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“EdekTuBHEe” NPUTATaHHI MiXK OIHOMMEHHMMH 3apamaMu Oiaa
3apsI2KeHO0l IIOBEPXHI

A.Tpoxumuyk, II.Xeumepcon, €.Cos’sk, [1.T.Bacan

AHoraujsa. Anaituaanii po3B’A30K piBHAHHA [lyacoHa BUKOPUCTAHO [JIs 110~
SICHEHH S CIIOCTEPEKEHOr0 30BCIM HEIABHO ABUINA IPUTATAHHA MiXK Mapoio KO-
J10iaiB mobsIn3y CKIIAHHOL moBepxHi. Mu 3uHaiinuin, mo He Mae 6e3mocepesHporo
npurAraHHA Mix ogHoiMenHuMmu 3apamamu. Iloxaszano, mo crmocrepexyBaHe
Ha €KCIEPUMEHTI ABHIIEe MOXKe Oy TH IPOIHTepIpeTOBaHO AK “edeKTuBHe” mpu-
TATAHHA, AKE € HACILAKOM [Iil TOJATKOBOL CUJIU Ha KOXKEH 3 Mapu 3apAdiB, IO
nepebyBalOTh y €JIEKTPUIHOMY IOJI 3apsamKeHol moBepxHi. [HaykoBaHa mo-
BEPXHEIO CHJIa CIPAMOBAHA JI0 LHEHTPY IOBEPXHI i IpK IIEBHUX yMOBaX CIPHA-
MOBaHA IIPOTH KYJIOHIBCHKOTO BIOUNITOBXYBAaHHSI.

The apparent attraction between like charges near a charged
surface

A.Trokhymchuk, D.Henderson, E.Sovyak, D.T.Wasan

Abstract. Analytic solution of the Poisson’s equation for a system of two like
charges near a uniformly charged plane is used to explain the phenomenon of
an attraction between a pair of colloids bound by a charged glass wall that
has been observed recently. We found that there is no attractive interaction
between like charges. We have shown that what is observed experimentally
could be interpreted as the “apparent attraction” resulting from the extra
force experienced by each charge being in the electric field due to the charged
surface. This surface-induced force is directed to the center of the surface and
under appropriate conditions works against the Coulomb repulsion between
like charges. Both the field and force can be revealed naturally within the
framework of classical electrodynamics if the effects of the finite size of a
charged surface are taken into account.
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The forces acting between like-charged objects are important to both
applied and basic science since these forces play a crucial role in deter-
mining the physical properties of a variety of systems, ranging from
biological DNA solutions to industrial colloidal suspensions. Recently,
attention to this subject has arisen because of speculations on the sur-
prising possibility of a change in the sign (repulsion/attraction) of the
effective electrostatic interaction between a pair of like-charged objects
(colloidal particles, ionic micelles, DNA aggregates, etc.) when they are
immersed in a confined electrolyte. Although recent experiments con-
vincingly demonstrate an attraction between like-charged colloids bound
by a charged glass wall [1-5], such an apparently illogical interaction has
not been recognized as a common phenomenon yet since a satisfactory
theoretical explanation has proven elusive and remains an unresolved
problem currently [6-11].

Several mechanisms leading to a like charge attraction have been
proposed [12-15]. Since attractive forces between colloids have been re-
ported for confined solutions in the presence of counterions and salt ions,
all aforementioned theories (as well as some other studies) exploit the
idea that the processes carried out in confined electrolytes (charge fluc-
tuations of condensed counterions, strong counterion correlations, colloid
overcharging due to counterions etc.) are responsible for this observed
phenomenon. Although the attractive forces discussed in previous theo-
retical approaches could still exist for charged particles in the presence
of an electrolyte, the behavior of like-charged metal balls at the air/glass
boundary revealed recently by Tata et al. [16] represents a novel experi-
mental evidence that, in our opinion, rules out existing explanations as
a general mechanism and highlights the governing role of the confining
surfaces itself to control an effective interaction between nearby charged
particles.

Partially inspired by this observation, we will show that the phe-
nomenon of attraction between like-charged particles can be easily un-
derstood and interpreted within the framework of text-book classical
electrodynamics [17] if the effect of the finite longitudinal extension of
a charged surface is taken into account. Our approach to the problem
is straightforward and is based on the important constraints imposed
on theoretical attempts by existing experimental evidence [18]: (i) the
observed phenomenon of like-charge attraction is of electrostatic origin;
(ii) the attraction takes place next to a charged confining surfaces but
is absent in the bulk; (iii) the discrete natures of the solvent or simple
ions do not play a role in mediating the attraction, i.e. even continuum
models should suffice. Then we suggest that an extra electric field exists
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next to the surface and that such an electric field is exclusively due to
the array of charges spread over the surface. As with any field around an
assembly of charges, the field near a charged plane is three-dimensional
with three components defined by three gradients of the scalar electric
potential. This means, that if there is the electrostatic force parallel to
the surface, it requires that the electric potential at the points near the
surface should depend not only on the normal distance from the surface
but on the tangential position along the surfaces as well.

In general, the determination of the electric potential (and hence the
field, by differentiation) due to a given surface distribution of charges is
extremely complicated, if not impossible, except for surfaces of simple
geometrical shapes (cylindrical, spherical or planar). Even in these cases
some assumptions are usually applied. The most common requirement
is that the electric potential due to the charged surface possesses reflec-
tion symmetry about the midplane of the pair of nearby particles [6-8].
In the case of a charged planar surface, such a requirement is equiva-
lent to assuming that the confining surface is of an infinite longitudinal
extension. However, in practice, one always is concerned with charged
confining surfaces of finite size irrespective of the shape. To our knowl-
edge, the surface size effect has not been accounted for properly when
forces next to a charged confinement were analyzed. Recently, Trizac and
Raimbault [10] have drawn attention to this issue. These authors studied
one special case of a finite surface where the electric potential possesses
reflection symmetry with respect to the surface midplane. They found
their results were the same as those obtained by Neu [7] and Sader and
Chan [8] for the infinite surface: the effective pair interaction between
like-charged particles in the vicinity of a charged surface is always re-
pulsive. We would like to mention that Mateescu [11] has recently com-
mented regarding the calculation performed by Trizac and Raimbault
[10] concluding that, in general, like-charged particles next to a finite
confinement do not always repel.

To shed more light on the role played by the finite size of a confining
surface, let us consider the simplest non-trivial electrostatic problem.
The domain V of the finite dimensions 2a x 2a x h in the XYZ direc-
tions contains two like-charged particles. Since we are interested in the
effects of electrostatic origin, it will be enough to identify both particles
as point charges ¢; = ¢2 = ¢ (assumed to be positive for convenience).
The charges are constrained to be above the oppositely charged hori-
zontal plane Z = 0, and are related with the positions R; and Rs,
respectively, in the rectangular coordinate system with the origin at the
center of a plane Z = 0. The plane Z = 0 is a perfectly smooth impen-
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etrable square area, S = {—a < X < a, —a <Y < a}, and carries a
negative charge spread uniformly over the surface with density o that
exactly compensates the total charge of nearby particles. The dielectric
permittivities of media behind ( Z < 0) and above the plane Z =0 are
the same and equal unity. Additionally, we require that both charges are
situated at any, but always the same, altitude, i.e., Z; = Zy = h, so
that vector Ryy = s15 is (horizontal) parallel to the surface.

To study the electrostatic force experienced by charge ¢; (i=1,2) we
require the electric potential ® at this charge in the localized field due
to other charge ¢; (j#i) plus the field due to the charges distributed
over the surface area §. It should be noted that although the charges
¢1 and @2 are constrained to move only in two dimensions (within the
horizontal plane Z = h), the Coulomb interaction that is acting between
them is three-dimensional and requires a full 3D solution of the governing
Poisson’s equation:

V?®(R) = —4mp(R), (1)

which relates the electric potential of interest, ®(R), to the local charge
density, p(R). All sources of charges within domain V, including charges
spread over the surface S, contribute to p(R).

Poisson’s equation (1) has been solved subject to the (constant sur-
face charge) electrostatic boundary conditions. The general result for the
electric potential ® at charge ¢; is as follows:

@(R) O (Ry) + SR -
e / th, for i#j, @)

i

where s = X2 4 Y? is the horizontal coordinate parallel to the surface
S and ds is an element of the surface area. The first term, ¢“°U, is
the electric potential at the charge ¢; due to the other charge ¢; (j#i)
(direct Coulomb contribution). The second term, ¢*'* is the electric
potential at charge ¢; due to the charges spread over the surface S
(surface-induced contribution).

Qualitatively, result (2) is quite evident and is expected. The fea-
ture that makes this result novel are the limits in the surface integral:
S{Ri}={-a+Xi< X <a+X;; —a+Y; <Y < a+Y:} The latter
indicates that the surface-induced potential at the charge ¢; depends
not only on the vertical distance h from the surface but also on the
horizontal position (Xj;Yj) of the charge ¢; with respect to the surface.
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Figure 1. Electric potential due to a uniformly-charged planar surface of
finite dimensions at a point charge placed along the X axis at different
altitudes h shown on the figure.

This dependence (can be expressed analytically [19] as well) is illustrated
on Fig. 1 for the case when charge ¢;, for simplicity, is placed along the
X axis (¥; = 0). Three curves shown in Fig. 1 represent the potential
¢*""(Ri) (normalized with respect to its value ¢**"(0,0,h) = ¢3*"(h)
above the center of the surface S) calculated for three reduced dis-
tances above the surface, h* = h/2a, ranging from 0.01 to 1 (all dis-
tances throughout the paper are scaled by the side length of the surface
square 2a ). Indeed, we observe that ¢**' varies in the direction along
the surface. The graph of ¢*** vs X is symmetric with respect to the
surface midplane, exhibiting a non-zero positive slope that increases go-
ing from the center of the surface to its boundary. As the normal distance
h increases, ¢°"" gradually approaches the constant value at the center
of the surface; ¢ roughly is kept constant only in a narrow vicinity of
the center of the surface.

From this it follows that the tangential component of the surface-
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Figure 2. Surface-induced force experienced by point charge in the lateral
direction near a uniformly-charged plane for the setup shown in Fig. 1.

induced electric field, —Vgr,¢""", is non-zero next to a surface, except
for a region above the center of the surface. Hence, the finite plane with
uniformly charged surface induces the force f*'' = —qVg,¢*"" acting
on charge ¢; in all three directions (not just only the constant normal
force, f3U* = 2mqo, as in the case of an infinite plane). This surface-
induced force could be evaluated analytically by differentiation of the
surface integral in expression (2). In a particular case when charge ¢; is
placed along X axis (i.e., ¥; = 0, same as in Fig. 1), the result for the
horizontal component of the surface-induced force reads:

(Xi +a)(& —a)
(X7 —a)(X;" +a)’

1

ffY(X;,0,h) = 2mgo In (3)

where we used notation: X& = /a2 + (X; £ a)2 + h? (the general ex-
pression for the lateral force if the charge is not on the X axis only is
more complex [19]).
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The force calculated according to Eq. (3) is plotted in Fig. 2. For con-
venience, we also plot the Coulomb force, 4wq?/X?, on charge ¢; due to
another charge ¢; (j#1) at the center of the surface, i.e. at Xj = 0. Both
forces are scaled by the constant f31" that is the force experienced by a
point charge near an infinite flat surface of the uniform charge density
o . The surface-induced force, f*'*, is always directed to the center of
the surface area. The magnitude of this force depends on the normal dis-
tance from the surface and on the horizontal position with respect to the
center of the surface. The attraction to the center is stronger if the charge
is placed far from the center; attraction continuously vanishes when the
charge approaches the position at the center of the surface. There is a
reflection symmetry of the surface-induced force with respect to the sur-
face midplane. The change of sign reflects the change of direction of the
surface-induced force crossing the center.

Figure 3 shows a vertical view of the surface area, &, with a charge
¢; at the horizontal position (Xj,Y;). One always can construct the
(dashed) area around charge ¢; such that point ( Xj, Yi) will be at the
center of this area. Obviously, the force due to the dashed area on charge
¢ is equal to zero. The resulting force experienced by charge ¢; due to
the charged surface is determined then by the rest of the surface area &,
i.e. the white part in Fig. 3. There will be only the dashed area (which
is equal to the whole area §) for the charge placed in the center of the
surface area: the longitudinal component of the surface-induced force
on the charge ¢; placed at the center of the uniformly-charged planar
surface is absent.

So far we analyzed one charge near a charged surface. The total
force on each of two charges, ¢; and g2, comprises the surface-induced
force, £*Ur | that pushes the charges to the center of the surface, plus the
Coulomb repulsion between charges, £f“°! in the direction of the line
R;> connecting these charges. In general, the directions of both forces,
fsur and fC°ul | are different, and the resulting force on each charge
could be different and does not necessary coincide with the direction of
line Rys. When 5" vanishes, i.e. far from the surface, the resulting
force is always dominated by Coulomb repulsion. However, this is not so
obvious when the charges are next to the surface. We now consider the
case when both charges are placed along the X axis, i.e. we assume that
Y7 =Y, = 0. In this geometry, all forces presented in the problem lie on
one line that coincides with Ry, . It is quite evident from Fig. 2 that,
at an appropriate distance from the surface, the resulting force on each
charge will depend on whether the direction to the center (of the surface)
for each charge would coincide with that of the Coulomb repulsion or be
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Figure 3. Schematic interpretation of the surface-induced force acting on
a point charge due to the finite size of the charged surface

directed against it. The latter could happen when charges are positioned
symmetrically with respect to the center of the surface. This discussion
is summarized in Fig. (4) where the results for the potential distribution
for two charges along the line Y = 0 are shown in the form of two
contour plots appropriate to the confined and isolated (bulk) systems.
There are closed contours when charges are next to the surface indicating
the existence of potential depth with an absolute minima at the center
of the contours. The potential lines never close when the charges are far
from the surface.

We have presented the qualitative and quantitative theoretical proofs
that there exist what we call the “apparent attraction” between a pair
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Figure 4. Isopotential lines for the system of two like charges near ( h* =
0.01) an oppositely-charged planar surface of finite extension (left side)
and without surface (right side).

of like-charged particles if they are placed next to an oppositely-charged
planar surface. The term “apparent attraction” means that there is no
attractive interaction between like charges. However, there is the surface-
induced force of electrostatic origin that, at appropriate conditions,
works against the Coulomb repulsion between charges. Our findings are
based on the direct analytic solution of Poisson’s equation for two like
charges next to an oppositely-charged planar surface. In a transparent
way we have shown that an extra component in the force experienced
by each of the two charges is presented in the theory due to an effect of
the finite longitudinal extension of a nearby charged plane, which always
takes place in reality. The results are obtained in an analytical form and
are not contingent upon approximations of an asymptotic or numerical
character. We analyzed in detail the simplest case in which the charge on
a confined surface is kept constant and distributed uniformly while both
particles are considered as point charges; the main conclusions presented
here are valid and can be generally applied. We believe that this is the
first microscopic explanation of the phenomenon of the net attraction
observed between like-charged particles next to a charged surface.
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