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Awnoranisi. PosriisinyTo ramisibroHoBe (hOPMYJTIOBAHHA PEJIATUBICTIY-
HOI cucTeMu 3ap:AIKEHUX YACTUHOK 3 €JIEKTPOMArHETHUM IIOJIEM Y Mi-
pakiBchbkux MuTTEBil Ta dponTOBil dhopmax guHamiku. 3Halinena kKa-
HOHiuHA peaJtizarmia aaredpu I[lyamkape y TepmiHax kaJjiOpyBaJbHO-
inBapisHTHUX 3MiHHUX. PO3p00/eHa mponenypa BUKIIOYEHHS MOTbOBUX
CTYIEHIB BIJIBHOCTH y mepuioMy HaOJIMZKEHHI 33 KOHCTAHTOIO B3AE€MO-
nii B paMkax mipakiBcbkoi teopii B’a3eit. Onepxkano remeparopu Ilyan-
Kape y TepMiHaX YaCTUHKOBHUX 3MiHHHX. [lOC/IiIKEHO CHiBBiIHOIIEHH:
MiXK reHeparopamMu y MuTTeBiil Ta dponToBux dopmax. ['amiabToHiAH
y MUTTEBii hopMi y CIIaOKOPEIATUBICTUIHOMY HAOINKEHH] 3BEIEHO 10
raminbToHiARy lapBina.

Elimination of the field degrees of freedom in relativistic system
of poin-like charges

A Nazarenko

Abstract. The Hamiltonian formulation of relativistic system of charged
particles plus electromagnetic field in the Dirac’s instant and front forms
of dynamics is considered. The canonical realization of the Poincaré al-
gebra in the terms of gauge-invariant variables is found. The procedure
of elimination of the field degrees of freedom within the framework of
the Dirac constraint theory is elaborated up to the first order in the
coupling constant. The Poincaré generators in the terms of particle vari-
ables are obtained. The relations between the instant form generators
and front form ones are examined. The instant form Hamiltonian in the
weak-relativistic approximation results in the Darwin Hamiltonian.
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1. Introduction

The field-theoretical description of relativistic system of charged particles
is formulated by means of the electromagnetic 4-potential A, (z), z €
My, over the Minkowski space-time'. Such a system is described by the
singular Lagrangian, so the Hamiltonian formulation of dynamics de-
mands the use of the Dirac theory of constraints. Isolating the gauge
degrees of freedom and finding a description in the terms of physical
variables were initiated by Dirac [1]. A number of papers is devoted
to the search of Dirac’s observables (physical variables) for electrody-
namics [2] and Yang-Mills theory [3]. Such gauge-invariant descriptions
can be applied to constructing statistical and quantum mechanics of the
“particle+field” system. But often it is desirable to exclude the field de-
grees of freedom and explore the features of such a system in the terms
of particle variables. The elimination of the field is based on substitu-
tion of a solution to the field equations into the equations of motion of
particles. This procedure has been carried out in the classical [4-6] and
quantum [7] domains. It yields a description in the terms of the direct
interaction between particles. Since the formal solution of the field equa-
tions depends on choice of the Green’s function (advanced, retarded or
symmetric), physically different theories are obtained.

Usually, exclusion of the field is performed in action integral of the
system. In the classical relativistic mechanics, substitution of the for-
mal solution with the symmetric Green’s function into the action gives
the Fokker—type action [5]. Wheeler—Feynman electrodynamics is an in-
stance of such a theory [8]. Nonlocality of the action leads to serious
difficulties in transition to the Hamiltonian description. Possible ways to
perform Hamiltonization of the system with nonlocal action by means
of approximation methods have been studied in literature [6,9,10]. But
we shall consider an alternative way which consists in elimination of
the field degrees of freedom after transition to the Hamiltonian descrip-
tion [4,11]. It is true that the field equations in the Hamiltonian picture
are nonlinear, so the use of the perturbation scheme is required. Also
the problem of Green’s function lasts there. Fortunately, difference be-
tween the advanced, retarded and symmetric Green’s functions does not
appear in the linear approximation in the coupling constant. Attempt

!The Minkowski space-time My is endowed with a metric |[nu| =
diag(1,—1,—1,—1). The Greek indices p,v,... run from 0 to 3; the Latin indices
from the middle of alphabet, 4,j,k,... run from 1 to 3 and both types of indices
are subject of the summation convention. The Latin indices from the beginning of
alphabet, a, b, label the particles and run from 1 to N. The sum over such indices is
indicated explicitly. The velocity of light ¢ is equal to unity.
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to carry out the similar scheme is presented in work [4], where charge
Q. of ath particle is described by Grassman variables, so that Q% = 0.
Clearly, this approach corresponds to the first-order approximation in
the coupling constant.

We are concerned with exclusion of the electromagnetic field degrees
of freedom in the classical Hamiltonian picture. In the present paper
we start from an action functional S of the classical relativistic system
of point-like charges coupled with the electromagnetic field. The system
has two kinds of the gauge freedom which are known from Dirac’s works.
The first is related with arbitrariness in the parametrization of particle
world lines (chronometrical freedom). Reduction of this type of freedom
requires the choice of a 3 4+ 1 splitting of the Minkowski space—time. We
build our formalism into three-dimensional description corresponding to
the Dirac’s instant and front form of dynamics [12]. The second freedom
is generated by the proper gauge transformations of electromagnetic po-
tentials. At first, treating the field and particle variables on equal level,
we find the canonical realization of the Poincaré algebra in a given form
of dynamics. Then we isolate the gauge degrees of freedom and formu-
late the dynamics of our system in a gauge-invariant manner. Further,
the procedure of elimination of the field is performed in three steps: (i)
one finds the solution to the field equations in the first order in the cou-
pling constant; (ii) we transit to new canonical variables which contain
the free field corresponding to the solution to homogeneous field equa-
tion; (iii) the free field is fixed by imposing additional constraints. These
constraints are eliminated by means of the Dirac’s method. In such a
way, we obtain the canonical realization of the Poincaré algebra in the
terms of particle variables. Besides, it is important to demonstrate that
the instant and the front form descriptions are related by means of a
canonical transformation. The obtained Poincaré generators are studied
in weak-relativistic approximation up to the order ¢—2.

The paper is organized as follows. In section 2 we fix the form of
relativistic dynamics of the system of particles plus field and write down
the Lagrangian and the conserved quantities. Then, in the instant form
of dynamics, we reformulate the system in the terms of canonical vari-
ables. We find the constraints produced by the gauge invariance of the
action and build the canonical realization of the Poincaré algebra. We
eliminate the gauge degrees of freedom by suitable canonical transfor-
mations and write down the generators in the terms of gauge-invariant
variables. In section 3 we solve the field equations up to the first-order
in the coupling constant. Also this section is devoted to the reduction of
the field variables. The Poincaré generators depending on the canonical
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particle variables are obtained. In section 4 we apply step by step our
procedure to the system in the front form dynamics and demonstrate
special features of the constraint structure. In section 5 we compare the
generators corresponding to the instant and front forms of dynamics. In
section 6 the obtained instant form generators in approximation up to

¢~ 2 are considered.

2. Hamiltonian Description in the Instant Form of
Dynamics

We consider a system of N point-like charged particles which are de-
scribed by world lines in the Minkowski space—time 7y, : 7 +— (7). An
interaction between charges is assumed to be mediated by an electro-
magnetic field F,,(z) = 8,4, (z) — 8,4, (z) with the electromagnetic
potential A,(z); 8, = 8/dz”. Dynamics of the system are completely
determined by the following action [13-15]

N
S= - Z:/dTa {ma V Ug(Ta) +eaUZ(Ta)AV[$a(Ta)]}

— ﬁ d*zF,, (z)F" (z), (2.1)
where m, and e, are the mass and the charge of ath particle, respectively,
ub(1,) = dat (1) /d7,.

Action (2.1) is manifestly Poincaré-invariant. Its invariance leads to
the conservation of symmetric energy—momentum tensor [13,15] which
is given by

N

ut (1, )ul (71, 4$—$a7—a
9/“’(;17) _ z:l/ma a( ) a( ig(f—a) ( ))dTa
+$ (_F#*(m)ﬁl’)\(w) + iﬁm(m)ﬁ”"(m)ﬂ“"> - (2.2)

Also the action is invariant under two kinds of the gauge transforma-
tion. The first consists in an arbitrary parametrization of particle world
lines; the second is gauge transformation A, (z) — A, (z) + 8,A(z). The
general scheme of exclusion of the gauge freedoms is discussed in Ref.
16. Here we apply the suggested scheme to finding canonical realization
of the Poincaré generators in the terms of Dirac’s observables in a given
form of dynamics.
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Using the concept of the forms of relativistic dynamics,[12] we reduce
the chronometrical freedom. The form of relativistic dynamics is defined
by the one-parameter foliation ¥ = {¥; | ¢ € R} of the Minkowski
space-time with the space-like or isotropic hypersurfaces® ¥, = {x €
My | 2° = ¢(t,x), x = (z},2%,2°)}. The foliation ¥ specifies a certain
3 + 1 splitting of the Minkowski space—time f : My — R x ¥y which is
determined by transformation

fi(@®%) = (ot %), %). (2.3)

In our case the geometrical definition of the form of dynamics permits
us to perform replacement (2.3) in the action.
The parametric equation of the world line in a given form of dynamics
is
2’ = 2y(t) = p(t,Xa(t) = pa, @' = (1) (2.4)
The variable ¢ is treated as an evolution parameter of the particle system.
On the other hand, (2.3) induces a transformation of the field vari-
ables A, = Ay o f ' Fy =Fu o f L.
Let us put
do(t,x)

pi(t,x) = B TERR 0, ¢i(t,x)=

Accounting that the Jacobian of transformation (2.3) is equal to ¢ (t,x)
and introducing notations

Op(t, %)

:L'l

(2.5)

Ei = Ao,i — (Az' + Ao%) wr's Hij = Fij + o (Aip; — Ajpi),
F,'j = 8iAj — 6]'Ai, (26)
we can rewrite action (2.1) into the single-time form

S = /Ldt (2.7)

with the Lagrangian function

N

L= — Y [maV/(Dpa)? = 52 + ealAo(t, xa) Do + Ailt, X))
a=1
- /;?3—;(2EiEi+Hinij)d3a:. (2.8)

2Generally, the equation of the hypersurface may depend on momenta. In this case
another technique is required [3].
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N
Here i (t) = dxi(t)/dt and D = d/dt = 0/0t + Y. &1 0/0x!.
=1

a=
The dynamical variables of our problem are the functions x,(t),
AF(t,x) and their first-order derivatives x,(t) and A*(t,x) with respect
to the evolution parameter.
Conservation of energy-momentum tensor (2.2) leads to ten con-
served quantities defined on X;:

pr = /dP“, M = /(m“dP" — 2"dP"), (2.9)

where dP* is given by
dP* = [6"°(t,x) — 0" (t,x);i(t, X))ps (t, x)d> 2. (2.10)

We intend to consider the two cases of the hypersurface in the
Minkowski space—time: space-like and isotropic. We illustrate both cases
in the instance of the Dirac’s instant and front forms of relativistic dy-
namics. As shown in Ref. 16, in these forms of dynamics of the “par-
ticle+field” system sets of constraints are different. We shall construct
the Hamiltonian description and find the canonical realization of the
Poincaré algebra in a given form of relativistic dynamics. The particle
and field degrees of freedom will be treated on equal rights. Further, we
aim to suppress the gauge degrees of freedom and to exclude physical
fields with the help of the Dirac theory of constraints.

In the case of the instant form of dynamics we put z° = t. Then the
canonical momenta of our problem are given by

OL(t)  mgia(t)

Dai(t) = _aiz(t) = o 0 +elAi(t,x,(t)), (2.11)
i 6L(t) 1, <

E'(t,x) SAtx) 47rE (t,x), (2.12)
0 OL(t)

Bx) = prots = (2.13)

The basic Poisson brackets are

{za(),po; (1)} = =0udj,  {Au(t,x), E”(t,y)} = 6,6°(x —y); (2.14)

all other brackets vanish. Equation (2.13) is a primary constraint.
The canonical Hamiltonian of our system is defined as

N
= paidh + /E*‘Aud% — L. (2.15)
a=1
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The immediate calculations give

; Vi + [ — cah )] + coolc)|

/ < FijF;j +2nE'E" — AoaiE’) . (2.16)

Constraint (2.13) reflects the gauge invariance of the action S. The
preservation of (2.13) in time produces the only secondary constraint
(Gauss law). The obtained set of constraints [2]

E°~0, F=9p-0;F'~0 (2.17)

belongs to the first class. Here &~ means “weak equality” in the sense of
Dirac and charge density is defined as

N
= ead®(x — x4(t)). (2.18)

The ten Poincaré generators in the terms of the particle and field
canonical variables are

N
PO = Sy /m2 4+ [pa — A (x,))

1
+/ (16 FijFij + 27rE’E’> d*a, (2.19)
N
Pro= Y [ph - eadb(x,)] +/ElF”“d3x, (2.20)
a=1
N
MR =S ki + [ - caA (o)

+/ (16 F;;F; +27rElE’> a*d®z —tP*,  (2.21)

N
M#* = S [l (o — eadb(x0)) — 2k (] — eadi(xa))]
+/(miElFlk — 2P EUFY) dPa. (2.22)

We can check directly that they satisfy the commutation relations of the
Poincaré algebra in the terms of the Poisson brackets (2.14):

{P“,PV}:O, {Pu,Ml/)\} :nl“/P}\_T]“APV,
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{M’“j, M)\O'} — _np)\Mua + nu)\Mua _ nuerp)\ + n[LO'Mll)\‘ (223)

In our work we are interested in reformulation of dynamics and the
Poincaré generators in the terms of canonical particle variables with
preservation of commutation relations (2.23).

First of all let us eliminate the gauge degrees of freedom which
are subject of the gauge transformation of electromagnetic potential.
Generally, such a reduction consists in decoupling the gauge-varied and
gauge-invariant variables by means of suitable Shanmugadhasan trans-
formation [17]. In our problem we have to perform canonization of the
first class constraints E and I' and to determine the canonical basis of
Dirac’s observables. One immediately sees that Ay, E° constitute a pair
of conjugated gauge canonical variables. Then it needs to transit from
(E',E?, E3) to (T',b%, ), where b! and b*> must be gauge-invariant field
canonical momenta, and to find the conjugated variables (@, a1, az2). Let
us make the Hodge decomposition [2,14]

E'=E| +93'A (T - ) (2.24)
with the use of the following projectors
P, =6 +0' A0, Ta=0,— 5;‘; , a=1,2. (2.25)
The inverse operators to A = 9;0; and 03 are defined so that
1
A_l 3 - -
Lo = (2) 90 = Loiment). 20
05 oz 2 ’ ’
Vector Ej_ = P! jEJ, whose components are subject of relation

al-Ei = 0, can be expressed in the terms of independent variables as
follows

: I, b
Ei ==°%  p*=\A4zE*, a=1,2. 2.27
1 \/‘E ( )

In order to decouple the gauge and gauge-invariant variables, we
perform the canonical transformation

(2%, Pai); (Au, BM)) = (24, ai), (aa,0%), (@, 1), (Ao, E%))  (2.28)

determined by the generating functional

F= Zmapm /A [ C oA N = o)| dx. (2.29)
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One finds
6F oF A
=—— =A" 1aiAi; a = — = Hza - 9 2.30
Q= a 5he o (2.30)
Tai = aa—;'; = Pai — eaaiQ(ﬂ?a). (2.31)

Note that this transformation changes the particle momenta. From (2.30)
we obtain 4; = A + 0;Q. It turns out that the transverse part A of
A; is related with a, as

= V4rP%a,, a=12. (2.32)

Therefore the part of the phase space related to the transverse part of the
potential and the corresponding momenta is parametrized by means of
(aq, b®) which constitute the elements of some Darboux basis. Hereafter
it is convenient to describe the field by the functions A}, EY of canonical
variables a, and b®.

Taking into account (2.17), we find after transformation (2.28) that
the canonical Hamiltonian become

N
Z \/mg + [ — eaA L (x4)]° — QW/QA_lgd3x
=1

+/ (WFLFL + 27TEj_Ei> dz, (2.33)

where F; = 9;Aj — 0;A;. As it must be, H does not depend on gauge
variables Ag, Q). The second term of H is reformulated without infinite
self-energies by means of mass renormalization [14]. It leads to mutual
Coulomb interaction.

After canonical transformation (2.28) is performed, we arrive at the

following form of Poincaré generators (2.19)—(2.22):

PO

N
H, P*=Y nzk +/EgakAfd3x, (2.34)

N
MR = Ex’j\/mg-i- T,
a=1

+ /az <FF¢FL +2rE E + 47TEi<9zA10> dx

—tPk, (2.35)

— eaAJ_(xa)]2 — QW/xkgA_lgd3x
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N
M* = Z(mfﬂrf — zhri) +/ (m"EiakAlL - mkEﬂ_(‘)iAlL) dx
a=1
- /(AiEﬁ - AR B ))dPa. (2.36)

They also are expressed only in the terms of observables. It demonstrates
explicitly that gauge-varied variables Ay, E°, @ and I' do not influence
the dynamical properties of the system.

3. Elimination of the Physical Field Degrees of Free-
dom

In the previous section we have done reduction of the gauge degrees
of freedom which are related with two kinds of the action invariance.
The chronometrical freedom has been eliminated by means of fixation
2% = ¢(t,x) and introducing evolution parameter ¢. Let us note that the
descriptions of our system with different (¢, x) must be physical equiv-
alent. The gauge freedom of the electromagnetic field has been excluded
with the help of transition to the description in the terms of observables.
Below we consider another type of reduction which eliminates physical
degrees of freedom of the field. As a result, one obtains description of
our system in the terms of particle variables. Such a reformulation is
especially effective, when the free radiation is not essential.

Our procedure of the field reduction has three steps. (i) It is nec-
essary to find a solution to the field equations which are complicated
in the Hamiltonian mechanics. We use the coupling constant expansion
coming to the problem of choice of Green’s function. The same problem
arises in the Lagrangian formalism. In particular, it is known that sub-
stitution of the formal solution of the field equations with the symmetric
Green’s function into the action leads to compensation of the half of
interaction by the field part of action. We expect that this fact has to
be reflected on the Hamiltonian level. But the advanced, retarded and
symmetric solutions coincide in the linear approximation in the coupling
constant. The general solution must be a sum of the free field, which
satisfies the homogeneous equation, and the solution to the inhomoge-
neous equation determined by the point-like sources. (ii) We intend to
perform a canonical transformation after that the free-field terms be-
come the canonical variables. (iii) We put the free-field variables equal
to zero. The obtained canonical second class constraints are eliminated
by using respective Dirac bracket which coincides with the particle Pois-
son bracket. The use of the Dirac bracket allows us to exclude the field
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from generators.
Taking into account relations (2.27), (2.32), let us write down the
Hamiltonian equations of motion for A} and E? :

Af =4rEY, (3.1)
BLm - Y et pi )i At 3
) a=1 " \/mg + [Tl'a —e Al (Xa)]2 ! ¢ 4t '

Finding solution to these equations requires the use of approximation
scheme. Let us rewrite equations (3.1), (3.2) in the following form:

) . 1 .
Oiy A =47P7j;, E| = 4—A,+. (3.3)
m
with the current density in the linear approximation in the coupling
constant:

N
JHtx%) =D eavld® (x — x4(1)). (3.4)

Here v¢ = & /y/m2 + w2 is the free-particle velocity which is time inde-
pendent in our approximation.

Operator Oj, = 07 — A is defined as the d’Alambertian O =
" 0,0, in the instant form of dynamics (“in”). Generally, the form
of d’Alambertian is determined by replacement (z°,x) — (¢,x) given
by equation of hypersurface in the Minkowski space—time (see Appendix
A).

At this point we have come to the linear inhomogeneous field equa-
tions which can be solved by means of the Green’s function method. The
general solution of (3.3) is presented as

Af(t,x) = ¢f(t,x) + Af(t,x), E (t,x) = X' (t,x) + £ (t,x). (3.5)

According to (2.27) and (2.32), ¢i-(¢,x) and X’ (,x) are connected with
independent free field variables ¢, (t,x), x*(t,x) by means of relations:
¢ (t,%) = (4m)' PP go(t,x),  X'L(t,x) = (4m) PIT 0 x ().

(3.6)
These functions are the general solutions to the corresponding homoge-
neous equations:

. 1 .
m
We can present solutions A and Ej_ to inhomogeneous equations as

A =PiA;, & = Pigl. (3.8)
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Let us calculate functions A; and £'. We can find .A; by means of sym-
metric Green’s function:

N
X) = ZeavmWa(t,x), (3.9)

Wa(t,x) = 47r/G[(t —1)? = (x — x,(t"))%]adt’. (3.10)
By using free-particle solutions, integration in (3.10) yields

Wa(t,x) = {[va(x = xa()]* + (1 = v2)(x — xa(1))*}

In view of the definition of the field momenta E? (2.12), it is conve-
nient to define Ag(t,x) as

P (3a1)

N
x) = ZeaWa(t,x), (3.12)
so that 1
Eit,x) = i (D A;i(t,x) — 0;.A0(t, %)) . (3.13)

Here we have introduced

X0
Dy=) v} oa (3.14)

a=1
Function £ does not depend on the term 9;.4g, because of P;'9; = 0.
Since A, (t,x) = D;A,(t,x), we can check directly that the functions
Ao and A; satisfy Lorentz gauge condition D; Ay — 9;A; = 0. The trans-
formation properties of Ag, A; and £ are collected in Appendix B.

Now we deal with the canonical transformation to the new field vari-

ables ¢i-, x% in accordance with relations (3.5). Such a transformation
changes the particle variables (2%, ;) — (v, 7ia) as

i i 1 oER OA;
Ty =Yg +/ |:<¢fc_ + 5./42‘) a’l“:; - (X_L —5L> a’l“az:| d31’, (315)

k 1
o= v | {(m + AL) el _ (X'i n %gﬁ) ar ] dz. (3.16)

9y
In the considered approximation we have

Au(t,x) = Au(x4(t), ma3x) = Apu(ya(t), ra; x). (3.17)
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In the terms of new variables the Hamiltonian is given by
2 2 _ 3 L[ g1
Z\/m +r2 gd:v+2 J A d
a=1

+/ [FQJ‘@J‘ + 27TXJ_XJ_} >z, (3.18)
where CI)ZJE = 6@; — (3]¢)ZJ‘

The next step of our procedure of elimination of the field degrees of
freedom consists in fixing the following constraints:

ba~0, X*=~0, a=1,2. (3.19)

Canonical constraints (3.19) are of the second class, so they can be ex-
cluded by means of the Dirac bracket. Therefore, we remain with the
particle variables y!,, rq; and Poisson commutation relations:

{a(),765 (1)} = —basd;- (3.20)

Now we can put ¢, =~ 0, x* ~ 0 in generators before calculating the
Dirac brackets.

The Hamiltonian formalism is formed by the Dirac bracket (3.20)
and the Hamiltonian:

N
1 .
H= Z vm2 +r2 — 27r/gAflgd3w + 3 /j’AiLd:"a:. (3.21)
a=1

By using relations (B.1)—(B.6), the transformed generators may be
rewritten as a sum of particle and free-field terms. Thus, elimination of
the field degrees of freedom leads to the result:

P° = H, P'= Zrm M = Z(yfﬂ“ﬁ —yhrl), (3.22)
a=1
N 1 .
MM = ny m?2 +r2 —27r/xkgA_1gd3x+ E/arkj’/lj‘d%
a=1
—27r/5j“_A_1gd3x—th. (3.23)

These generators satisfy the commutation relations of the Poincaré al-
gebra in a given approximation. We immediately see that six generators




13 IIpenpunT

(P* and M%) do not contain interaction terms. It reflects the general
property of the instant form of dynamics [6].

It is possible to exclude P?; from expressions of H and M*® by means
of a canonical transformation:

y(iz = q(il + {Fa q(iz}a Tai = Kai + {F, kai}a (324)
1
P E/gAflaiAid%. (3.25)

This transformation preserves the form of P* and M. But the Hamil-
tonian and boost become

N
— 1 [
H = ; mg +ki+ 5 /(]lAi + 0Ao)d’x, (3.26)
. 1 4
MY =) a/mi Tk + §/w’“(j’Az~+ng)d3m—th(3.27)
a=1

It is easy to see that the field part of the Hamiltonian in the particle
terms has compensated the half of the interaction.
The generators H and M*0 have the following final form

N N N N
1 1 ﬁ
H=Y K+ Vi, MK DI LAED "V —tP*, (3.28)
a=1 a=1

a,b=1 a,b=1

S 2 k2 _ kak ) k2
kg = \/mg + kg, Vab = €4€p mb + b 3 b/ 2,'n2a + a, (329)
\/(kaab) + myqg,

where qqp = q, — qp- The prime over the sum symbol means that a # b.
The terms, which corresponds to self-interaction (a = b), can be elimi-
nated by means of the mass renormalization.

According to (3.15), (3.24), the covariant particle positions z? are
connected with the canonical variables as

| oE* R OAR] 5
ma—qa+§/|:¢4k%—g éka,- d’x. (330)

It can be verified directly that in a given approximation the expression
(3.30) satisfies the world line condition [18]:

{acfl, Mko} = xﬁ{xfl,H} — ok, (3.31)
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Poisson brackets between particle positions are

; 1 8Ak 85’“ 65’“ 8Ak
i J1l — — 3
{xmxb} B / <akbj akai 6kbj 6kai> . (3.32)

It shows that z! cannot be the canonical variable. This fact is in full
accordance with the famous no-interaction theorem [18].

4. Description in the Front Form of Dynamics

Here we deal with relativistic system of charged particles coupled with
the electromagnetic field on the isotropic hypersurface given by

¥ =t + 25, (4.1)

Application of the elaborated procedure of the elimination of the gauge
and physical field degrees of freedom to the front form of dynamics [12]
is demonstrated below.

In the Hamiltonian formulation of our system we start with canon-
ical variables z(t), A,(t,x) and conjugated momenta py;(t), E*(t,x)
which are subject of the first class constraints (2.17). It turns out that
additional constraints arise in the front form of dynamics [16]

Q% =47E® — F%3 =0, a=1,2. (4.2)
Let us note some commutation relations between the constraints:

(08,0, 27, y)} = 87077 i (x—y), 0,07 =0, (43)
Therefore the Hamiltonian formalism contains a pair of the first class
constraints and the second class constraints Q% ~ 0, a = 1, 2.

We isolate gauge degrees of freedom like to the instant form of dynam-
ics (see transformation (2.24)—(2.32)). Similarly, we obtain a description
in the terms of the physical canonical variables ¥, Tiq, g, b%.

Now we intend to eliminate the second class constraints:

b — VArd*A™ o — D3a0 0, a=1,2. (4.4)

Firstly, it is desirable to perform a canonical transformation for the sake
of simplicity of the form of (4.4):

((wfn 7rai)7 (aon ba)) = ((wfn 7~rai)7 (aon Ba))? (45)

b = 0% + VAT AT o, Wi = Tai + VAT, 0;AT 0004t %,).  (4.6)
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Then the second class constraints become
b — Bzaq 20, a=1,2. (4.7)

They are non-local and “self-conjugated”, so its canonization constitute
a meaningful problem which is not studied here. These constraints are
eliminated immediately by means of the Dirac bracket. Nonvanishing
commutators between variables in the terms of the Dirac bracket are

i~ * i 7 * 1
{%;ij} = _6‘1176]'7 {aa(t,x),bﬁ(t,y)} = §6§63(X -y),

(@0t ,as6))" = =500 (5) P x-9)

~ ~ 1
B30, 3)) = 560 200~ ). (19
We shall consider aq(t,x) as independent field variables and b (¢, x) will
be treated as the functionals on the potentials. We are not concentrated
on the finding Darboux basis, because it is the complicated problem and,
moreover, our aim is complete exclusion of the field.
The physical evolution of the system after exclusion of the gauge de-
grees of freedom and accounting the second class constraints is generated
by the following Hamiltonian:

H= /’Hd%, (4.9)

where the Hamiltonian density is

8 (x —X,)

N ~
1 . (Faa — VATELa0)% + M2
Ho= 5 ; lwag + :

ﬁ'a3

2
+% (0ia00ia0 — Oqapdpas) + 0 — (%aa) .(4.10)

1 (Vix
2\ 0Os

We remark that dependence of H on the field variables is quadratic. This
fact has used in Ref. 16 to calculating classical partition function, when
the particle and field variables are treated on equal rights.

The Poincaré generators after decoupling of the gauge and gauge-
invariant degrees of freedom have the form

N
P = H, Pk :Zﬁfj+/l§“8kaad3x+5§m (4.11)
a=1
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N
MM = —infrs - /:c3l~)“8kaad3x + /(:ICIc — 5 YHdPx
a=1
—nk /aa (H%IN)’B + ;W g) >z — tP* (4.12)
3
N ~ ~
M = Z(wéfrs — x’;ﬁ'fl) + /(mibaakaa — xkbaaiaa)d3x
a=1
ko i3 ; Var ia ki g VAT
+/d3xaCY lr} (Hﬁbﬁ +(538—3@> —n (Hﬁbﬁ + ds5 a—g@)]
+ / (z'6% — 2" 6L Hd . (4.13)

They satisfy the commutation relations of the Poincaré algebra (2.23) in
the terms of the Dirac brackets.

Now we are concentrated on the elimination of the field degrees of
freedom. Let us first find a solution of the Hamiltonian field equations
which are written as

N ~
Dfr 1y = \/Ezea ('ﬂ'aa - \/Eeaaa(tyxa) _ 6_01> (53(X—Xa), (414)
a=1

Ta3 03

Op = 20,05 — A. (4.15)

The d’Alambertian (g in the front form of dynamics is the first-order
differential operator with respect to the evolution parameter.
In the linear approximation we have equations

Og aq = Var <ja - g—"g> . (4.16)
3

with the following current density
JHtx%) =D eavld® (x — x4 (1)). (4.17)
a=1

Here v} = (7% + 6ih,)/7a3 = const, hy = (m2 + 72) /2743
By using the Green’s function method, the general solution of the
inhomogeneous equation (4.16) can be presented in the form

Ao = ¢a + aq, (418)
—Qp, (4.19)
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where ¢, is the general solution to homogeneous equation Og.¢, = 0.
The solution to inhomogeneous equation, namely, a, depending on par-
ticle variables can be written by means of the following functions:

N
a;(t,x) = (47T)71/226ava,-Wa(t X)
aj;l
ap(t,x) = (4w)_1/QZeaWa(t,x). (4.20)

Here we have introduced
Wa(t, %) = 4r / Gt = +2° — a3 (1) — (x — xa(#))2]dt!  (4.21)

containing symmetric Green’s function G. Accounting free-particle equa-
tions, the integration leads to the following expression:

Wat,x) = {[o% — 2 (t) —v2 (2" — 22 (0)] + 772 (=" — a2 (1)},
(4.22)
where 7,2 = 1+ 203 — (v2)%
It is easy to check that the functions «,, satisfy Lorentz gauge con-
dition in the linear approximation in the coupling constant.
According to (4.7), let us introduce the following functions:

bO(t,x) = Bsaa(t,x), [(t,x) = Dsa,(t, x). (4.23)

Some useful transformation properties of the obtained functions are
shown in Appendix B.

Transition to the new field variables is done by means of the following
transformation:

aa(t, %) = Pa(t;x) +aa(t,x), D(t,x) = x*(t,%) +b(t,x), (4.24)
iy LY9Y (o La) D2l s

T, —ya+/ {<¢a+ 2aa> e (X + 2b > arm} Pz, (4.25)
. 1 ob® o, 1) %3] 5
ﬂ'a,-—rm—/ {(d)a ) oyl <x +2b ) 8%](1 x, (4.26)

which preserves commutation relations in the terms of Dirac brackets.
We must remember that ¢, (t,x) and x“(t,x) are related by constraints
- 6345& ~ 0.

ICMP-01-23E 18

The Hamiltonian density after the performed transformation is

N
. r2+m? . 1Var Var  Var (. Oa
H_az::l 2ra36( )+269639 5 \Ja— 5, ¢)2
1
+§ [6i¢aai¢a - 6a¢5aﬁ¢a + (aa¢a)2] . (427)

In analogy with the scheme of reduction in the instant form, the free
field degrees of freedom are eliminated by fixing a set of constraints

Oa(t,x) 0, x%(t,x)=0 (4.28)

and introducing the respective new Dirac bracket.
Thus, the Hamiltonian formalism in the terms of yi and r,; is formed
by the Dirac bracket and the Hamiltonian (4.9) with density

N o2

r2 +m?2 1var Arw Var (. 0

H=) ——= 2 2 (x — o)+ 500 — <.7a__a@>aa-
Py Ta3 2 03 O3 2 15,

(4.29)

Accounting transformation properties (B.9)—(B.14), application of

the procedure of the field elimination to the Poincaré generators gives:
N
P’ = H, P‘= Zr{; +o0kH, (4.30)

V4
MM = Zy +—/aa—7r d*z

03
+ /(:ck — e HdPx — tP*, (4.31)
N
D MR AR (. B D
a=1
+—“;‘”/(535§—5{;53) aaaigdi*‘x. (4.32)
3

These generators act on the particle phase space and satisfy the commu-
tation relations of the Poincaré algebra in a given approximation.

In order to avoid the expressions containing 1/03;, we carry out a
canonical transformation:

ytiz = qu + {Fa QZ}a Tai = kai + {F7 kai}: (433)
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1 \/4_
F=3 075,

Then the Hamiltonian density becomes

(4.34)

k2 +m?2 Var . ,
= Z 2hins o, ¢ _‘Ia”—g [f'ai+ (e +77) (o +a”)]. (4.35)

The Hamiltonian of our system can be written as follows

m2 +k2
- ha Vo, ho = —2- -0 4.36
Sht] 2 = 0
Vo = eqep|1 + vg + vg — vo‘vl?‘] , U(il — % (4.37)
a3

\/ (43, — v ag)* + 7, % (43)?

It is assumed that self-action terms are reduced by means of mass renor-
malization.

The immediate calculations give us the final form of the Poincaré
generators

N
P° = H, P'= Zk{; +okH, (4.38)

N
MM = Z‘fkk Z 3(Za
a=1

N
1 - .
+5 D (ah — 05a;)Vay — tP, (4.39)
a,b=1
N N
M*% = N (ghkE — kL) + D (qh0% — qFoh)ha
a=1 a=1
1 ly
+5 D (@05 — aid5)Va (4.40)
a,b=1

One can extract six interaction free generators: P* — 65 P° and M™* +
SEMHRO — 5N, Besides, if t = 0, M3® does not contain the interac-
tion term. In next section we shall demonstrate explicitly the canonical
transformation which connects the canonical realizations of the Poincaré
algebra in the instant and front forms of dynamics.
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In the case of a two-particle system in two-dimensional space—time,
when ¢¢ = 0 and k,, = 0, nonvanishing generators P° P3, and M?3°
agree with the results of Ref. 19 for vector interaction in the linear ap-
proximation in the coupling constant. Comparing these results, we must
take into account that the front form of dynamics in Ref. 19 is defined
as 20 =t —z.

From (4.25), (4.28), (4.33) we obtain relation between the covariant
particle positions 2! and the canonical variables:

z, = q +/ {angﬁa: — (o + ag)%;ﬁg)] d’. (4.41)

We can check directly that expression (4.40) satisfies the world line con-
dition.

Taking into account (4.23), the Poisson brackets between particle
positions are

o Oar 08%  9(ap +a®) 0(8° + B3)
) J1 — — 3
{x”’xb} - 2/ [8kbj Okgi Ok, Ok . (4.42)

These expressions show that the relation between x% and g¢ cannot cor-
respond to the canonical transformation. However, it may be illustrated
that in the case of the one-dimensional space the covariant coordinates
and canonical variables coincide, i.e. £, = ¢4, and {z4, x5} = 0 (see Refs.
20, 21).

5. Relation Between the Instant and Front Forms

Here we aim to show that the obtained Hamiltonian descriptions in the
instant and front forms of relativistic dynamics are equivalent. It will
be done by means of finding a canonical transformation which relates
the expressions in the instant and front forms. It is convenient for the
following study to denote the particle canonical variables of the instant
form as (:UZ“ Dia). By using inhomogeneous equations for functions A, in
the terms of particle variables (see (3.3))

Oin Ao = 4mo, UOinA; = 47j;, (5.1)
let us rewrite the instant form generators (3.26), (3.27) as follows

me M* = Z(fvip’é—fvﬁpﬁ;), (5.2)

a=1
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Zpa /Wd3 Mk = Zxapa /m’“Wd%—tP’“, (5.3)

= vm% + pg, W = S_W(AO Oin Ao — A; Oin ./41) (5.4)

Similarly, we can reexpress the front form Hamiltonian density as

N .
k2 +m?2
— 3 —
’H—az::lhaé (x—da) +V, ha= =G5 (5.5)
which contains the following interaction term
1
V= 5[(050 + ) Og (a0 + a®) — a; Op ). (5.6)

We first perform a canonical transformation (2%, pa;) = (%, kas):
7 ki + 0ih,

a ha ’
which transits immediately instant form generators without interaction
into the front form ones. Then we can derive that

0 _ 5% 0 0

i 4
wa_qa

Pa = ko + 3ha, (5.7)

— 53y L <
6331 1 aa + 6(]("1, (58)
N N
. 0 . 0
Dt:zua@mi :Zvaaqi’ (5.9)
a=1 a a=1 a

where u® = pl /\/m2 + p2 and v} = (k! + 64hg)/ksa.

Since A,(t,x) = DiA,(t,x), and A,(t,x) depends on x, — x (see
(3.10)), operator Ui, may be rewritten in the terms of partial derivatives
with respect to the particle variables in a given approximation as

N 2
; 0 02
Hin Z l(ua ozl > Ozl oxl ]

a=1

N
H? 92
= = I:l T 1

z:: { “aqaaqa 3qa3qa] : (5.10)

If we consider A, (t,x) and «,(t,x) at the point x = 0, then we
immediately obtain the following relations:

AO(Xa;pa; 0) = \/E[QO(qa;ka;O) + a3(qa;ka; 0)]7 (511)
Ai(%Xa, Pa; 0) = VAT ai(qa, ka3 0). (5.12)
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Function A,(t,x) can be recovered from A,(t,0) by replacement
X4 —* X, — X which is generated by the translation operator:

A, (t,x) = Au(xq(t), Pa; x) = exp ( > X4 (t), Pa; 0).

(5.13)
According (5.8), the exponent is rewritten as
N
;0 3 0
;xzaxg_x Dt+2$61. (5.14)

The second term in r.h.s. will produce translation of a function depending
on g.. Taking this into account, we have

Ao(t,x) = Vamexp (—2®Dy) oo (t,x) + (¢, x)],  (5.15)
Ai(t,x) = Varexp (—2° Dy)ay(t, x). (5.16)

Reexpression of the instant form interaction between charged parti-
cles in the terms of the new canonical variables results in

W = exp (—2° D) V. (5.17)

Then we obtain

P = Zh +/exp —23Dy)Vd3z, (5.18)
Pt = Zk§+5§2ha, (5.19)

M* = ankk +Z Sqa

+/:g’c exp (—2*Dy)VdPx — Pk, (5.20)
. N .
M™% = > (qhkh - qbkl) + Z 7,65 — i 03 (5.21)
a=1

Now it may be shown that difference between the generators in the
instant (“in”) and front (“fr”) form is presented as

Gin - Gfr = {F7 Gin}: (522)
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where
F = /(exp(—m3Dt) - 1) Fd’z, D\F =V. (5.23)

Therefore, we prove that the generators, which correspond to the instant
and front form of relativistic dynamics, are connected by a canonical
transformation.

6. The Weak-Relativistic Approximation

Let us consider the instant form generators in approximation up to the
order ¢~2. We shall first explore the Hamiltonian and its transformation
to the Darwin Hamiltonian. We rewrites (3.28) in the explicit form with

c
N N
. k2 1 ! eqep
H = macZ ]. =+ a + = = a
AT S Vel + (Kada)?mie?

k2 k. k 2

x [ 4[14+ 5 — o/ Mamsc” ) (6.1)
mac* /14K /mic?

Expansion of the Hamiltonian up to ¢~ 2-order yields

N , K2 k4 1< €a€h
H = —a _ a -
> (e + g~ ) ¥ 1 2

a=1 a,b=1

(kaqab)2 kg k.ky
% (1 C2m2qR T+ 2m2c2  mampc? ) (62)
a ab a all®b

We observe, therefore, that the Darwin Hamiltonian [22]

N
Kk, €q€h { (kaqap) (kpQap)
Hp,, = Hy — a_ ¢ k k; + ¢ 2ev/ o Rad)
b 0 az::l 8m3c? ; 2c2mamp|qas| | b qaz,
(6.3)
and H are related as
H = Hpy + {A, Ho}, (6.4)
where
N
k2
Hy = (macg+ a>+2@7
-1 2mg |das|
a= a>b
1 k k
A= Y g (- 22 (6.5)
4c? |das] m m
asb ab a b
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We can immediately write down P°, because of ¢cP° = H in the
instant form of dynamics. Similarly, in a given approximation we find

N k2 1 o epe
n{kO _ k a k €atb k
_an ( a+2mac2>+202 Z qa|qab| —tP". (6.6)
a=1 a,b=1

We can check directly that
{Aapk} =0, {A, Mik} =0, {A, Mko} =0. (6.7)

Therefore, generators, which are found by means of elimination of
the field in the first-order in the coupling constant, in weak-relativistic
approximation give us well-known expressions. Moreover, we note that in
a given approximation the covariant positions % coincide with canonical
variables g’ .

7. Conclusions

Using the chronometrical invariance of the action of relativistic system
of charged particles plus electromagnetic field, the Hamiltonian descrip-
tion and canonical realization of the Poincaré algebra are considered in
the Dirac’s instant and front form of dynamics with the break of a man-
ifest Lorentz covariance. Besides, we have eliminated the proper gauge
freedom of the 4-potential A,. By means of reduction of the gauge de-
grees of freedom the Hamiltonian formulation of dynamics is obtained
in the gauge-invariant manner which is not manifestly Lorentz covari-
ant. At this step the particle and field variables are treated on equal
level. Another kind of reduction consists in elimination of the physical
field degrees of freedom with the help of the Dirac theory of constraints.
In our approach such a reduction is performed after transition to the
Hamiltonian formulation. The suggested procedure of elimination of the
field has three steps: (i) finding a solution to the field equation of motion,
(ii) canonization of the free-field variables ¢,, x® by means of suitable
transformation, (iii) fixation of the free field. In our problem the free field
is equal to zero. However, we may fix another value of the field variables
by means of constraints.

Here we have limited ourselves by study of the first-order approx-
imation in the coupling constant. As a result, we find the canonical
realization of the Poincaré algebra in the both forms of dynamics in the
terms of particle variables. Similar approach is studied in Ref. 4, where
electric charges are described by Grassman variables. As distinct from
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the results in Ref. 4, our expressions of Poincaré generators are written
in a non-manifestly Lorentz covariant way for space-like (instant) and
isotropic form of relativistic dynamics. Note that we suggest a canonical
transformation which comes to the form of generators without differen-
tial projectors like (2.25). Obtained expressions are easy analyzed and
simply applied. Moreover, the canonical transformation of the second
step of our procedure, which is not observed in literature, allows us
to trace the exclusion of interaction between particles and fields. It is
demonstrated that the Poincaré generators in the instant and front form
are related by a canonical transformation. Also we show that the instant
form Hamiltonian in the ¢=2 approximation leads to the Darwin Hamil-
tonian. Although, the problem of canonical exclusion of the second class
field constraints in the front form of dynamics is still remained. Although,
the problem of canonical exclusion of the second class field constraints
in the front form of dynamics is still remained.

Perspective research is the reduction of the field in the case of the
higher order approximation in the coupling constant. Then, by using
retarded Green’s function, we may study radiation effects in the terms
of particle variables. The planning task is to apply the field elimination
to the gravity and Yang—Mills theory. The obtained description may be
the base of relativistic statistical and quantum mechanics of the system
of charged particles.
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Appendix A

Deriving the field equation in a given form of relativistic dynamics, we
need use the d’Alambertian O = 9#¥0,0, in the terms of ¢ and x. If
equation of hypersurface is given by z° = ¢ + nx, where the components
of vector n are constants, we have

O = (1-n%0? + 2n'0;0; — A. (A1)

In our paper we use symmetric Green’s function

1 2 _ 2
G= Eé[(xo) —x7] (A.2)
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which satisfies equation

OG[(z%)? — x*] = §(z°)6%(x). (A.3)

Appendix B

In the instant and front form of dynamics we have presented solutions
of inhomogeneous field equations by means of a number of functions
depending on particle variables. Performing canonical transformation to
the free field variables ¢,, x<, it is necessary to know commutation
relations between these functions and the Poincaré generators. Here we
write down these relations. Let particle variables be % and p,; with the
Poisson bracket {xfl,pbj} = —6ab(5§. Then the instant form functions A;,
&' and Ay are transformed as

{AY(t,x), 2'p" — 2Fpt — m*} = s AR (1, x) — 6M A% (L, x), (B.1)
{Al(t, %), 2 p° — m*0} = 6% Ao (t, %), (B.2)
{&(t,x),2"p* — a*p' = m™*} = §7Ex(t,x) — M€ (t,x), (B.3)
€2, 0%9" —m) = L (0" A% (3) — 9 A1), (BA)
{Ao(t,x),2'p" — 2¥p' —m™*} =0, (B.5)
{Ao(t,x),2"p" —m*} = A" (¢, x). (B.6)

Here

N N
=Y Vmi+p2, p'=) pi, (B.7)
a=1 a=1
N

N
mk0 = Zaz’;\/mg +p2, m*= Z(x;p’; —zhpi). (B.8)
a=1

a=1

In the front form of dynamics the functions ag and b® have the
following properties

N
{b%(¢,x), Z(wk —2F)p3 ) =~ Bsa0(t,x) — 650%ap(t,x), (B.9)

a=1
{b%(t,%),m —aPp” + 27"} = 5*’b7 (t,x) — b (t,x),  (B.10)
{b(t,x),m"? — 2Pp?® + 2%p® — 2Ph} = n*PBz03(t,x) + dpan., (B.11)
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N

{ap(t, x) Z af — 2F)p2} = oFa(t, x), (B.12)
a=1

{ao(t,x),mP" — 2Pp” + 27p ﬁ}—o (B.13)

{ao(t, ),mﬁ3 2’p7? 4+ Ppf — mﬁh} =ag(t,x), (B.14)
where
N N N o 9
i 3 3 Pa + mg
pPr=> ph+dih, h=) h,=)Y 1 (B.15)
a=1 a=1 a=1 2pa3
. N . . N . .
m™* = "(alph — whpl) + > (2}05 — xkoi)ha.  (B.16)
a=1 a=1
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