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1 ðÒÅ�ÒÉÎÔ1. IntrodutionThe �eld-theoretial desription of relativisti system of harged partilesis formulated by means of the eletromagneti 4{potential A�(x); x 2M 4 , over the Minkowski spae{time1. Suh a system is desribed by thesingular Lagrangian, so the Hamiltonian formulation of dynamis de-mands the use of the Dira theory of onstraints. Isolating the gaugedegrees of freedom and �nding a desription in the terms of physialvariables were initiated by Dira [1℄. A number of papers is devotedto the searh of Dira's observables (physial variables) for eletrody-namis [2℄ and Yang{Mills theory [3℄. Suh gauge-invariant desriptionsan be applied to onstruting statistial and quantum mehanis of the\partile+�eld" system. But often it is desirable to exlude the �eld de-grees of freedom and explore the features of suh a system in the termsof partile variables. The elimination of the �eld is based on substitu-tion of a solution to the �eld equations into the equations of motion ofpartiles. This proedure has been arried out in the lassial [4{6℄ andquantum [7℄ domains. It yields a desription in the terms of the diretinteration between partiles. Sine the formal solution of the �eld equa-tions depends on hoie of the Green's funtion (advaned, retarded orsymmetri), physially di�erent theories are obtained.Usually, exlusion of the �eld is performed in ation integral of thesystem. In the lassial relativisti mehanis, substitution of the for-mal solution with the symmetri Green's funtion into the ation givesthe Fokker{type ation [5℄. Wheeler{Feynman eletrodynamis is an in-stane of suh a theory [8℄. Nonloality of the ation leads to seriousdiÆulties in transition to the Hamiltonian desription. Possible ways toperform Hamiltonization of the system with nonloal ation by meansof approximation methods have been studied in literature [6,9,10℄. Butwe shall onsider an alternative way whih onsists in elimination ofthe �eld degrees of freedom after transition to the Hamiltonian desrip-tion [4,11℄. It is true that the �eld equations in the Hamiltonian pitureare nonlinear, so the use of the perturbation sheme is required. Alsothe problem of Green's funtion lasts there. Fortunately, di�erene be-tween the advaned, retarded and symmetri Green's funtions does notappear in the linear approximation in the oupling onstant. Attempt1The Minkowski spae{time M 4 is endowed with a metri k���k =diag(1;�1;�1;�1). The Greek indies �; �; : : : run from 0 to 3; the Latin indiesfrom the middle of alphabet, i; j; k; : : : run from 1 to 3 and both types of indiesare subjet of the summation onvention. The Latin indies from the beginning ofalphabet, a; b, label the partiles and run from 1 to N . The sum over suh indies isindiated expliitly. The veloity of light  is equal to unity.

ICMP{01{23E 2to arry out the similar sheme is presented in work [4℄, where hargeQa of ath partile is desribed by Grassman variables, so that Q2a = 0.Clearly, this approah orresponds to the �rst-order approximation inthe oupling onstant.We are onerned with exlusion of the eletromagneti �eld degreesof freedom in the lassial Hamiltonian piture. In the present paperwe start from an ation funtional S of the lassial relativisti systemof point-like harges oupled with the eletromagneti �eld. The systemhas two kinds of the gauge freedom whih are known from Dira's works.The �rst is related with arbitrariness in the parametrization of partileworld lines (hronometrial freedom). Redution of this type of freedomrequires the hoie of a 3+ 1 splitting of the Minkowski spae{time. Webuild our formalism into three-dimensional desription orresponding tothe Dira's instant and front form of dynamis [12℄. The seond freedomis generated by the proper gauge transformations of eletromagneti po-tentials. At �rst, treating the �eld and partile variables on equal level,we �nd the anonial realization of the Poinar�e algebra in a given formof dynamis. Then we isolate the gauge degrees of freedom and formu-late the dynamis of our system in a gauge-invariant manner. Further,the proedure of elimination of the �eld is performed in three steps: (i)one �nds the solution to the �eld equations in the �rst order in the ou-pling onstant; (ii) we transit to new anonial variables whih ontainthe free �eld orresponding to the solution to homogeneous �eld equa-tion; (iii) the free �eld is �xed by imposing additional onstraints. Theseonstraints are eliminated by means of the Dira's method. In suh away, we obtain the anonial realization of the Poinar�e algebra in theterms of partile variables. Besides, it is important to demonstrate thatthe instant and the front form desriptions are related by means of aanonial transformation. The obtained Poinar�e generators are studiedin weak-relativisti approximation up to the order �2.The paper is organized as follows. In setion 2 we �x the form ofrelativisti dynamis of the system of partiles plus �eld and write downthe Lagrangian and the onserved quantities. Then, in the instant formof dynamis, we reformulate the system in the terms of anonial vari-ables. We �nd the onstraints produed by the gauge invariane of theation and build the anonial realization of the Poinar�e algebra. Weeliminate the gauge degrees of freedom by suitable anonial transfor-mations and write down the generators in the terms of gauge-invariantvariables. In setion 3 we solve the �eld equations up to the �rst-orderin the oupling onstant. Also this setion is devoted to the redution ofthe �eld variables. The Poinar�e generators depending on the anonial



3 ðÒÅ�ÒÉÎÔpartile variables are obtained. In setion 4 we apply step by step ourproedure to the system in the front form dynamis and demonstratespeial features of the onstraint struture. In setion 5 we ompare thegenerators orresponding to the instant and front forms of dynamis. Insetion 6 the obtained instant form generators in approximation up to�2 are onsidered.2. Hamiltonian Desription in the Instant Form ofDynamisWe onsider a system of N point-like harged partiles whih are de-sribed by world lines in the Minkowski spae{time a : � 7! x�a(�). Aninteration between harges is assumed to be mediated by an eletro-magneti �eld ~F��(x) = �� ~A�(x) � �� ~A�(x) with the eletromagnetipotential ~A�(x); �� � �=�x� . Dynamis of the system are ompletelydetermined by the following ation [13{15℄S = � NXa=1 Z d�a nmapu2a(�a) + eau�a(�a) ~A� [xa(�a)℄o� 116� Z d4x ~F��(x) ~F�� (x); (2.1)wherema and ea are the mass and the harge of ath partile, respetively,u�a(�a) = dx�a(�a)=d�a.Ation (2.1) is manifestly Poinar�e-invariant. Its invariane leads tothe onservation of symmetri energy{momentum tensor [13,15℄ whihis given by���(x) = NXa=1 Z mau�a(�a)u�a(�a)Æ4(x� xa(�a))pu2a(�a) d�a+ 14� �� ~F��(x) ~F ��(x) + 14 ~F��(x) ~F ��(x)���� : (2.2)Also the ation is invariant under two kinds of the gauge transforma-tion. The �rst onsists in an arbitrary parametrization of partile worldlines; the seond is gauge transformation ~A�(x) 7! ~A�(x)+���(x). Thegeneral sheme of exlusion of the gauge freedoms is disussed in Ref.16. Here we apply the suggested sheme to �nding anonial realizationof the Poinar�e generators in the terms of Dira's observables in a givenform of dynamis.

ICMP{01{23E 4Using the onept of the forms of relativisti dynamis,[12℄ we reduethe hronometrial freedom. The form of relativisti dynamis is de�nedby the one-parameter foliation � = f�t j t 2 Rg of the Minkowskispae{time with the spae-like or isotropi hypersurfaes2 �t = fx 2M 4 j x0 = '(t;x); x = (x1; x2; x3)g. The foliation � spei�es a ertain3 + 1 splitting of the Minkowski spae{time f : M 4 ! R � �0 whih isdetermined by transformationf : (x0;x) 7! ('(t;x);x): (2.3)In our ase the geometrial de�nition of the form of dynamis permitsus to perform replaement (2.3) in the ation.The parametri equation of the world line in a given form of dynamisis x0 = x0a(t) = '(t;xa(t)) � 'a; xi = xia(t): (2.4)The variable t is treated as an evolution parameter of the partile system.On the other hand, (2.3) indues a transformation of the �eld vari-ables A� = ~A� Æ f�1, F�� = ~F�� Æ f�1.Let us put't(t;x) � �'(t;x)�t > 0; 'i(t;x) � �'(t;x)�xi : (2.5)Aounting that the Jaobian of transformation (2.3) is equal to 't(t;x)and introduing notationsEi = A0;i � � _Ai + _A0'i�'�1t ; Hij = Fij + '�1t ( _Ai'j � _Aj'i);Fij = �iAj � �jAi; (2.6)we an rewrite ation (2.1) into the single-time formS = Z Ldt (2.7)with the Lagrangian funtionL = � NXa=1 hmap(D'a)2 � _x2a + ea[A0(t;xa)D'a +Ai(t;xa) _xia℄i� Z 't16� (2EiEi + HijHij)d3x: (2.8)2Generally, the equation of the hypersurfae may depend on momenta. In this aseanother tehnique is required [3℄.



5 ðÒÅ�ÒÉÎÔHere _xia(t) = dxia(t)=dt and D = d=dt = �=�t+ NPa=1 _xia�=�xia.The dynamial variables of our problem are the funtions xa(t),A�(t;x) and their �rst-order derivatives _xa(t) and _A�(t;x) with respetto the evolution parameter.Conservation of energy{momentum tensor (2.2) leads to ten on-served quantities de�ned on �t:P� = Z dP �; M�� = Z (x�dP � � x�dP �); (2.9)where dP� is given bydP � = [��0(t;x)� ��i(t;x)'i(t;x)℄'t(t;x)d3x: (2.10)We intend to onsider the two ases of the hypersurfae in theMinkowski spae{time: spae-like and isotropi. We illustrate both asesin the instane of the Dira's instant and front forms of relativisti dy-namis. As shown in Ref. 16, in these forms of dynamis of the \par-tile+�eld" system sets of onstraints are di�erent. We shall onstrutthe Hamiltonian desription and �nd the anonial realization of thePoinar�e algebra in a given form of relativisti dynamis. The partileand �eld degrees of freedom will be treated on equal rights. Further, weaim to suppress the gauge degrees of freedom and to exlude physial�elds with the help of the Dira theory of onstraints.In the ase of the instant form of dynamis we put x0 = t. Then theanonial momenta of our problem are given bypai(t) = � �L(t)� _xia(t) = ma _xai(t)p1� _x2a(t) + eaAi(t;xa(t)); (2.11)Ei(t;x) = ÆL(t)Æ _Ai(t;x) = 14�Ei(t;x); (2.12)E0(t;x) = ÆL(t)Æ _A0(t;x) = 0: (2.13)The basi Poisson brakets arefxia(t); pbj(t)g = �ÆabÆij ; fA�(t;x); E�(t;y)g = Æ��Æ3(x� y); (2.14)all other brakets vanish. Equation (2.13) is a primary onstraint.The anonial Hamiltonian of our system is de�ned asH = � NXa=1 pai _xia + Z E� _A�d3x� L: (2.15)
ICMP{01{23E 6The immediate alulations giveH = NXa=1 �qm2a + [pa � eaA(xa)℄2 + eaA0(xa)�+ Z � 116�FijFij + 2�EiEi �A0�iEi� d3x: (2.16)Constraint (2.13) reets the gauge invariane of the ation S. Thepreservation of (2.13) in time produes the only seondary onstraint(Gauss law). The obtained set of onstraints [2℄E0 � 0; � � %� �iEi � 0 (2.17)belongs to the �rst lass. Here � means \weak equality" in the sense ofDira and harge density is de�ned as%(t;x) = NXa=1 eaÆ3(x� xa(t)): (2.18)The ten Poinar�e generators in the terms of the partile and �eldanonial variables areP 0 = NXa=1qm2a + [pa � eaA(xa)℄2+ Z � 116�FijFij + 2�EiEi� d3x; (2.19)P k = NXa=1 �pka � eaAk(xa)�+ Z ElF lkd3x; (2.20)Mk0 = NXa=1xkaqm2a + [pa � eaA(xa)℄2+ Z � 116�FijFij + 2�EiEi�xkd3x� tP k; (2.21)M ik = NXa=1[xia(pka � eaAk(xa))� xka(pia � eaAi(xa))℄+ Z �xiElF lk � xkElF li� d3x: (2.22)We an hek diretly that they satisfy the ommutation relations of thePoinar�e algebra in the terms of the Poisson brakets (2.14):fP �; P �g = 0; fP�;M��g = ���P � � ���P � ;



7 ðÒÅ�ÒÉÎÔfM�� ;M��g = ����M�� + ���M�� � ���M�� + ���M��: (2.23)In our work we are interested in reformulation of dynamis and thePoinar�e generators in the terms of anonial partile variables withpreservation of ommutation relations (2.23).First of all let us eliminate the gauge degrees of freedom whihare subjet of the gauge transformation of eletromagneti potential.Generally, suh a redution onsists in deoupling the gauge-varied andgauge-invariant variables by means of suitable Shanmugadhasan trans-formation [17℄. In our problem we have to perform anonization of the�rst lass onstraints E0 and � and to determine the anonial basis ofDira's observables. One immediately sees that A0, E0 onstitute a pairof onjugated gauge anonial variables. Then it needs to transit from(E1; E2; E3) to (�; b1; b2), where b1 and b2 must be gauge-invariant �eldanonial momenta, and to �nd the onjugated variables (Q; a1; a2). Letus make the Hodge deomposition [2,14℄Ei = Ei? + �i��1(�� %) (2.24)with the use of the following projetorsP ij � Æij + �i��1�j ; �i� � Æi� � Æi3 ���3 ; � = 1; 2: (2.25)The inverse operators to � = �i�i and �3 are de�ned so that��1Æ3(x) = � 14�jxj ;1�3 Æ3(x) � � ��x3��1 Æ3(x) = 12Æ(x1)Æ(x2)sgn(x3): (2.26)Vetor Ei? � P ijEj , whose omponents are subjet of relation�iEi? = 0, an be expressed in the terms of independent variables asfollows Ei? = �i�b�p4� ; b� = p4�E�; � = 1; 2: (2.27)In order to deouple the gauge and gauge-invariant variables, weperform the anonial transformation((xia; pai); (A�; E�)) 7! ((xia; �ai); (a�; b�); (Q;�); (A0; E0)) (2.28)determined by the generating funtionalF = NXa=1xiapai � Z Ai ��i�b�p4� + �i��1(�� %)� d3x: (2.29)
ICMP{01{23E 8One �ndsQ = �ÆFÆ� = ��1�iAi; a� = � ÆFÆb� = �i� Aip4� ; (2.30)�ai = �F�xia = pai � ea�iQ(xa): (2.31)Note that this transformation hanges the partile momenta. From (2.30)we obtain Ai = A?i + �iQ. It turns out that the transverse part A?i ofAi is related with a� asA?i = p4�Pi�a�; � = 1; 2: (2.32)Therefore the part of the phase spae related to the transverse part of thepotential and the orresponding momenta is parametrized by means of(a�; b�) whih onstitute the elements of some Darboux basis. Hereafterit is onvenient to desribe the �eld by the funtions A?i , Ei? of anonialvariables a� and b�.Taking into aount (2.17), we �nd after transformation (2.28) thatthe anonial Hamiltonian beomeH = NXa=1qm2a + [�a � eaA?(xa)℄2 � 2� Z %��1%d3x+ Z � 116�F?ij F?ij + 2�Ei?Ei?� d3x; (2.33)where F?ij = �iA?j � �jA?i . As it must be, H does not depend on gaugevariables A0, Q. The seond term of H is reformulated without in�niteself-energies by means of mass renormalization [14℄. It leads to mutualCoulomb interation.After anonial transformation (2.28) is performed, we arrive at thefollowing form of Poinar�e generators (2.19){(2.22):P 0 = H; P k = NXa=1�ka + Z El?�kA?l d3x; (2.34)Mk0 = NXa=1xkaqm2a + [�a � eaA?(xa)℄2 � 2� Z xk%��1%d3x+ Z xk � 116�F?ij F?ij + 2�Ei?Ei? + 4�El?�l��1%� d3x�tP k; (2.35)



9 ðÒÅ�ÒÉÎÔM ik = NXa=1(xia�ka � xka�ia) + Z �xiEl?�kA?l � xkEl?�iA?l � d3x� Z (Ai?Ek? �Ak?Ei?)d3x: (2.36)They also are expressed only in the terms of observables. It demonstratesexpliitly that gauge-varied variables A0, E0, Q and � do not inuenethe dynamial properties of the system.3. Elimination of the Physial Field Degrees of Free-domIn the previous setion we have done redution of the gauge degreesof freedom whih are related with two kinds of the ation invariane.The hronometrial freedom has been eliminated by means of �xationx0 = '(t;x) and introduing evolution parameter t. Let us note that thedesriptions of our system with di�erent '(t;x) must be physial equiv-alent. The gauge freedom of the eletromagneti �eld has been exludedwith the help of transition to the desription in the terms of observables.Below we onsider another type of redution whih eliminates physialdegrees of freedom of the �eld. As a result, one obtains desription ofour system in the terms of partile variables. Suh a reformulation isespeially e�etive, when the free radiation is not essential.Our proedure of the �eld redution has three steps. (i) It is ne-essary to �nd a solution to the �eld equations whih are ompliatedin the Hamiltonian mehanis. We use the oupling onstant expansionoming to the problem of hoie of Green's funtion. The same problemarises in the Lagrangian formalism. In partiular, it is known that sub-stitution of the formal solution of the �eld equations with the symmetriGreen's funtion into the ation leads to ompensation of the half ofinteration by the �eld part of ation. We expet that this fat has tobe reeted on the Hamiltonian level. But the advaned, retarded andsymmetri solutions oinide in the linear approximation in the ouplingonstant. The general solution must be a sum of the free �eld, whihsatis�es the homogeneous equation, and the solution to the inhomoge-neous equation determined by the point-like soures. (ii) We intend toperform a anonial transformation after that the free-�eld terms be-ome the anonial variables. (iii) We put the free-�eld variables equalto zero. The obtained anonial seond lass onstraints are eliminatedby using respetive Dira braket whih oinides with the partile Pois-son braket. The use of the Dira braket allows us to exlude the �eld
ICMP{01{23E 10from generators.Taking into aount relations (2.27), (2.32), let us write down theHamiltonian equations of motion for A?i and Ei?:_A?i = 4�Ei?; (3.1)_Ei? = � NXa=1 ea �ja � eaAj?(xa)pm2a + [�a � eaA?(xa)℄2P ijÆ3(x� xa) + �4�A?i : (3.2)Finding solution to these equations requires the use of approximationsheme. Let us rewrite equations (3.1), (3.2) in the following form:�in A?i = 4�Pijjj ; Ei? = 14� _A?i : (3.3)with the urrent density in the linear approximation in the ouplingonstant: ji(t;x) = NXa=1 eaviaÆ3(x� xa(t)): (3.4)Here via = �ia=pm2a + �2a is the free-partile veloity whih is time inde-pendent in our approximation.Operator �in � �2t � � is de�ned as the d'Alambertian � �������� in the instant form of dynamis (\in"). Generally, the formof d'Alambertian is determined by replaement (x0;x) 7! (t;x) givenby equation of hypersurfae in the Minkowski spae{time (see AppendixA).At this point we have ome to the linear inhomogeneous �eld equa-tions whih an be solved by means of the Green's funtion method. Thegeneral solution of (3.3) is presented asA?i (t;x) = �?i (t;x) +A?i (t;x); Ei?(t;x) = �i?(t;x) + E i?(t;x): (3.5)Aording to (2.27) and (2.32), �?i (t;x) and �i?(t;x) are onneted withindependent free �eld variables ��(t;x); ��(t;x) by means of relations:�?i (t;x) = (4�)1=2Pi���(t;x); �i?(t;x) = (4�)�1=2�i���(t;x):(3.6)These funtions are the general solutions to the orresponding homoge-neous equations: �in �?i = 0; �i? = 14� _�?i : (3.7)We an present solutions A?i and E i? to inhomogeneous equations asA?i = PijAj ; E i? = Pj iEj : (3.8)



11 ðÒÅ�ÒÉÎÔLet us alulate funtions Aj and E i. We an �nd Ai by means of sym-metri Green's funtion:Ai(t;x) = NXa=1 eavaiWa(t;x); (3.9)Wa(t;x) = 4� Z G[(t� t0)2 � (x� xa(t0))2℄dt0: (3.10)By using free-partile solutions, integration in (3.10) yieldsWa(t;x) = �[va(x� xa(t))℄2 + (1� v2a)(x� xa(t))2	�1=2 : (3.11)In view of the de�nition of the �eld momenta Ei (2.12), it is onve-nient to de�ne A0(t;x) asA0(t;x) = NXa=1 eaWa(t;x); (3.12)so that E i(t;x) = 14� (DtAi(t;x)� �iA0(t;x)) : (3.13)Here we have introdued Dt � NXa=1 via ��xia : (3.14)Funtion E i? does not depend on the term �iA0, beause of Pj i�i = 0.Sine _A�(t;x) = DtA�(t;x), we an hek diretly that the funtionsA0 and Ai satisfy Lorentz gauge ondition DtA0��iAi = 0. The trans-formation properties of A0, Ai and E i are olleted in Appendix B.Now we deal with the anonial transformation to the new �eld vari-ables �?i , �i? in aordane with relations (3.5). Suh a transformationhanges the partile variables (xia; �ia) 7! (yia; ria) asxia = yia + Z ���?k + 12A?k � �Ek?�rai ���k? + 12Ek?� �A?k�rai � d3x; (3.15)�ai = rai � Z ���?k + 12A?k � �Ek?�yia ���k? + 12Ek?� �A?k�yia � d3x: (3.16)In the onsidered approximation we haveA�(t;x) � A�(xa(t);�a;x) = A�(ya(t); ra;x): (3.17)
ICMP{01{23E 12In the terms of new variables the Hamiltonian is given byH = NXa=1pm2a + r2a � 2� Z %��1%d3x+ 12 Z jiA?i d3x+ Z � 116��?ij�?ij + 2��i?�i?� d3x; (3.18)where �?ij = �i�?j � �j�?i .The next step of our proedure of elimination of the �eld degrees offreedom onsists in �xing the following onstraints:�� � 0; �� � 0; � = 1; 2: (3.19)Canonial onstraints (3.19) are of the seond lass, so they an be ex-luded by means of the Dira braket. Therefore, we remain with thepartile variables yia, rai and Poisson ommutation relations:fyia(t); rbj(t)g = �ÆabÆij : (3.20)Now we an put �� � 0; �� � 0 in generators before alulating theDira brakets.The Hamiltonian formalism is formed by the Dira braket (3.20)and the Hamiltonian:H = NXa=1pm2a + r2a � 2� Z %��1%d3x+ 12 Z jiA?i d3x: (3.21)By using relations (B.1){(B.6), the transformed generators may berewritten as a sum of partile and free-�eld terms. Thus, elimination ofthe �eld degrees of freedom leads to the result:P 0 = H; P k = NXa=1 rka ; M ik = NXa=1(yiarka � ykaria); (3.22)Mk0 = NXa=1 ykapm2a + r2a � 2� Z xk%��1%d3x+ 12 Z xkjiA?i d3x�2� Z Ek?��1%d3x� tP k: (3.23)These generators satisfy the ommutation relations of the Poinar�e al-gebra in a given approximation. We immediately see that six generators



13 ðÒÅ�ÒÉÎÔ(P k and M ik) do not ontain interation terms. It reets the generalproperty of the instant form of dynamis [6℄.It is possible to exlude P ij from expressions of H andMk0 by meansof a anonial transformation:yia = qia + fF; qiag; rai = kai + fF; kaig; (3.24)F = 12 Z %��1�iAid3x: (3.25)This transformation preserves the form of P k and M ik. But the Hamil-tonian and boost beomeH = NXa=1pm2a + k2a + 12 Z (jiAi + %A0)d3x; (3.26)Mk0 = NXa=1 qkapm2a + k2a + 12 Z xk(jiAi + %A0)d3x� tP k:(3.27)It is easy to see that the �eld part of the Hamiltonian in the partileterms has ompensated the half of the interation.The generators H and Mk0 have the following �nal formH = NXa=1 k0a+12 NX0a;b=1Vab; Mk0 = NXa=1 qkak0a+12 NX0a;b=1 qkaVab�tP k; (3.28)k0a =pm2a + k2a; Vab = eaebpm2b + k2b � kakb=pm2a + k2ap(kbqab)2 +m2bq2ab ; (3.29)where qab = qa�qb. The prime over the sum symbol means that a 6= b.The terms, whih orresponds to self-interation (a = b), an be elimi-nated by means of the mass renormalization.Aording to (3.15), (3.24), the ovariant partile positions xia areonneted with the anonial variables asxia = qia + 12 Z �Ak �Ek�kai � Ek �Ak�kai � d3x: (3.30)It an be veri�ed diretly that in a given approximation the expression(3.30) satis�es the world line ondition [18℄:fxia;Mk0g = xkafxia; Hg � tÆik: (3.31)
ICMP{01{23E 14Poisson brakets between partile positions arefxia; xjbg = Z ��Ak�kbj �Ek�kai � �Ek�kbj �Ak�kai� d3x: (3.32)It shows that xia annot be the anonial variable. This fat is in fullaordane with the famous no-interation theorem [18℄.4. Desription in the Front Form of DynamisHere we deal with relativisti system of harged partiles oupled withthe eletromagneti �eld on the isotropi hypersurfae given byx0 = t+ x3: (4.1)Appliation of the elaborated proedure of the elimination of the gaugeand physial �eld degrees of freedom to the front form of dynamis [12℄is demonstrated below.In the Hamiltonian formulation of our system we start with anon-ial variables xia(t), A�(t;x) and onjugated momenta pai(t), E�(t;x)whih are subjet of the �rst lass onstraints (2.17). It turns out thatadditional onstraints arise in the front form of dynamis [16℄
� � 4�E� � F�3 � 0; � = 1; 2: (4.2)Let us note some ommutation relations between the onstraints:f
�(t;x);
�(t;y)g = �8�Æ�� ��x3 Æ3(x� y); f�;
�g = 0: (4.3)Therefore the Hamiltonian formalism ontains a pair of the �rst lassonstraints and the seond lass onstraints 
� � 0, � = 1; 2.We isolate gauge degrees of freedom like to the instant form of dynam-is (see transformation (2.24){(2.32)). Similarly, we obtain a desriptionin the terms of the physial anonial variables xia, �ia, a�, b�.Now we intend to eliminate the seond lass onstraints:b� �p4�����1%� �3a� � 0; � = 1; 2: (4.4)Firstly, it is desirable to perform a anonial transformation for the sakeof simpliity of the form of (4.4):((xia; �ai); (a�; b�)) 7! ((xia; ~�ai); (a�;~b�)); (4.5)b� = ~b� +p4�����1%; �ai = ~�ai +p4�ea�i��1��a�(t;xa): (4.6)



15 ðÒÅ�ÒÉÎÔThen the seond lass onstraints beome~b� � �3a� � 0; � = 1; 2: (4.7)They are non-loal and \self-onjugated", so its anonization onstitutea meaningful problem whih is not studied here. These onstraints areeliminated immediately by means of the Dira braket. Nonvanishingommutators between variables in the terms of the Dira braket arefxia; ~�bjg� = �ÆabÆij ; fa�(t;x);~b�(t;y)g� = 12Æ��Æ3(x � y);fa�(t;x); a�(t;y)g� = �12Æ�� � ��x3��1 Æ3(x� y);f~b�(t;x);~b�(t;y)g� = 12Æ�� ��x3 Æ3(x� y): (4.8)We shall onsider a�(t;x) as independent �eld variables and ~b�(t;x) willbe treated as the funtionals on the potentials. We are not onentratedon the �nding Darboux basis, beause it is the ompliated problem and,moreover, our aim is omplete exlusion of the �eld.The physial evolution of the system after exlusion of the gauge de-grees of freedom and aounting the seond lass onstraints is generatedby the following Hamiltonian:H = Z Hd3x; (4.9)where the Hamiltonian density isH = 12 NXa=1"~�a3 + (~�a� �p4�eaa�)2 +m2a~�a3 # Æ3(x� xa)+12 (�ia��ia� � ��a���a�) + 12  p4��3 %� ��a�!2 :(4.10)We remark that dependene of H on the �eld variables is quadrati. Thisfat has used in Ref. 16 to alulating lassial partition funtion, whenthe partile and �eld variables are treated on equal rights.The Poinar�e generators after deoupling of the gauge and gauge-invariant degrees of freedom have the formP 0 = H; P k = NXa=1 ~�ka + Z ~b��ka�d3x+ Æk3H; (4.11)
ICMP{01{23E 16Mk0 = � NXa=1x3a~�ka � Z x3~b��ka�d3x+ Z (xk � Æk3x3)Hd3x��k� Z a� �3�~b� + p4��3 %! d3x� tP k; (4.12)M ik = NXa=1(xia~�ka � xka~�ia) + Z (xi~b��ka� � xk~b��ia�)d3x+ Z d3xa� "�k� �i�~b� + Æi3p4��3 %!� �i� �k�~b� + Æk3 p4��3 %!#+ Z (xiÆk3 � xkÆi3)Hd3x: (4.13)They satisfy the ommutation relations of the Poinar�e algebra (2.23) inthe terms of the Dira brakets.Now we are onentrated on the elimination of the �eld degrees offreedom. Let us �rst �nd a solution of the Hamiltonian �eld equationswhih are written as�fr a� = p4� NXa=1 ea ~�a� �p4�eaa�(t;xa)~�a3 � ���3! Æ3(x�xa); (4.14)�fr = 2�t�3 ��: (4.15)The d'Alambertian �fr in the front form of dynamis is the �rst-orderdi�erential operator with respet to the evolution parameter.In the linear approximation we have equations�fr a� = p4��j� � ���3 %� : (4.16)with the following urrent densityji(t;x) = NXa=1 eaviaÆ3(x� xa(t)): (4.17)Here via = (~�ia + Æi3ha)=~�a3 = onst, ha = (m2a + ~�2a)=2~�a3.By using the Green's funtion method, the general solution of theinhomogeneous equation (4.16) an be presented in the forma� = �� + a�; (4.18)a� = �� � ���3 �0; (4.19)



17 ðÒÅ�ÒÉÎÔwhere �� is the general solution to homogeneous equation �fr�� = 0.The solution to inhomogeneous equation, namely, a� depending on par-tile variables an be written by means of the following funtions:�i(t;x) = (4�)�1=2 NXa=1 eavaiWa(t;x);�0(t;x) = (4�)�1=2 NXa=1 eaWa(t;x): (4.20)Here we have introduedWa(t;x) � 4� Z G[(t� t0 + x3 � x3a(t0))2 � (x� xa(t0))2℄dt0 (4.21)ontaining symmetri Green's funtion G. Aounting free-partile equa-tions, the integration leads to the following expression:Wa(t;x) = �[x3 � x3a(t)� v�a (x� � x�a (t))℄2 + �2a (x� � x�a (t))2	�1=2 ;(4.22)where �2a � 1 + 2v3a � (v�a )2.It is easy to hek that the funtions �� satisfy Lorentz gauge on-dition in the linear approximation in the oupling onstant.Aording to (4.7), let us introdue the following funtions:b�(t;x) = �3a�(t;x); ��(t;x) = �3��(t;x): (4.23)Some useful transformation properties of the obtained funtions areshown in Appendix B.Transition to the new �eld variables is done by means of the followingtransformation:a�(t;x) = ��(t;x) + a�(t;x); ~b�(t;x) = ��(t;x) + b�(t;x); (4.24)xia = yia + Z ���� + 12a�� �b��rai � ��� + 12b�� �a��rai � d3x; (4.25)~�ai = rai � Z ���� + 12a�� �b��yia ���� + 12b�� �a��yia � d3x; (4.26)whih preserves ommutation relations in the terms of Dira brakets.We must remember that ��(t;x) and ��(t;x) are related by onstraints�� � �3�� � 0.

ICMP{01{23E 18The Hamiltonian density after the performed transformation isH = NXa=1 r2a +m2a2ra3 Æ3(x� ya) + 12p4��3 %p4��3 %� p4�2 �j� � ���3 %� a�+12 ��i���i�� � �������� + (����)2� : (4.27)In analogy with the sheme of redution in the instant form, the free�eld degrees of freedom are eliminated by �xing a set of onstraints��(t;x) � 0; ��(t;x) � 0 (4.28)and introduing the respetive new Dira braket.Thus, the Hamiltonian formalism in the terms of yia and rai is formedby the Dira braket and the Hamiltonian (4.9) with densityH = NXa=1 r2a +m2a2ra3 Æ3(x� ya) + 12p4��3 %p4��3 %� p4�2 �j� � ���3 %� a�:(4.29)Aounting transformation properties (B.9){(B.14), appliation ofthe proedure of the �eld elimination to the Poinar�e generators gives:P 0 = H; P k = NXa=1 rka + Æk3H; (4.30)Mk0 = � NXa=1 y3arka + �k�2 Z a�p4��3 %d3x+ Z (xk � Æk3x3)Hd3x� tP k; (4.31)M ik = NXa=1(yiarka � ykaria) + Z (xiÆk3 � xkÆi3)Hd3x+p4�2 Z �Æi�Æk3 � Æk�Æi�� a� 1�3 %d3x: (4.32)These generators at on the partile phase spae and satisfy the ommu-tation relations of the Poinar�e algebra in a given approximation.In order to avoid the expressions ontaining 1=�3, we arry out aanonial transformation:yia = qia + fF; qiag; rai = kai + fF; kaig; (4.33)



19 ðÒÅ�ÒÉÎÔF = 12 Z �0p4��3 %d3x: (4.34)Then the Hamiltonian density beomesH = NXa=1 k2a +m2a2ka3 Æ3(x� qa) + p4�2 [ji�i + (%+ j3)(�0 + �3)℄: (4.35)The Hamiltonian of our system an be written as followsH = NXa=1ha + 12 NX0a;b=1Vab; ha = m2a + k2a2ka3 ; (4.36)Vab = eaeb[1 + v3a + v3b � v�a v�b ℄q[q3ab � v�b q�ab℄2 + �2b (q�ab)2 ; via = kia + Æi3haka3 : (4.37)It is assumed that self-ation terms are redued by means of mass renor-malization.The immediate alulations give us the �nal form of the Poinar�egenerators P 0 = H; P k = NXa=1 kka + Æk3H; (4.38)Mk0 = � NXa=1 q3akka + NXa=1(qka � Æk3q3a)ha+12 NX0a;b=1(qka � Æk3q3a)Vab � tP k; (4.39)M ik = NXa=1(qiakka � qkakia) + NXa=1(qiaÆk3 � qkaÆi3)ha+12 NX0a;b=1(qiaÆk3 � qkaÆi3)Vab: (4.40)One an extrat six interation free generators: P k � Æk3P 0 and M ik +Æi3Mk0 � Æk3M i0. Besides, if t = 0, M30 does not ontain the intera-tion term. In next setion we shall demonstrate expliitly the anonialtransformation whih onnets the anonial realizations of the Poinar�ealgebra in the instant and front forms of dynamis.
ICMP{01{23E 20In the ase of a two-partile system in two-dimensional spae{time,when q�a = 0 and ka� = 0, nonvanishing generators P 0, P 3, and M30agree with the results of Ref. 19 for vetor interation in the linear ap-proximation in the oupling onstant. Comparing these results, we musttake into aount that the front form of dynamis in Ref. 19 is de�nedas x0 = t� x.From (4.25), (4.28), (4.33) we obtain relation between the ovariantpartile positions xia and the anonial variables:xia = qia + Z ��j ��j�kai � (�0 + �3)�(�0 + �3)�kai � d3x: (4.41)We an hek diretly that expression (4.40) satis�es the world line on-dition.Taking into aount (4.23), the Poisson brakets between partilepositions arefxia; xjbg = 2 Z � ��k�kbj ��k�kai � �(�0 + �3)�kbj �(�0 + �3)�kai � d3x: (4.42)These expressions show that the relation between xia and qia annot or-respond to the anonial transformation. However, it may be illustratedthat in the ase of the one-dimensional spae the ovariant oordinatesand anonial variables oinide, i.e. xa = qa, and fxa; xbg = 0 (see Refs.20, 21).5. Relation Between the Instant and Front FormsHere we aim to show that the obtained Hamiltonian desriptions in theinstant and front forms of relativisti dynamis are equivalent. It willbe done by means of �nding a anonial transformation whih relatesthe expressions in the instant and front forms. It is onvenient for thefollowing study to denote the partile anonial variables of the instantform as (xia; pia). By using inhomogeneous equations for funtions A� inthe terms of partile variables (see (3.3))�in A0 = 4�%; �inAi = 4�ji; (5.1)let us rewrite the instant form generators (3.26), (3.27) as followsP k = NXa=1 pka; M ik = NXa=1(xiapka � xkapia); (5.2)



21 ðÒÅ�ÒÉÎÔP 0 = NXa=1 p0a + Z Wd3x; Mk0 = NXa=1xkap0a + Z xkWd3x� tP k; (5.3)p0a =pm2a + p2a; W = 18� (A0 �in A0 �Ai �in Ai): (5.4)Similarly, we an reexpress the front form Hamiltonian density asH = NXa=1haÆ3(x� qa) + V ; ha = k2a +m2a2ka3 ; (5.5)whih ontains the following interation termV � 12 [(�0 + �3)�fr (�0 + �3)� �i �fr �i℄: (5.6)We �rst perform a anonial transformation (xia; pai) 7! (qia; kai):xia = qia � q3a kia + Æi3haha ; pia = kia + Æi3ha; (5.7)whih transits immediately instant form generators without interationinto the front form ones. Then we an derive that��xia = Æ3i vja ��qja + ��qia ; (5.8)Dt = NXa=1uia ��xia = NXa=1 via ��qia ; (5.9)where uia = pia=pm2a + p2a and via = (kia + Æi3ha)=k3a.Sine _A�(t;x) = DtA�(t;x), and A�(t;x) depends on xa � x (see(3.10)), operator �in may be rewritten in the terms of partial derivativeswith respet to the partile variables in a given approximation as�in = NXa=1"�uia ��xia�2 � �2�xia�xia#= NXa=1 ��2via �2�qia�q3a � �2�qia�qia � = �fr: (5.10)If we onsider A�(t;x) and ��(t;x) at the point x = 0, then weimmediately obtain the following relations:A0(xa;pa;0) = p4�[�0(qa;ka;0) + �3(qa;ka;0)℄; (5.11)Ai(xa;pa;0) = p4��i(qa;ka;0): (5.12)
ICMP{01{23E 22Funtion A�(t;x) an be reovered from A�(t;0) by replaementxa 7! xa � x whih is generated by the translation operator:A�(t;x) = A�(xa(t);pa;x) = exp � NXa=1xi ��xia!A�(xa(t);pa;0):(5.13)Aording (5.8), the exponent is rewritten asNXa=1xi ��xia = x3Dt + NXa=1xi ��qia : (5.14)The seond term in r.h.s. will produe translation of a funtion dependingon qia. Taking this into aount, we haveA0(t;x) = p4� exp (�x3Dt)[�0(t;x) + �3(t;x)℄; (5.15)Ai(t;x) = p4� exp (�x3Dt)�i(t;x): (5.16)Reexpression of the instant form interation between harged parti-les in the terms of the new anonial variables results inW = exp (�x3Dt)V : (5.17)Then we obtainP 0 = NXa=1ha + Z exp (�x3Dt)Vd3x; (5.18)P k = NXa=1 kka + Æk3 NXa=1ha; (5.19)Mk0 = � NXa=1 q3akka + NXa=1(qka � Æk3q3a)ha+ Z xk exp (�x3Dt)Vd3x� tP k; (5.20)M ik = NXa=1(qiakka � qkakia) + NXa=1(qiaÆk3 � qkaÆi3)ha: (5.21)Now it may be shown that di�erene between the generators in theinstant (\in") and front (\fr") form is presented asGin �Gfr = fF;Ging; (5.22)



23 ðÒÅ�ÒÉÎÔwhere F = Z (exp (�x3Dt)� 1)Fd3x; DtF = V : (5.23)Therefore, we prove that the generators, whih orrespond to the instantand front form of relativisti dynamis, are onneted by a anonialtransformation.6. The Weak-Relativisti ApproximationLet us onsider the instant form generators in approximation up to theorder �2. We shall �rst explore the Hamiltonian and its transformationto the Darwin Hamiltonian. We rewrites (3.28) in the expliit form with H = NXa=1ma2s1 + k2am2a2 + 12 NX0a;b=1 eaebpq2ab + (kaqab)2=m2a2� s1 + k2am2a2 � kakb=mamb2p1 + k2b=m2b2! : (6.1)Expansion of the Hamiltonian up to �2-order yieldsH = NXa=1�ma2 + k2a2ma � k4a8m3a2�+ 12 NX0a;b=1 eaebjqabj��1� (kaqab)22m2a2q2ab��1 + k2a2m2a2 � kakbmamb2� : (6.2)We observe, therefore, that the Darwin Hamiltonian [22℄HDw = H0 � NXa=1 k4a8m3a2 �Xa>b eaeb22mambjqabj �kakb + (kaqab)(kbqab)q2ab �(6.3)and H are related as H = HDw + f�; H0g; (6.4)where H0 = NXa=1�ma2 + k2a2ma�+Xa>b eaebjqabj ;� = 142 Xa>b eaebjqabj �qab � kama � kbmb�� : (6.5)
ICMP{01{23E 24We an immediately write down P 0, beause of P 0 = H in theinstant form of dynamis. Similarly, in a given approximation we �ndMk0 = NXa=1 qka �ma + k2a2ma2�+ 122 NX0a;b=1 qka eaebjqabj � tP k: (6.6)We an hek diretly thatf�; P kg = 0; f�;M ikg = 0; f�;Mk0g = 0: (6.7)Therefore, generators, whih are found by means of elimination ofthe �eld in the �rst-order in the oupling onstant, in weak-relativistiapproximation give us well-known expressions. Moreover, we note that ina given approximation the ovariant positions xia oinide with anonialvariables qia.7. ConlusionsUsing the hronometrial invariane of the ation of relativisti systemof harged partiles plus eletromagneti �eld, the Hamiltonian desrip-tion and anonial realization of the Poinar�e algebra are onsidered inthe Dira's instant and front form of dynamis with the break of a man-ifest Lorentz ovariane. Besides, we have eliminated the proper gaugefreedom of the 4{potential A�. By means of redution of the gauge de-grees of freedom the Hamiltonian formulation of dynamis is obtainedin the gauge-invariant manner whih is not manifestly Lorentz ovari-ant. At this step the partile and �eld variables are treated on equallevel. Another kind of redution onsists in elimination of the physial�eld degrees of freedom with the help of the Dira theory of onstraints.In our approah suh a redution is performed after transition to theHamiltonian formulation. The suggested proedure of elimination of the�eld has three steps: (i) �nding a solution to the �eld equation of motion,(ii) anonization of the free-�eld variables ��, �� by means of suitabletransformation, (iii) �xation of the free �eld. In our problem the free �eldis equal to zero. However, we may �x another value of the �eld variablesby means of onstraints.Here we have limited ourselves by study of the �rst-order approx-imation in the oupling onstant. As a result, we �nd the anonialrealization of the Poinar�e algebra in the both forms of dynamis in theterms of partile variables. Similar approah is studied in Ref. 4, whereeletri harges are desribed by Grassman variables. As distint from



25 ðÒÅ�ÒÉÎÔthe results in Ref. 4, our expressions of Poinar�e generators are writtenin a non-manifestly Lorentz ovariant way for spae-like (instant) andisotropi form of relativisti dynamis. Note that we suggest a anonialtransformation whih omes to the form of generators without di�eren-tial projetors like (2.25). Obtained expressions are easy analyzed andsimply applied. Moreover, the anonial transformation of the seondstep of our proedure, whih is not observed in literature, allows usto trae the exlusion of interation between partiles and �elds. It isdemonstrated that the Poinar�e generators in the instant and front formare related by a anonial transformation. Also we show that the instantform Hamiltonian in the �2 approximation leads to the Darwin Hamil-tonian. Although, the problem of anonial exlusion of the seond lass�eld onstraints in the front form of dynamis is still remained. Although,the problem of anonial exlusion of the seond lass �eld onstraintsin the front form of dynamis is still remained.Perspetive researh is the redution of the �eld in the ase of thehigher order approximation in the oupling onstant. Then, by usingretarded Green's funtion, we may study radiation e�ets in the termsof partile variables. The planning task is to apply the �eld eliminationto the gravity and Yang{Mills theory. The obtained desription may bethe base of relativisti statistial and quantum mehanis of the systemof harged partiles.AknowledgementsWe are greatly indebted to V. Tretyak for idea of reformulation of therelativisti system of point-like harges in the terms of the partiles vari-ables. We would like to thank A. Duviryak for many fruitful disussionsand for a helpful reading of this manusript.Appendix ADeriving the �eld equation in a given form of relativisti dynamis, weneed use the d'Alambertian � � ������� in the terms of t and x. Ifequation of hypersurfae is given by x0 = t+nx, where the omponentsof vetor n are onstants, we have� = (1� n2)�2t + 2ni�t�i ��: (A.1)In our paper we use symmetri Green's funtionG = 14� Æ[(x0)2 � x2℄ (A.2)
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