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HocninXeHHsI MOHOIIaPy OOHAKOBO 3apsIXeHHX YaCTHHOK Ha
NPOTHU/IEXKHO 3apsiXKeHill IUIOCKIH MIAHII MeTomoM KOMII'F0-
TEPHOr0 €KCIIePHMEHTY

E. lnop, A. Tpoxumuyk, €. Cos’sik, 1. Xeunnepcosn, [1.T. Bacan

AwHoranisa. 3amponroHOBAHO HETPATUIIWHU] TiAXIA AJIA TOCTIIIKEHHS 33 T0-
IIOMOT0I0 KOMII' IOTEDHOI0 €KCIEPUMEHTY [Jif IeAKOr0 KJIacy KBa3i-IBOBHMIp-
HuX Ky/aoHIBChbKuX cucreMm. CyTh migxomy HOJiAra€ y BAKOpUCTanui GaxTy, mo
3apAI0oBe OOMeXeHHA Ma€ CKiHdeHHI posmipu. OCHOBHHM HAC/IIOKOM Takol
CKIHYEHHOCTI € HeHyJIbOBUIl IDaJi€HT MOTEHIiasly B3HOBX CKIHYEHHO 3apd-
IKEeHOl NITTAHKH, AKa IHAYKY€ HEeHYJIbOBY TAaHTEHIIa/JIbHY KOMIIOHEHTY eJIeK-
TPUYHOIO noJid. fIK mpuKsIa; po3ryiAgaeTbCa CHCTEMa OJHAKOBO 3aPAIKEHIX
cepuuHIX MOJIEKYJT OOMEXREHUX IJIOCKOIO IIOBEPXHEIO, AKa MICTHTH [IPOTHU-
JIEXKHO 3apAMKEHy KBaAparHy Oiiauky. Hamu mokasano, mo BCi OMHAKOBO 3a-
pANXKEHI YaCTHHKY, He3aJIeK HO BiI IX KIIBKOCTI, 30UpPAIOTHCS HA IPOTHUIIEKHO
3apAnXKeHiil OiTaani, AKMO 3apAl IOBEPXHI BPIBHOBAXYETHCA CyMapHUM 3a-
PAIOM YaCTUHOK.

Computer simulations of a monolayer of like-charged particles
condensed on an oppositely-charged flat area

E. Spohr, A. Trokhymchuk, E. Sovyak, D. Henderson, D. T. Wasan

Abstract. A non-traditional approach to the computer simulation study of a
class of quasi-two-dimensional Coulomb systems is presented. The essence of
the approach lies in exploiting the fact that the charged confinement is of finite
dimensions. The main consequence of such a finiteness is a non-zero potential
gradient along the finite charged area that induces a non-zero tangential com-
ponent of the electric field. A system of like-charged spherical particles confined
by the planar surface that includes an oppositely charged squared area is con-
sidered as an example. We find that the like-charged particles, independently
of their number, all become confined on the oppositely charged area if the
surface charge balances the total charge carried by the particles.
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1. Introduction

The properties of a monolayer of like-charged particles, spread out on
a charged substrate plane, represent a challenge in many different areas
of both basic and applied science. Systems in which the distribution of
like-charged particles on a surface play a central role range from protein
and DNA solutions in biology to colloidal suspensions in industrial prod-
ucts. Attention to this topic increased recently because of speculations
on the possibility of like-charge attraction that has been raised by direct
measurements [1-5] of the pair interaction between identical charged par-
ticles (latex or silica macrospheres) confined to a plane by charged glass
walls. If this occurs, such an attraction may be responsible for a variety
of otherwise unexplained anomalies that include observations of large
stable voids in colloidal fluids and crystals [6], phase separation between
colloidal suspensions of different densities [7], and metastable colloidal
crystallites in dilute suspensions [8]. A common feature in the examples
quoted is that the charged particles are immersed in an electrolyte so-
lution and the Coulomb forces acting between them are mediated by
a surrounding electrolyte. As a result, all approaches [9-11,13,12,14,15]
that have been proposed so far to explain the interaction between iden-
tically charged particles exploit the ideas that processes carried out in a
confined cloud of electrolyte ions are responsible for this observed phe-
nomenon.

Quite recently, we have turned our attention [16] towards a different
class of measurements, which are known as analog simulations, where
attraction is observed between like-charged macroscopic stainless steel
balls at the air/glass interface [18,17,19], i.e. with no electrolyte involved.
In the particular experiment of Tata et al. [17], several hundred or thou-
sand steel balls are placed on a polymer surface. Through shaking, the
steel balls are charged. A charge balance is obtained via the supporting
surface. With this setup, stable structures form above the rectangular
area, which, depending on the density of charged balls, vary from gas-
like over liquid-like to 2D solids. In all these structures, the short-range
repulsion between the like charges is balanced by long-range attraction.

In the above mentioned study [16] we have analyzed Poisson’s equa-
tion for a single charge next to an oppositely charged plane and have
shown that the extra contribution to the long-range interaction has its
origin in the finiteness of the charged surface area. In particular, the uni-
formly charged planar surface, when finite, induces a non-zero tangential
electric force on the nearby countercharge that points towards the center
of the rectangular area. Thus, a single charge always tends to be placed

ICMP-02-17E 2

at the center of the oppositely charged area. When a pair of identical
charges is located on the surface, each one will compete for the central
position, simulating what we call an apparent attraction between them
and finally occupying the positions symmetrical with respect to the area
midplane.

In the present work, we have implemented this pair potential energy
to probe by means of molecular dynamics (MD) simulations the behavior
of a system of a larger number of identical charges. We show that the
Coulomb interactions indeed lead to confinement of similarly charged
spherical particles on an oppositely charged surface area. It is conjec-
tured that the origin of some apparently attractive interactions between
like-charged entities originates from the finite size of the charged plane
surface.

2. Models and Simulations

Setup of the simulation cell: The simulation cell mimics a real sys-
tem that contains a number N of identically charged particles (assumed
to be similar to potassium cation for convenience) of charge +e, with
e the proton charge. These particles can move above a horizontal sur-
face Z = 0 and are located with the positions R; (i=1, ...N) in the
rectangular coordinate system with the origin at the center of the planar
surface Z = 0. In the center of this surface there is a quadratic region
S={-a< X <a; —a<Y <a of area 4a?. This quadratic region car-
ries a homogeneously distributed negative charge of a magnitude —Ne,
corresponding to a surface charge density o = —Ne/4a?. It is assumed
that the dielectric constant is equal to 1 everywhere. In order to keep
the model as simple as possible, no assumptions are made concerning
the short-range interactions between particles and surface. Although the
charged particles are moving only in two dimensions changing X; and
Y; coordinates, the Coulomb interaction acting between them is fully
three-dimensional. The particles are simply constrained to move at a
fixed height h above the charged surface, i.e. Zi =h.

Configurational potential energy: In order to perform computer
simulations of this system, one needs to calculate the configurational po-
tential energy for N particles and the corresponding forces on each par-
ticle for an arbitrary configuration. In general, for the system of charged
particles near a charged confinement the total potential energy due to
all the forces acting on them to a good extent is found to be:

W{Ri}) = &:({Ri}) + ®:({Ri}), (1)
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where @, is the pair-wise additive interactions between charged particles
that consist of a superposition of the direct Coulomb repulsion and the
short-range Lennard-Jones (LJ) interaction:

bt = 33 [

i=1 j<i

+4epy Z > l( RJ|>12 <|RJLJRJ|>6” (2)

i=1 j<i

In the simulations reported below, the Lennard-Jones parameters are
chosen to be ey = 107.93 x 10722 J (or 78 Kelvin), and orj = 0.3 nm.
The contribution ®; is a sum of one-body terms:

N

o ({Ri}) = ) o™ (R), 3)

i=1

where ¢°"" | in general, must depend on all three cartesian coordinates
and not only on the distance from the surface [13].

Electric potential due to the charged flat area: To obtain the
electric potential ¢*"" we explore the solution of Poisson’s equation for
a point charge next to the finite charged area S on a horizontal plane
Z = 0. For a uniform charge density o, over the region &, the general
result for the electric potential ¢*"* becomes:

¢sur (4)

- |

1

where s = X2 4+ Y? is the horizontal coordinate parallel to the surface

S and ds is an element of the surface area. Reduction of the problem
to point charges should be considered as a simplification but not as a
limitation. Equation (4) can be extended for the charged Lennard-Jones
particles by making the reasonable approximation that their charge is
embedded at the center of the Lennard-Jones sphere. If necessary, the
height at which ions move above the charged surface can be related with
their diameter, e.g., h = or3/2 etc.

Qualitatively, result (4) is quite evident and is expected. However,
since the charged surface has the shape of a finite square, the limits in
the surface integral are: S{R;} = {—a+X; < X <a+X;; —a+Y; <Y <
a+Y:}. The latter indicates that the surface-induced potential, ¢, at
the charged particle on position R; depends not only on the vertical
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distance h = Z; from the surface but also on the horizontal position
(Xi;Yi) of the charged particle on the surface. The surface integral (4)
can be easily evaluated numerically and it has been shown [16] that the
electric potential ¢*"*(R;) has a parabolic shape with the equilibrium
potential value at the center of the charged area, i.e., X;j =Y; =0. For
the simple geometries of the charged area S, the surface integral (4) can
be evaluated analytically, which is convenient for practical applications
such as computer simulations. Particularly, for the present case of a
charged square area, ¢**"(R;) can be presented in a form of equation:

d)sur(Xl;K,h qU// dXdY —
VX —X)?2 + (G -Y)2+h?

—a —a

o[L(X:,Yi) — L(X3, Y1) = I3(X3, Yi) + [4(X5,Y)] (5)

with
L(Xi,Yi) = Caln [Bn + \/M] —Ca+
+Baln [Ca + O+ 2] +

+ Jﬂsinf1 Bl —4;

1 B
n n _ ~-n ,6
An VC2+ A2+ B, Au (6)

where n=1,...,4 and A7 = A3 =Y +h*; A3 = A] =Y + 175
By =By =Y,_; B3 =By =Y, ; Ci =C3 = X;_; Co =C4 =
—Xj + . Here we introduced the notations Y; + = a +Y; and X;4 =
a+ X;. Eqn. (5) and (6) explicitly express the dependence of the one-
body term, ¢*"*(R;), on all three cartesian coordinates.

The force due to the charged flat area of finite size: From the
results in the previous subsection as well as from the analysis performed
in Ref. [16] it follows that the tangential component of the surface-
induced electric field, — Vg, ¢*"", will no longer be zero when considered
next to a charged surface, except for a region exactly above the center of
the charged area. Hence, the finite and uniformly charged planar surface
induces the force f*"" = —¢Vg, ¢°"" acting on charge ¢; in all three di-
rections (not just only the constant normal force, f34" = 2mwgo, as in the
case of an infinite plane). This surface-induced force can be evaluated
by differentiation of the surface integral in expression (4). The lateral
force acting on charged particle at R; can be obtained by calculating
the change in the total electrostatic energy of the system under small
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virtual displacements. The result is as follows:

1 sur . _ : d . d sur . _
q—a_f (XUK)h) - <1XdXi + ldei > (:Zs (XUK:h) -

Vi /X 42 4
= —i; |In . . —

—Yiq + X+ YR 4R
Vi + /X2 + Y2+ k2

—1In —
2 2
Vi X Y R
Xi— +4/X?_+Y2 +h?
—iy |In VA 7 —
—Xiq + /X +YE 4R
Xi—+ /X2 + Y2 + 12
—In . (7)

2 2
_Xiv++1/Xi,++Yi,++h2

The surface-induced force, f5UT, always is directed towards the center
of the charged area on the planar surface. The magnitude of this force
varies depending on the horizontal position. The attraction to the center
is stronger if the particle is placed far from the center; the attraction
vanishes continuously when the charged particle approaches the position
at the center of the surface.

Molecular dynamics simulations: We have performed MD simu-
lations with the simulation box that is periodic with length L = 300 nm
in the £ and y dimensions in order not to ’lose’ particles in the course
of the simulation. The size of a side length of the charged square area
at the center of the cell was fixed at 2a = 25 nm. Several values of
the number of charged particles N = 50, 486, 972, 1458 and 1944 have
been used that correspond to area packing fraction, n = No?/4a? in
the range 0.05 to 0.28.

The simulations where started from initial configurations, where the
identical charged particles were randomly placed at h = 0.3 nm above
the entire cell base area. During an equilibration period the particles
condense due to the long-range surface-induced attractive interactions
and become confined above the charged area S. The velocity Verlet
algorithm with a timestep of 2.5 ps was employed. Simulations lasted
200000 steps or 500 ps, after an equilibration period of the same length
during which confinement of particles on the charged surface took place.
A Berendsen [21] thermostat with a time constant of 40 ps was used
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to keep the temperature constant. The temperature in all runs reported
here was 720 K; other temperatures in the range 100 to 1500 K were
also studied but are not reported here. Unmodified 'naked’ Coulomb
interactions were used throughout. Since after equilibration the particles
do not notice the periodic boundaries due to their confinement to the
charged area, the system can effectively be regarded as infinite.

3. Results and Discussion

Figure 1 shows the initial configuration (top) and a configuration after
500 ps (bottom) for a simulation run with a small number of particles,
N = 50. The charged area is shown as the dark grey square in the center.
Starting from the random initial configuration, all 50 identically charged
particles become confined after a 500 ps equilibration phase in which
excess kinetic energy is continuously removed, overcoming the strong
Coulomb repulsion between them. This behavior clearly demonstrates
the confining effect of the homogeneously charged planar area of finite
size. The spacing between the particles is rather large, compared to their
real size. Note, that the radii of the particles are exaggerated by a factor
of 10 in Fig. 1.

The confinement of the particles on the quadratic charged area is
already apparent from the snapshots in Fig. 1. A quantitative character-
istic of such confinement is presented in Fig. 2 where the particle local
density distribution along the z axis, p(z), is displayed. This has been
calculated by averaging the number of particles over the y coordinate
according to p(x) = [ dyp(x,y), with j(x,y) the total density dis-
tribution above the charged area. In the center of the charged area, the
particle density is constant (set to 1 in the figure). Close to the boundary
of the charged square, density oscillations appear, which are reminiscent
of those appearing in a simple liquid in contact with a solid. With in-
creasing number of particles, both the amplitude and the period of the
density oscillations decrease. Due to the symmetry between x and y axes
in the system, the densities p(y) are identical and therefore not shown
here. The oscillations of density that we see in Fig. 2 are very similar to
the those observed in [20].

From the local density distribution of the particles over the charged
area one observes a homogeneous density region in the central part of the
area. Radial distribution functions (RDFs) can be computed for the par-
ticles from the center of this homogeneous region only. Figure 3 shows the
like-charged particle RDF's in two dimensions for four different number
of particles as indicated. The particle RDFs were calculated only around
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those particles which were located in a central circular area of radius 3
nm, i.e. around ten particle LJ diameters . Around any of these parti-
cles, several shells of other particles are visible. With increasing number
of particles in the system, the number of discernible shell increases and
the distance between consecutive shells decreases, i. e., the arrangement
becomes, necessarily, more compact. In all cases, however, the first maxi-
mum of the RDF is well beyond the distance r/op,; = 1 that corresponds
to close packing of the charged LJ spheres. This indicates that the direct
repulsive Coulomb forces dominate at short distances, whereas at long
distances the surface-induced forces derived from ¢*“" contribute.

4. Concluding remarks

The main result of the present study is that confinement of like-charged
particles on an oppositely charged surface happens as a consequence of
the finiteness of the distribution of the surface charge. The finite nature
of the charged area on the surface leads to a non-zero electric potential
gradient along the confining plane. The equilibrium position for a single
charge is above the center of the charged area. If more than one charge
is present near the surface, these charges compete for this equilibrium
position and at the same time, repel each other due to Coulomb interac-
tions between them, effectively leading, as the simulations have shown, to
a rather stable equilibrium between particle-particle Coulomb repulsion
and surface-induced Coulomb attraction due to the surface finiteness.
For the particle densities studied here, the short-range Lennard-Jones
interactions between particles are not important.

If the confining surface has a simple geometry, as in the case con-
sidered, analytic solution for the forces acting on particles due to the
charged surface area can be obtained, and simulations are straight-
forward. The fact that the interacting system has a finite dimension,
makes the simulations even more simple, since the treatment of long-
range Coulomb forces via lattice summation methods, such as the Ewald
method, is not necessary.

As an example, the system of like-charged spherical particles confined
by the planar surface has been studied. For reasons of convenience, we
have approximated the particles as being similar in size to potassium
ions, assuming the most simple charge distribution, a point charge in
the center of ions. The important parameter is the ratio of the particle
hard-core diameter to the side length of the charged area on the planar
surface, which was chosen to be roughly 1:100. The number of particles
explored in the MD simulations was varied from 50 to almost 2000. We
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have observed confinement of ions in all cases studied. The density of
ions is more or less homogeneous in the center of the charged area; near
the edges of this area, density oscillations occur, which are similar in
nature to those near liquid/solid interfaces.

In summary, we have studied a system of very simple geometry that
shows the effect of confinement of like-charged species on a surface. We
have made the most simplifying assumptions concerning short-range in-
teractions and charge distribution in the particles. Specifically, it should
be noted that no polarizability effects are included. Other geometries,
shapes, and parameters should be studied in order to be able to gen-
eralize the conclusions. These efforts are currently undertaken in our
laboratories.
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Figure 1. Snapshots of the initial configuration (top) and an equilibrated
configuration after 500 ps (bottom) of a simulation run with N = 50
identical charged particles. For better visibility, the particles are dis-
played with a radius r = 100y 3.
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Figure 2. Particle local density, p(x), for simulations with different num-
ber, N, of particles as indicated. The = axis is given in units of orj.
Curves are shifted by one unit for better visibility.
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Figure 3. Radial distribution function, g(r), for simulations with differ-
ent number, N, of particles as indicated. The r axis is given in units
of or; and the vertical line at r/ory; = 1 indicates the close-packing
distance. Curves are shifted by one unit for better visibility. g(r) is cal-
culated only around those particles located in the central circle of radius

3 nm of the area S.
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