = pia=pm2a + p2a and via = (kia + Æi3ha)=k3a.Sin
e _A�(t;x) = DtA�(t;x), and A�(t;x) depends on xa � x (see(3.10)), operator �in may be rewritten in the terms of partial derivativeswith respe
t to the parti
le variables in a given approximation as�in = NXa=1"�uia ��xia�2 � �2�xia�xia#= NXa=1 ��2via �2�qia�q3a � �2�qia�qia � = �fr: (5.10)If we 
onsider A�(t;x) and ��(t;x) at the point x = 0, then weimmediately obtain the following relations:A0(xa;pa;0) = p4�[�0(qa;ka;0) + �3(qa;ka;0)℄; (5.11)Ai(xa;pa;0) = p4��i(qa;ka;0): (5.12)
ICMP{01{23E 22Fun
tion A�(t;x) 
an be re
overed from A�(t;0) by repla
ementxa 7! xa � x whi
h is generated by the translation operator:A�(t;x) = A�(xa(t);pa;x) = exp � NXa=1xi ��xia!A�(xa(t);pa;0):(5.13)A

ording (5.8), the exponent is rewritten asNXa=1xi ��xia = x3Dt + NXa=1xi ��qia : (5.14)The se
ond term in r.h.s. will produ
e translation of a fun
tion dependingon qia. Taking this into a

ount, we haveA0(t;x) = p4� exp (�x3Dt)[�0(t;x) + �3(t;x)℄; (5.15)Ai(t;x) = p4� exp (�x3Dt)�i(t;x): (5.16)Reexpression of the instant form intera
tion between 
harged parti-
les in the terms of the new 
anoni
al variables results inW = exp (�x3Dt)V : (5.17)Then we obtainP 0 = NXa=1ha + Z exp (�x3Dt)Vd3x; (5.18)P k = NXa=1 kka + Æk3 NXa=1ha; (5.19)Mk0 = � NXa=1 q3akka + NXa=1(qka � Æk3q3a)ha+ Z xk exp (�x3Dt)Vd3x� tP k; (5.20)M ik = NXa=1(qiakka � qkakia) + NXa=1(qiaÆk3 � qkaÆi3)ha: (5.21)Now it may be shown that di�eren
e between the generators in theinstant (\in") and front (\fr") form is presented asGin �Gfr = fF;Ging; (5.22)



23 ðÒÅ�ÒÉÎÔwhere F = Z (exp (�x3Dt)� 1)Fd3x; DtF = V : (5.23)Therefore, we prove that the generators, whi
h 
orrespond to the instantand front form of relativisti
 dynami
s, are 
onne
ted by a 
anoni
altransformation.6. The Weak-Relativisti
 ApproximationLet us 
onsider the instant form generators in approximation up to theorder 
�2. We shall �rst explore the Hamiltonian and its transformationto the Darwin Hamiltonian. We rewrites (3.28) in the expli
it form with
 H = NXa=1ma
2s1 + k2am2a
2 + 12 NX0a;b=1 eaebpq2ab + (kaqab)2=m2a
2� s1 + k2am2a
2 � kakb=mamb
2p1 + k2b=m2b
2! : (6.1)Expansion of the Hamiltonian up to 
�2-order yieldsH = NXa=1�ma
2 + k2a2ma � k4a8m3a
2�+ 12 NX0a;b=1 eaebjqabj��1� (kaqab)22m2a
2q2ab��1 + k2a2m2a
2 � kakbmamb
2� : (6.2)We observe, therefore, that the Darwin Hamiltonian [22℄HDw = H0 � NXa=1 k4a8m3a
2 �Xa>b eaeb2
2mambjqabj �kakb + (kaqab)(kbqab)q2ab �(6.3)and H are related as H = HDw + f�; H0g; (6.4)where H0 = NXa=1�ma
2 + k2a2ma�+Xa>b eaebjqabj ;� = 14
2 Xa>b eaebjqabj �qab � kama � kbmb�� : (6.5)
ICMP{01{23E 24We 
an immediately write down P 0, be
ause of 
P 0 = H in theinstant form of dynami
s. Similarly, in a given approximation we �ndMk0 = NXa=1 qka �ma + k2a2ma
2�+ 12
2 NX0a;b=1 qka eaebjqabj � tP k: (6.6)We 
an 
he
k dire
tly thatf�; P kg = 0; f�;M ikg = 0; f�;Mk0g = 0: (6.7)Therefore, generators, whi
h are found by means of elimination ofthe �eld in the �rst-order in the 
oupling 
onstant, in weak-relativisti
approximation give us well-known expressions. Moreover, we note that ina given approximation the 
ovariant positions xia 
oin
ide with 
anoni
alvariables qia.7. Con
lusionsUsing the 
hronometri
al invarian
e of the a
tion of relativisti
 systemof 
harged parti
les plus ele
tromagneti
 �eld, the Hamiltonian des
rip-tion and 
anoni
al realization of the Poin
ar�e algebra are 
onsidered inthe Dira
's instant and front form of dynami
s with the break of a man-ifest Lorentz 
ovarian
e. Besides, we have eliminated the proper gaugefreedom of the 4{potential A�. By means of redu
tion of the gauge de-grees of freedom the Hamiltonian formulation of dynami
s is obtainedin the gauge-invariant manner whi
h is not manifestly Lorentz 
ovari-ant. At this step the parti
le and �eld variables are treated on equallevel. Another kind of redu
tion 
onsists in elimination of the physi
al�eld degrees of freedom with the help of the Dira
 theory of 
onstraints.In our approa
h su
h a redu
tion is performed after transition to theHamiltonian formulation. The suggested pro
edure of elimination of the�eld has three steps: (i) �nding a solution to the �eld equation of motion,(ii) 
anonization of the free-�eld variables ��, �� by means of suitabletransformation, (iii) �xation of the free �eld. In our problem the free �eldis equal to zero. However, we may �x another value of the �eld variablesby means of 
onstraints.Here we have limited ourselves by study of the �rst-order approx-imation in the 
oupling 
onstant. As a result, we �nd the 
anoni
alrealization of the Poin
ar�e algebra in the both forms of dynami
s in theterms of parti
le variables. Similar approa
h is studied in Ref. 4, whereele
tri
 
harges are des
ribed by Grassman variables. As distin
t from



25 ðÒÅ�ÒÉÎÔthe results in Ref. 4, our expressions of Poin
ar�e generators are writtenin a non-manifestly Lorentz 
ovariant way for spa
e-like (instant) andisotropi
 form of relativisti
 dynami
s. Note that we suggest a 
anoni
altransformation whi
h 
omes to the form of generators without di�eren-tial proje
tors like (2.25). Obtained expressions are easy analyzed andsimply applied. Moreover, the 
anoni
al transformation of the se
ondstep of our pro
edure, whi
h is not observed in literature, allows usto tra
e the ex
lusion of intera
tion between parti
les and �elds. It isdemonstrated that the Poin
ar�e generators in the instant and front formare related by a 
anoni
al transformation. Also we show that the instantform Hamiltonian in the 
�2 approximation leads to the Darwin Hamil-tonian. Although, the problem of 
anoni
al ex
lusion of the se
ond 
lass�eld 
onstraints in the front form of dynami
s is still remained. Although,the problem of 
anoni
al ex
lusion of the se
ond 
lass �eld 
onstraintsin the front form of dynami
s is still remained.Perspe
tive resear
h is the redu
tion of the �eld in the 
ase of thehigher order approximation in the 
oupling 
onstant. Then, by usingretarded Green's fun
tion, we may study radiation e�e
ts in the termsof parti
le variables. The planning task is to apply the �eld eliminationto the gravity and Yang{Mills theory. The obtained des
ription may bethe base of relativisti
 statisti
al and quantum me
hani
s of the systemof 
harged parti
les.A
knowledgementsWe are greatly indebted to V. Tretyak for idea of reformulation of therelativisti
 system of point-like 
harges in the terms of the parti
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ussionsand for a helpful reading of this manus
ript.Appendix ADeriving the �eld equation in a given form of relativisti
 dynami
s, weneed use the d'Alambertian � � ������� in the terms of t and x. Ifequation of hypersurfa
e is given by x0 = t+nx, where the 
omponentsof ve
tor n are 
onstants, we have� = (1� n2)�2t + 2ni�t�i ��: (A.1)In our paper we use symmetri
 Green's fun
tionG = 14� Æ[(x0)2 � x2℄ (A.2)
ICMP{01{23E 26whi
h satis�es equation�G[(x0)2 � x2℄ = Æ(x0)Æ3(x): (A.3)Appendix BIn the instant and front form of dynami
s we have presented solutionsof inhomogeneous �eld equations by means of a number of fun
tionsdepending on parti
le variables. Performing 
anoni
al transformation tothe free �eld variables ��, ��, it is ne
essary to know 
ommutationrelations between these fun
tions and the Poin
ar�e generators. Here wewrite down these relations. Let parti
le variables be xia and pai with thePoisson bra
ket fxia; pbjg = �ÆabÆij . Then the instant form fun
tions Ai,E i and A0 are transformed asfAl(t;x); xipk � xkpi �mikg = ÆilAk(t;x)� ÆklAi(t;x); (B.1)fAl(t;x); xkp0 �mk0g = ÆklA0(t;x); (B.2)fE l(t;x); xipk � xkpi �mikg = ÆilEk(t;x)� ÆklE i(t;x); (B.3)fE l(t;x); xkp0 �mk0g = 14� ��lAk(t;x)� �kAl(t;x)� ; (B.4)fA0(t;x); xipk � xkpi �mikg = 0; (B.5)fA0(t;x); xkp0 �mk0g = Ak(t;x): (B.6)Here p0 = NXa=1pm2a + p2a; pi = NXa=1 pia; (B.7)mk0 = NXa=1xkapm2a + p2a; mik = NXa=1(xiapka � xkapia): (B.8)In the front form of dynami
s the fun
tions �0 and b� have thefollowing propertiesfb�(t;x); NXa=1(xk � xka)p3ag = ���k�3�0(t;x) � Æk3���0(t;x); (B.9)fb�(t;x);m�
 � x�p
 + x
p�g = ���b
(t;x)� ��
b�(t;x); (B.10)fb�(t;x);m�3 � x�p
3 + x3p� � x�hg = ����3�3(t;x) + ����; (B.11)



27 ðÒÅ�ÒÉÎÔf�0(t;x); NXa=1(xk � xka)p3ag = Æk3�0(t;x); (B.12)f�0(t;x);m�
 � x�p
 + x
p�g = 0; (B.13)f�0(t;x);m�3 � x�p
3 + x3p� � x�hg = ��(t;x); (B.14)where pi = NXa=1 pia + Æi3h; h = NXa=1ha = NXa=1 p2a +m2a2pa3 ; (B.15)mik = NXa=1(xiapka � xkapia) + NXa=1(xiaÆk3 � xkaÆi3)ha: (B.16)Referen
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