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Abstract. We obtained non-markovian kinetic equations in the second
Born approximation for two—zone semiconductor, excited by femptosec-
ond laser pulse. Both collisional dynamics and initial correlations are
taken into account. The problems of energy balance in the presence of
quasiparticle damping and relaxation of the system to equilibrium is
considered.
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1. Introduction

The processes induced by short-lasting laser pulses in semiconductors
permanently excite the attentions of technologists in microelectronics,
experimentalists and theoretical physicists. Speaking about microelec-
tronic technologies one has to mention that microelectronics technolo-
gists in the process of the creation of faster and faster switching devices
reached “quantum limitation” on frequency when characteristics of the
elements changed drastically. It could be said the scientists arrived at a
restriction imposed by quantum uncertainty AE - AT ~ | itself, hence
more experiments on ultrafast dynamics of semiconductors are needed
to investigate new features in behaviuor of such materials.

There are essentially two different classes of experiments for the study
of carriers dynamics [1]: luminescence and pump-probe measurements.
In both cases a pump pulse is used to generate electron-hole pairs and
bring semiconductor into the state far from thermal equilibrium. In a
luminescence experiment the radiation emitted in a direction different
from that of incident pulse due to recombination processes is analyzed
spectrally and/or temporally. Both carriers and photons dynamics are
being described quantum mechanically that allows one to investigate
spontaneous and/or stimulated emission and adsorption of the light in
semiconductors.

In a pump-probe experiment the semiconductor is excited by a pump
pulse travelling in a direction g; and the dynamics of the carriers induced
by this excitation are studied by looking at some property related to a
delayed pulse in a direction g5. In pump-probe experiments one obtains
differential transmission/reflection spectra (DTS). Though the only val-
ues entering DTS are spectral characteristics of probe signal and change
of interband polarization , to calculate complete dynamics of the excited
semiconductor and, consequently, to verify experimental data, one has
to take into account the distribution functions of carriers and phonons as
well. Usually, light-matter interaction is considered to be classical one in
pump-probe measurements while carrier-carrier interaction is of minor
importance in comparison with carrier-phonon one, when a maximum
pair density is about 10'7 + 10'® cm™3. The investigation of ultrafast
dynamics of laser excited semiconductors showed [1,2,10] that no purely
empirical model with collision integrals in 7-approximation manifested
its efficiency.

Thus, the task for theoretists is to construct a reliable model that
allows to describe kinetic processes in semiconductors taking into ac-
count all processes running in the systems: effects of “memory” - the
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most important when one deals with phenomena on femptosecond scale,
quantum coherence effects, influence of the dynamical correlations, for-
mation of quasiparticle behaviour etc.

One can point out three main directions which are being followed dur-
ing investigation of quantum kinetics in semiconductors: matrix density
theory [2-6]; Green functions method [8-10]; the method of nonequilibri-
um statistical operator [11-13]. In our Introduction we touch upon main
advantages and shortcomings of all these approaches.

In the theory of density matrix one deals with the chain of coupled
equations for electron and phonon distribution functions [4,5]. In fact,
this chain of equations appears to be infinite, incorporating more and
more complex (with the increasing number of creation/annihilation op-
erators) correlation functions. This system of equations is decoupled in
the certain approximation in interaction, the obtained set of differential
equations is being solved numerically or analyzed theoretically with ap-
propriate initial conditions. Though such an approach formally admits
taking into account higher correlations, there are some weak points here.
The first one consists in the fact that it is impossible to trace the validity
of conservation laws - the main point for any kinetic equation to be quite
reliable. Another shortcoming is dealt with the lack of information about
memory phenomena: the chain of equation does not contain time con-
volution, being in fact the system of differential equations with constant
coefficients. Though taking into account higher correlations in the 4-th
Born approximation manifested its efficiency in the framework of densi-
ty matrix approach (for instance, one succeeded to obtain the solutions
for one-particle distribution function which do not contain any artefact
like negative parts and instabilities - the main problem of the 2-nd Born
approximation), it was necessary to include time retardation. In Ref. [3]
both time retardation for the electron distribution function and quasi-
particle damping in the equation for polarization were taken into con-
sideration. Temporal evolution of the electron distribution function was
calculated both in Markovian and non-Markovian approximation. In the
second case, in the electron distribution function phonon replica evolves
as time goes by, but each of them starts rather broad before sharpening
until reaching the zero-phonon shape. This could be considered as a fin-
gerprint of quantum kinetics. Another manifestation of purely quantum
phenomenon is quantum beating in interband polarization [2,10].

In the works by Kuznetsov [8,9] there were calculated relaxation times
for electron distribution function in the approximation of phonon ther-
mal bath and linear excitation as functions of excess energy and pulse
duration. However, no quasiparticle damping was included into initial
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kinetic equations, and the solution of coherent problem was taken as
a zeroth approximation that does not allow to investigate an actual
thermalization of the system. Green’s function method was improved in
Ref. [10], and kinetics of phonon was included in the chain of equations
to obtain proper nonequilibrium one-particle distribution functions - for
carriers and polarization. The equations for retarded/advanced Green
functions were solved in the diagonal Wigner-Weisskopf approximation
so that quasiparticle damping was not included into the field-dependent
off-diagonal self-energy matrixes. Investigation showed well-pronounced
quantum beats in the interband polarization - a typical feature of quan-
tum coherence phenomena.

However, neither density matrix nor Green function method can in-
corporate nonequilibrium thermodynamics relations. On the other hand,
the question how to include the initial correlations into the system, which
are of great importance in such short-lasting processes, naturally ap-
pears. An attempt to do this has been performed in [12,13] where ki-
netic equations in the 2-nd Born approximation were obtained using
the nonequilibrium statistical operator (NSO) formalism. Initial correla-
tions were introduced by means of quasiequilibrium (relevant) distribu-
tion functions. The set of abbreviated description including one-particle
densities and interaction energy was taken as a basic one. Collision inte-
gral consists of the two parts: due to collision dynamics and as a result
of initial correlations. In the state of complete equilibrium both integrals
compensate each other. It is worthy to note, that correlational contri-
bution related to nonequilibrium temperature (quasitemperature) of the
system vanishes in the Markovian approximation which indicates an ex-
istence of two typical relaxation times: 7., related to fast one-particle
effects and 7.,y connected with slower many-particle interactions. How-
ever, in the evaluation of kinetic equations, Wick’s decomposition of the
creation/annihilation operators was performed, hence correlations enter
in the kinetic equations only indirectly - via mean value of interaction
energy. Another point is that it is difficult to introduce a quasiparticle
damping in the NSO method self-consistently. In Ref. [14] this problem
was partially solved in the framework of the mixed (thermodynamic and
time) Green’s functions formalism. Despite of rather formidable struc-
ture of obtained expressions it is possible to solve them numerically for
the simplest case of, say, electron—phonon relaxation.

However, the picture becomes much more complicated in the pres-
ence of the external field. Markovian picture is found to be ineffective
in such a case [1,10], and one has to deal with the system of integro—
differential equations for one-particle distribution functions of carriers,
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phonons and polarization. The principal question is an introduction of
slowly varying variable (H;,:)! into the basic set of dynamic variable,
since only taking into consideration of mean value of interaction energy
allows one to obtain a proper transition from essentially nonequilibri-
um behaviour to Markovian one and, consequently, ensures equilibrium
solution of the kinetic equations [12-14].

It is challenging to investigate whether introduction of interaction
energy could stabilize the solutions of kinetic equations in the second
Born approximation, or introduction of quasiparticle damping is neces-
sary. We plan to touch upon all these problems in our paper on ultrafast
kinetics in laser-excited semiconductors. The article is structured as fol-
lows: in the next Section we write down Hamiltonian, describing the
basic interactions in laser-induced semiconductor and present coherent
solutions to kinetic equations. In the third Section we construct colli-
sion integrals which are found to consist of two terms: due to collisional
dynamics and due to consideration of initial correlations in the system.
Additionally, the equation for quasitemperature will be obtained, and
generalized heat capacity will be introduced. In the 4-th Section we con-
sider some aspects related to energy balance requirement. In the Section
5 we examine a simplified version of the chain of kinetic equations in ap-
proximation of zero polarization. In fact, we deal with effective one-zone
semiconductor investigated in Ref. [12]. Special attention will be paid to
Markovian limit and transition of the system to equilibrium. The last
Section contains some numerical estimations for relaxational dynamics
of the excited two-zone semiconductor and discussion of the results.

2. Basic model of two-zone laser excited semiconduc-
tor

To describe the kinetics of laser-excited semiconductor let us introduce
a Hamiltonian of the system:

H(t) = Ho + Hy(t) + Hint, (2.1)
where )
Hy = eakt aak + Y hwg (bflbq + 5) (2.2)
k,o q

denotes the kinetic part of the Hamiltonian in representation of sec-
ondary quantization, alk and aqk, @ = {c,v} mean creation and
annihilation operators of conduction (o = ¢) and valence electrons
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(¢ = v), while b:fl, bg correspond to creation and annihilation opera-
tors of phonons. We shall deal with parabolic two—band semiconductor;
the energies of the electrons in the vicinity of the I" point are to be de-
scribed by the effective mass m. of the electrons in the conduction band
and m, of the holes in the valence band:

E, 1k FE E, KK K,

=4 =9 =9 _ —_9 _
€ck = 2 + 2mc 2 + €ck, Evk 9 2mv 9 Evk-
(2.3)

Field-dependent part of Hamiltonian H(t) is presented in the form

= > nas(k)alasBE(), (2.4)

a#fB.k

that describes the interband polarization of carriers by external field
E(t) via optical matrix elements pqg(k):

ey (k) = e/dr uck@uvk +h.c. (2.5)
Eo
where denotation h.c. means Hermitian conjugation, and uqg is the lat-
tice periodic Bloch function of the band « and the crystal momentum k.
Usually, pos(k) are supposed to be constants, pag(k) =~ do; they define
Rabi energy hiwg = doFy of the laser pulse [9,10], where Ej is the field
amplitude.

Time profile of the external electric field could be approximated as
a leading edge of the excitation pulse with duration 7, and central fre-
quency w in the form

E(t) = Eo(t) cos(wt), Eo(t) = Egexp[—t*/7]]. (2.6)

Note that we deal with homogeneous system under uniform excitation,
the length of the wave being determined by energy 1+3 €V (characteristic
gap-width in two-zone semiconductor) is about 10~7 m that is much more
than lattice period in several nanometers.

The last term H;,; in the Hamiltonian, which is supposed to be small,
describes the carrier—phonon interaction and could be presented as

Hip = Z D(q) (bqalkaaqu + bgalk_qaak> , (2.7)
akq

where the constant of interaction D(q) could be chosen in the Frohlich-
type form [8,10]:

2melwro

D(q)2 = G:Tv
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hwro means the energy of a longitudinal optical phonon (in all subse-
quent calculations we shall deal with dispersionless longitudinal optical
phonons, so we put wg = wro everywhere), and €* denotes an effective
dielectric constant. Note, that first two terms of the Hamiltonian could
be presented in the matrix form as

Ho(t) = Ho+ Hy(t) = Y Mag(k,t)al zap,
Bk

Mag(k,t) = ( _dfféos) _deovb;(t) ) (28)

The subject of our interest are the kinetic equations for nonequilibri-
um distribution functions of carriers fo3(k,t) and phonons n(q,t), which
can be determined as follows:

_( alace) (aleace)t \ _ [ felk,t)  p(k,t)
f“ﬂ('“’”‘<<a1:avk>t <a1:avk>f)‘< )
n(g,t) = (bl;bq)t, (2.9)

where averaging is being performed over nonequilibrium statistical op-
erator p(t) and the notation for polarization p(k, t) from Ref. [9] is used.
Taking into account the evolution expression for NSO p(¢) (von Neumann

equation)
000) s L p(e), (1) = 0 (2.10)

and definition for distribution functions, one can write down the kinetic
equations in the following form [11]:

W%i"”t) _ % (M (k,t), (k)] 5 = Lap(k,t), (211
an((;,t) =1"(q,t),

where [M(k,t), f(k,1)],5 denotes corresponding matrix elements of the
commutator of two matrixes, while for collision integrals one can write
down the following general expressions:

Tapk,t) = T {[Fug(0), Hinlp(0)}

(g, t) = %Tr{[ﬁ(q), Hinilp(1)} (2.12)
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The former kinetic equation (2.11) without collision integral I,z (k, t)
is known as a coherent approximation': in the Green’s functions formal-
ism [8,10] it corresponds to singular terms (coherent part) of self-energy
matrix only. Coherent kinetic equations could be written as follows:

df,(k,t) dfc(k,t)
biulkt) __ (T) , (2.13)
ap(a";_v t_ —%(eck — eo)p(k,t) + %doE(t)(fc<k,t) — fo(k,t)).

Relations (2.13) are nothing but the Bloch equations which are widely
used to describe the optical response of a two—level system. A general
solution of these equations for an arbitrary form of E(t) is not known;
however, Egs. (2.13) yield a useful integral of motion [9]:

4p(k,t)]? + (fo(k,t) — fo(k,1))? =1 (2.14)

for radius of the Bloch sphere, which makes clear that as long as there is
no relaxation, p(k,t) and f.(k,t) are generally of the same order. This is
particularly obvious in the low excitation limit (f. << 1), where (2.13)
reduces to

|p(k,t)|2 ~ fc(kVt) ~1-— fv(kﬂt)'

In the process of relaxation due to electron-phonon interaction, polar-
ization finally decreases because of the finite spectral width of the pulse.
In the last Section we perform numerical calculation in the assumption
that non-diagonal elements of distribution function, related with inter-
band polarization, damp faster then diagonal ones. This situation is well
known in quantum kinetics [11], though during pulse transmission it is
necessary to consider polarization on equal terms with diagonal elements
of distribution functions.

3. Collision integrals and equation for quasitempera-
ture

To obtain an explicit form of collision integrals (2.12) one has to con-
struct a general solution of von Neumann equation. To do this let us sup-
ply the evolution equation (2.10) with initial conditions p(tg) = prei(to)-

11t is often called as “collisionless” approximation
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Following the standard procedure [12,13], we define relevant statistical
operator p,¢(t) in generalized Gibbs form as

praat) = s exp{=A Hini— 3 Nk, 0) s (B)—A"(a. D).

af,kq
(3.1)
Zyei(t) = Tr exp{—B(t)Hint — Y Aap(k,t)fap(k) — AP"(q,t)i(q)},
ok (3.2)

where Lagrange multipliers 3(t), Ans(k,t), AP"(g,t) should be calculat-
ed from self-consistency conditions

<a}3ka‘ak>iel = faﬁ(kﬂt)7 <b b >rel - n(q7 )7 <Hint>f“el = <Hint>t
(3.3)
and are attributed to nonequilibrium thermodynamic forces. For in-
stance, B(t) corresponds to nonequilibrium inverse temperature. Later
we shall demonstrate that generalized temperature T'(t) on large time
scales determines an equilibrium background to which an electron tem-
perature tends from above and phonon temperature from below, as long
as one operates with subsystem temperatures. Hence, being initially de-
termined as Lagrange multiplier, T'(¢) subsequently is associated with
a generalized thermodynamic characteristic of the system; besides, T'(¢)
tends to its equilibrium value T¢; when ¢t — oo. Note, that we included
H;,,; into the basic set of abbreviated description variables. In Green’s
functions formalism it corresponds to introduction of temperature and
mixed Green’s functions [14] when Keldysh contour goes along both time
and thermodynamic axes. The advantage of NSO method consists in the
direct introduction of generalized temperature T'(t) while in the mixed
Green’s function formalism one can talk only about initial value of cor-
relation function. It is a common problem how to introduce generalized
temperature in the framework of Green’s functions method.

Now we are in a position to obtain an iterative solution to von
Neumann equation (2.10). In the second Born approximation one can
present NSO p(t) in the following form, neglecting higher orders in in-
teraction [12]:

t

p(t) = prel(t) - /dt UO(t t) ]ﬁ[prel( /)7H0(t/) +Hznt]U0+(tat) (34)

to

According to the definition (2.12), collision integrals in the second Born




9 IIpenpunT

approximations could be written as follows [12,13]:

t

1
o (ko)== dt'Tr{ {UJ(t, #) {alka% Hmt] Uo(t, 1), Hm] pret(t)}
to

(3.5)

t
1
= / at'Tx {UF (1) [af aph, Hint| Uo(t, ) [ora (), Ho ()]}

to

t
P (q.1) = —% / 4T { [U (4.7) [Bbgs Hint] Vot '), Hine] pras(t)}
(3.6)

+% /dt’Tr {U(t,t) [bequmt] Uo(t, ') [pres(t'), Ho(t')]} -

In Eqns.(3.5)-(3.6) Up(t,t') = exp, {—— [ Ho(r dT} denotes an evo-

lution operator with time-ordered exponent. The action of U (¢,#'),
Uo(t,t') on corresponding operators could be calculated explicitly on-
ly for bosons:

Uy (t,1)bqUo (t, ") = exp[—iwg(t — t')]bg,

Ug (¢, )bl Us(t, t') = expliwg(t — t')]bg, (3.7)

while for fermions the problem does not have an analytical solution. We
present corresponding transformations in a symbolic matrix form via
time—ordered exponent:

U (1.1 ) aanUi(t, 1) = exps | 7 / Mty dt" | age, (3.8)
af

i
U (t,t")al , Uo(t,t') = exp_ E/M(k,t”)dt” aly (3.9)
aB

Up to a factor i0(t — t’), the time-ordered exponents in (3.8)-(3.9),
determined by single particle energy matrix M (k,t) from Eqn.(2.8) are
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nothing but retarded G”(k;t,t") and advanced G*(k;t,t') Green’s func-
tions, respectively [10,11]. We will keep the generalized matrix notations
for further convenience.

Thus, prior to solving of kinetic equations, one has to solve the
Green’s function problem 2. Formally, kinetic kernels (3.8) could be found
from relation

%ﬁ’”) ZMM (k,t)Ay5(k,t) (3.10)

and written down in the following way:

t
exp, —%/M(k:,t”)dt” = Ay (k, t)[A(k,t)] 5, (3.11)
af v

where M (k,t) denotes single particle elements (2.8).

In general case of time-dependent perturbation, the system of
equations (3.10) could be solved only numerically [10]; only lin-
ear in field amplitude approximation admits analytical solution,
and this case is considered in Appendix A. However, since we
are about to verify the results of [10], we restrict ourselves to
unperturbed Wigner-Weisskopf approximation for matrix exponents

t t
expy |—% [ M(k,t") dt”} , exp_ {% J M(k,t") dt”] , taking into
t’ af t’ af

consideration in our numerical calculations only the diagonal elements.
Off-diagonal elements, vanishing in the limit of zero field, give the main
contribution in the energy domain A = hw — e — €y, Which is close
to an excess energy region and could be neglected in the problem of the
relaxation to equilibrium. Note that our approach does not impose any
limitation on the strength of E(t); the only requirement for the electric
field is not to cause damages in crystal lattice.

Now we are in a position to calculate the first terms in (3.5)-(3.6). We
call them “collisional” contributions in total collision integrals I,z (k,t),
IP"(q,t), in order to distinguish them from “correlational” ones, appear-
ing because of taking into consideration initial correlations in the system.
Using Wick’s decomposition of the operators, we have:

15" (k, 1) ——/dt ZD {exp [—iwro(t — )] x

2We shall use a term “Green’s function” to denote time-ordered exponents (3.8)
when appropriate.
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t
X exp, —% /M(k —q,t")dt"
t/

(N (@) (Z— f(k—aq)) f(k) =N~ (q)f(k—q) - (T—f(k)} -
exp_ % /M(kat”) at" | + h.c.} —(k+—k—q), (3.12)

+ Oéﬂ

t
co 1 .
15 @) =~y [ D)y TT{GXP[—WLO(t )
to k

X exp, —% /M(k —q,t")dt"
{(N (@) (T - fk—q)-f(k) =N~ (q)f(k—q)- (T - f(k)} -
exp._ % / Mk, ¢")dt" | + h.c.}. (3.13)

Here we denote N~ (q,t) = n(q,t), Nt(q,t) = 1 + n(q,t), use the
symbol - for matrix product and Tr for trace over zone indexes, while Z is
a unit matrix. Though the form of I;Cg”) (k,t) looks rather complicated, it
is seen that (3.12)-(3.13) have a well defined “gain—loss” structure. Taking
only diagonal elements of the time-ordered exponents (that corresponds
to Wigner-Weisskopf approximation for Green’s functions) we can write

down the following expression:

t t
exp_ %/ M(k, t”) dt” eXp %Z/ M(k —q, t//) dt" N
t’ t

ap Br

1
exp [ﬁ(eak — eﬁk,q)(t — t/):| (5au(55y.

However, the mentioned here approximation for kinetic kernels has one
essential shortcoming: its field-free form does not obey energy balance
equations. We shall come back to this important question in the next
Section.
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Kinetic equations with collision integrals (3.12)-(3.13) turn out to be
in a closed form, since we neglect a contribution of correlation after de-
coupling of Bose and Fermi operators. Taking into account of higher cor-
relations leads to quasiparticle damping (related to the imaginary part
of self-energy operator in Green’s function method [10]). In the density
matrix approach it corresponds to consideration of equations for higher
correlation functions. Again, the question how to cut off the hierarchy of
equations with not allowing the energy disbalance arises [3,4]. Recently
the procedure of obtaining of quasiparticle damping function after the so-
lution of quantum B-B-G-K-I hierarchy has been proposed in Ref. [18].
However, this procedure seems to be quite complicated to be strictly
implemented in numerical solution of kinetic equations (in contrast to
Green’s functions method when the equation for quasiparticle damping
function ~y(k, t,t') supplements the system of kinetic equations [14].) In
the method of nonequilibrium statistical operator one encounters similar
difficulties describing formation of long-time quasiparticle behaviour of
the system. Usually quasiparticle damping factor exp[—~(t—t")] serves as
a fitting parameter, the system stabilizing behaviour at long times and
preventing numerical solutions of kinetic equations from non-physical
effects (electron and hole distribution functions should be in the inter-
val [0,1]). Summing up all mentioned above, we shall treat quasiparticle
damping as a result of all interaction processes in the system which did
not, enter the kinetic equations explicitly, keeping in mind that, in the
first turn, quasiparticle behaviour arises from exceeding the bounds of
second Born approximation 3

Remind that we take into consideration the equation for interaction
energy (H;n:):. Hence, we take into account running correlations in the
system, though we neglect correlations during Wick’s decoupling. Taking
into consideration the equation for (H;n:); is known to be of essential
importance when describing relaxation toward equilibrium [13,16]; our
numerical estimations completely confirm the theory predictions.

The contribution of dynamic correlations is being determined by the
second terms in (3.5)-(3.6). We shall call them “correlational” to un-
derline their dependence on initial correlations introduced by the rel-
evant distribution function p,¢(t), Eqn.(3.1). After some algebra (see
Appendix B) we come to the explicit form of correlational constituents
of the collision integrals:

30ften one can encounter the term “collision broadening” which is found to be
equivalent to quasiparticle damping. It originates from Lorentzian shape of spectral
function while one has energy-conserving delta-function in case of zero ~.




13 IIpenpunT

195 (K, ) ——/dt ZD {exp[ iwpo(t —t)]

X exp, —%/M(k—q,t”)dt”

{N+(Q7t,) (I_ f(k - qvt,)) ’ B(kvk - qvt,) . f(kvt,)
—N7(q,t)f(k—q,t") Bk, k—q,t)-(I—f(k,1))}

-exp_ %/M(k,t”)dt” +h.c.} —(k+—k-q), (3.14)
ap
where matrix B(k,k — q,t) is being defined as follows:

B(k.k — q.1) = lim / du expleAP (g, )] expl—aA(k, 1) (3.15)

(M(k,t) — M(k —q,t) — hwroZ) - explzA(k — q,t)],

B(t) = 1/T(t) means generalized inverse temperature, the explicit ex-
pressions for Lagrange multipliers could be found in Appendix B, and
the equation for phonon correlational counterpart is of a similar struc-
ture, see Eqn. (3.13). To obtain a closed set of equations we have to
compose the equation for quasitemperature 5(¢). We proceed in the sim-
ilar manner as in the Ref. [12]. Again, we start from the self-consistency
conditions (3.3) which could be rewritten in a somewhat different form,
taking into account the work of the external field:

1 Fup POt~ 1. 1 {0 20— g )

Tr{I:IimapM } Zhw 17 (g, t Zeakl,m k,t)

+ ) Lap(k, t)do E(t). (3.16)
a#0k
Note that the coherent term - the second summand [M(k,t), f(k,t)]ag
from Eqn. (2.11) with external field does not contribute to balance equa-
tion: only the collisional dynamics determines the equation for general-
ized temperature.
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The last equation for mean interaction energy could be rewritten
as an equation for §(t), taking into account the time dependence of the
relevant statistical operator via time dependence of Lagrange multipliers.
One can write down:

d(t) _ 1 {

> ealk)laalk,t) + > hwaI"(q,t)

ak q

i o)

— Y Tap(k, t)doE(t) ¢ (3.17)

a#Bk

where we use denotation C(t) = (H’im, ﬁmt) for nonequilibrium corre-
lation function “energy—energy” defined in a usual manner:
1
(4.8), = [ar(@dp b8 3, A=A (A (318)
0

Again, using Wick’s decomposition we can present the following ex-
pression for the generalized heat capacity C(t) via one-particle nonequi-
librium distribution functions:

cty =3 D(Q)zTr{N(q,t)f(k —q,t)-B(k,k—q,t)- (T — f(k,t))—
kq

N*t(q,t)(T — f(k—q,t)) - B(k,k — q,t) - f(k,1) —l—h.c.}. (3.19)

As it is, we obtained the closed form of kinetic equations for the
description of the ultrafast dynamics in a laser excited semiconductor.
The collision integrals as well as equation for generalized temperature
are obtained in the closed form, being expressed through one-particle
nonequilibrium distribution functions. Kinetic equations are known to
posses two basic properties [11,12,14]:

e They have to allow equilibrium distribution function to be a solu-
tion for kinetic equations. In other words, the collision integrals are
vanishing when all distribution functions simultaneously are taken
to be zero.

e (Collision integrals have to obey the energy balance requirement, as
long as no additional relaxation (like quasiparticle damping or any
phenomenological relaxation terms) is introduced in the kinetic
equations.
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In the next section we dwell our attention on balance equation, pointing
at the fact that in the absence of quasiparticle damping and without
any simplifications in kinetic kernels the collision integrals satisfy the
second basic property. In the fifth Section we will show that equilibrium
distribution functions are the solution to kinetic equations that agrees
completely with the first basic requirement.

4. Energy balance equation

As has been already said, the kinetic equations without quasiparticle
damping should obey energy balance. To verify this requirement, let us
multiply the first equation from (2.11) by single-particle energy matrix
M(k,t) and the second equation by hwro. Using definition of time-
ordered exponents (3.8)-(3.9), their symmetry properties (see Appendix
A) and taking the trace over zone indexes, one can write down the fol-
lowing expression:

% (kin () + epn () + ine (1)) = Jpor () E (1), (4.1)

where polarization current is defined via the time derivative of the real
part of polarization:

oot (8) = o5 S (eI 8) + ok 1), 4.2
k

averaged kinetic energy of the carriers ey, (t) and phonons e,y (t) is being
defined via the corresponding one-particle nonequilibrium distribution
functions

Ekin (t) = Z €akfoa (k, t), e’:‘ph(t) = Z thon(q, L‘), (4.3)
ak q

while for the mean value of interaction energy e;,:(t) one can present
after some algebra the following explicit relation:

cnelt) = = / ar ZD@)?Tr{exp[—mo(t — 1)

¢
X exp —%/M(k—q,t”)dt”

t
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{NJr(qa t/) (Z - f(k - qvtl)) ’ A(ka k — q, t/) ' f(ka t/)
—N"(q.t)f(k—q.,t') Ak, k—q,t') - (T — f(k,1'))} (4.4)

t
exp_ %/M(k,t”)dt” —h.c.},
t/

Ak, k —q,t) =7 — p(t)B(k,k — q,t).

We will show in the next section that generalized temperature T'(¢), con-
jugated to mean interaction energy €;,+(t), takes its constant value much
earlier than distribution functions become quasiequilibrium. In Marko-
vian limit €;,+(t) — 0, T(t) — const while collision integrals remain
finite. Basically, it agrees completely with two—time hierarchy spoken
about in Introduction. On the other hand, one can introduce a charac-
teristic time of correlation damping T7y,4%, Which is smaller than time
Tasymp at which one-particle distribution functions approach their equi-
librium values. We will call 7,41 “a time of Markovization” (see next
Section for detailed explanations) keeping in mind that this is a time
scale at which correlational components I g%”(k,t), I;;’L”’(q,t) of colli-
sion intergals vanish [12,13].

A laser pulse diminishes with time, and the right hand side of the
Eqn.(4.1) tends to zero; thus we pass from energy balance equation to en-
ergy conservation [12,13]. At long times, when carrier distribution func-
tions tend to quasi Fermi distribution and phonon distribution func-
tion tends to quasi Bose distribution, it is possible to introduce two—
temperature formalism [19]. In cited paper the authors showed the two—
temperature model to become valid at times of thermalization, when the
kinetic energy starts to evolve in a quasi Fermian manner. ¢ Contrary,
there are some doubts about validity of two—temperature model at short
times, though it does not prevent us from introduction of generalized
electron temperature T, (t) and lattice temperature Ty, (t) in a way sim-
ilar to (3.17). Namely, at the times when laser pulse has ceased one can
rewrite a balance equation (4.1) as follows:

a0 - @D )

4In order to the reader does not confuse T¢perm With time of the establishing
of quasiequilibrium the authors explain: Tiperm gives a time when an electron gas
exchanges energy with a cold lattice at the same rate as a Fermi-distributed electron
gas, which has the same internal energy. Hence, Tiperm “is not a time, after which
Fermi distribution is established but the time at which the laser excited electron gas
behaves as a Fermi distributed electron gas.” In any case, since the authors of Ref. [19]
have already chosen a Markovian form of the kinetic equations, there is not any reason
to relate thermalization time to Tp,qr: obviously, Tmark << Teherm < Tasymp-
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where we have denoted ceor-(t) = C(t)/T(t)? for correlational contribu-
tion to the heat capacity while one can write down the following relations
for the electron and lattice generalized heat capacities:

(ékin7 ékzn)t

calt) = TR, Gun = S lifalb 01— Falio0)
(4.6)

eonlt) = SR )i = S tonta.t)1 + i)
(4.7)

Right hand side of (4.5), which is related to energy loss due to correla-
tion, tends to zero in Markovian limit, and we have the following picture:
an electron gas is cooling to T'(t — o00) = T, from above, a lattice is
heating to the same equilibrium temperature from below. As to gener-
alized nonequilibrium temperature T'(¢) associated with €.opr, it forms
equilibrium background at long times. All these statements to be con-
firmed at the Section 6, when we estimate the evolution of generalized
temperatures of an effective one—zone semiconductor.

If one makes any approximation for kinetic kernels (for instance, ex-
pansion in series in external field amplitude), balance equation (4.1) will
be broken automatically. In such a case, one can only talk about balance
equation up to a certain order in Ej. Since we do not have an exact
expression for kinetic kernels anyway, in subsequent numerical evalua-
tions we will operate with diagonal matrix only, which corresponds to
Wigner—Weisskopf approximation to Green’s functions.

The last remark which has to be made in this section is related to
quasiparticle damping and its influence on energy balance equation. As
has been already said, quasiparticle damping arises from going beyond
the framework of the 2-nd Born approximation. In a general case, writing
down the kinetic equations one has to compose the dynamic equation
for time—energy dependent quasiparticle damping function v(k,t,t') in
addition to modified kinetic kernels

t
exp, —%/M(k,t/’)dt” —
t’ af

t
exp_ —% /M(kat”) dat" | exp[—(k,t,t")].
t/

af
However, once we have introduced nonzero ~(k,t,t'), we cannot avoid
violation of energy balance. We shall not talk about this problem any
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more, referring reader to the literature [10,14,18]. The only reason to in-
troduce nonzero quasiparticle damping is dealt with necessity to stabilize
numerical solutions to kinetic equations at long time scales. However, as
will be shown in the last section, the “fee” for such a procedure is over-
heating of the system: the more pronounced, the larger value of v taken
into consideration.

5. An effective one—zone semiconductor. Transition to
Markovian limit.

In previous sections we obtained kinetic equations in the 2-nd Born ap-
proximation taking into account running dynamic correlation with the
aid of (H;p:)¢. Correlational component of the collision integral involves
the generalized temperature, for which we can obtain the equation (3.17).
All kinetic equations are of the closed form but rather complicated ma-
trix structure. Moreover, kinetic kernels in the general case could be
evaluated only numerically. Therefore we consider the problem of relax-
ation towards equilibrium. To get rid of the complicated matrix structure
in the expressions for collision integrals we made two approximations:

(i) we neglect off-diagonal elements in kinetic kernels;

(ii) polarization is supposed to vanish more rapidly than electron,
hole and phonon distribution functions.

Formally, it means that we neglect off-diagonal elements of Lagrange
multipliers (B.8) which, in their turn, tend to zero in zero-field limit.
In our viewpoint, such an assumption is, at least, more grounded than
approximation of phonon bath made in Ref. [10], when phonon collision
integral is considered to be zero, while carriers distribution functions as
well as polarization are essentially nonequilibrium. In our approximation,
the two-level problem decouples into effective one-zone problems. We
have the particles in conduction zone, the holes in valence zone after
laser pulse irradiations, electrons and holes interact with nonequilibrium
phonon subsystem but c-v transitions are vanishing.

With all mentioned assumptions we are in a position to rewrite the
kinetic equations and the equation for quasitemperature in the following
form:

t
2 (6707
Too(k,t) = 2 ZD(q)Q/dt’ cos [%_g.q(t—1)] %
q to
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1 - B(t) ———hkag
- Ky g o (L), 200
x (fw(k)(l = faalk — @)1+ 12(@) — (1~ foalk)) foa(k — q>n<q>)

t

2
—13 ZD(q)2 /dt’ cos [Qp% g r.q(t —1)] x
a

to

¢/

" thaqkq
<1 ~ R, L), <t'>}>) "

(faa(k)(l—faa(k—Q))n(Q)—(1—faa(k))faa(k—Q)(Hn(q))) ; (5.1)

t

dt’ cos [QR%_q.4(t —1)]
ak to

1 / thO’; q,9
N R (e )

(faa(k)(l_faa(k_q))(1+n(q))_(l_faa(k))faa(k_q)n(q)> ; (5:2)

t

where we have introduced the designations:

ax 1

le;kmq = % (eak, — €aks — hwq)a (5.3)

oo (rp oy = — L= foalk1.0) foa(ka. Dn(g. )
ki,k2,q ’ facx(kla )(1_faa(k27t))(1+n(q7t))'
The system of kinetic equations has to be complemented by the equa-

tion for quasitemperature, which has the following structure after all
simplifications mentioned above:

(5.4)

¢
d— ZD Py qq/dt’cos[ hh_qqt—1)] x

to
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1 / hQ%O’tﬂ q,9
A\ R (e )

<fozoz(k)(1_faa(k_q))(1+n(q)) - (l_faa(k))faa(k_q)n(q)) (55)

+

with the expression for generalized heat capacity

O(t) = (Hint; Hint)t = 22 l)(q)2 (56)
akq
n(Q)(l — faa(k))faa(k — (I) — (1 + n(Q))faa(k)(l — faa(k - Q))
(@)1~ foa (k) fua(k — q) ] |

X

In

(1 + n(q, t))faa(k)(l - fozoz(k - q)

Since {(z — 1)/Inz} > 0, we see from the last equation that C(¢) > 0.
From the expressions for kinetic equations and the equation for gener-
alized temperature one can easily verify that equilibrium (quasiequilib-
rium) solutions satisfy Eqns.(5.1),(5.2), (5.5). Indeed, let us write down
quasiequilibrium distribution functions for electron and phonon subsys-
tems:

1
exp {A(t) (eak — pa(t)) } + 17

n°(t) = 1
exp{B(t)hwro} — 1’
where (1, () means nonequilibrium chemical potential of the elec-
trons/holes. It can easily be checked that

BORARS ., g = Kil ks o ({F7(1),0°(1)}), (5.8)

where the IC-function in the right-hand side is obtained from the func-
tion (5.4) by replacing nonequilibrium distribution functions with their
quasiequilibrium correspondences. Using equation (5.7), we see that the
collision integrals (5.1) and (5.2) are equal to zero if fo(k,t) = fO(k,t)
and n(q,t) = n°(¢). Note that in this case the right-hand side of equa-
tion (5.5) is also zero. Contrary, the collision integrals without their
correlational components do not have an equilibrium solution!

Let us consider in more details approaching of the system to the
Markovian limit. The Markovian approximation implies that the collision
integrals (5.1), (5.2), and the right-hand side of equation (5.5) depend
on the distribution functions and the quasi-temperature taken at time t¢.

2a(k7 t) =

(5.7)
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The Markovian approximation is inadequate for the initial stage of evo-
lution because of initial correlations and, strictly speaking, describes the
limiting long-time regime where 0faq(k,t)/0t — 0, On(q,t)/0t — 0, and
0p6(t)/0t — 0. Thus, on passage to the Markovian limit in the collision
integrals (5.1), (5.2), and in equation (5.5) for the quasi-temperature,
we put foo(k,t') = foa(k,t), n(q,t') = n(q,t), and then pass to the
limit ¢ — t; — oo. The remainder integrals over ¢’ are calculated in the
standard way:

t 0
lim dt’ cos [Qt—t")] = lim dr e cos (Q7) = 76(2). (5.9)

t—t,—o0 e—40
— 00

From the last equation one can see immediately that in Markovian
limit correlational components of the collision integrals (terms includ-
ing B(t) ) as well as right hand side of (5.5) become zeros. Indeed,
in all these expressions we face with a construction like QJ§(Q2) = 0.
Nevertheless, collisional components of I, Iy, remain finite and have
the form of Uehling—Uhlenbeck collision integrals [7]. Equilibrium dis-
tribution functions are known to obey kinetic equations with collisions
Uehling—Uhlenbeck type integrals.

Let us to sum up all results from this section. We have shown that
only taking into consideration a correlational component of collision in-
tegrals one can guarantee the kinetic equations to have an equilibrium
solution. In Markovian limit I(¢°"") tends to zero, but it is a correla-
tional component, which allows system to approach this limit. When be-
haviour of the system became Markovian, generalized temperature stop
to change, but in no way it means that all collisions ceased. From this
time one is able to introduce a two—temperature model of the system and
can observe how distribution functions approach their (quasi)equilibrium
values. °

6. Discussion

In numerical calculations we investigated both dynamics of two-zone
semiconductor during laser pulse irradiation and its relaxation to-

5During numerical studies we can talk only about approaching to quasiequilibri-
um value as long as we are not able to obtain the exact relation (5.9) numerically,
integrating the cosine function. As will be shown in the next section, introduction
of quasiparticle damping in the simplest form exp[—~(t — #')] can stabilize the long
time solutions and guarantee long time asymptotics to exist. However, the problem
of violation of the energy balance appears.

ICMP-03-23E 22

ward equilibrium with additional assumption that polarization relax-
es much faster then carriers and phonon distribution functions. Both
thermal phonons approximation (phonon bath) and complete dynam-
ics of phonons have been taken into consideration. As for a complete
dynamics during laser pulse, we verified the results of the previous pa-
pers [3,10,16]. We considered v as a fitting parameter, stabilizing the
solutions of quantum kinetic equations at long time scales.

We chose the following typical energies and time scales: the ener-
gy of longitudinal optical phonon equals hw;o=36mEv, Rabi energy
hwr=26.3mEv, laser pulse duration 7,=50fs, the width of band gap was
equal E;=1.8eV, excess energy A = hw — E,=60mEv. Dimensionless
constant of electron-phonon interaction equals 0.069; mass ratio of holes
to electrons equals 6.86 and the initial temperature of the phonon bath
was 164K. We use values fiwro and 7, as characteristic energy and time
scales for obtaining of dimensionless units.

To solve the system of kinetic euqations we made use of factorization
of the kinetic kernels and borrowed from the authors of Ref. [10] the
idea how to pass from the initial integro—differential equations to the
extended set of ordinary differential equations. Details of the transition
from integro—differential equations to the extended system of ordinary
differential equations are presented in Appendix C. This extended set
was solved by applying the fifth order Runge-Kutta integration with
automatic step-size control. We chose dense enough energy grid in N =
60 points that corresponds to dim = 5N +12N3 41 ~ 2.5 x 10° ordinary
differential equations.

In figure (6.1) we presented behaviour of the electron distribution
function at fixed times depending on dimensionless energy. The phonon
subsystem was chosen to be equilibrium. Complete dynamics of the sys-
tem (polarization was governed by its own kinetic equation) was allowed,
but we neglected the correlational part of collision integral and put v = 0.
One can see as initial excitation on the excess energy A/fiwro = 5/3
starts to relax at long times, but does not reach its equilibrium val-
ue. Quite contrary, the lower panel shows unphysical behaviour at large
times ¢ > 207,. We have to mention that similar behaviour, though less
pronounced, was observed even with nonequilibrium phonons.

As soon as we introduced nonzero quasiparticle damping, the be-
haviour of the system becomes regular. In figure (6.2) one can see that
even small enough  clears away all unphysical effects at long times en-
suring relaxation toward quasiequilibrium. Running a few steps forward
we note that this long-time asymptotics is not a true equilibrium because
nonzero 7y does not guarantee energy balance.
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Starting form figure (6.3) we will talk about the relaxation problem.
Namely, we start from an initially perturbed system with assumption
that polarization is negligible at time ¢ > 47, when the external field
tends to zero. Figure 3 demonstrates that consideration of nonequilibri-
um phonon distribution function np(eq,t) (and even quasiequilibrium
one) prevents from unphysical behaviour, though does not ensure relax-
ing to equilibrium. It becomes quite apparent in figure (6.4a), where time
dependence of total phonon number N(t) = >, npn(g,t) is presented.
We see that N(t) does not saturate unless additional relaxation mech-
anism is taken into consideration. This relaxation consists in adding to
Ipn(g,t) a simple damping term (n,§ — n,5,(q,t))/Zpn in so-called T ap-
proximation with finite phonon relaxation time 7,,=350fs. An additional
relaxation term ensures relaxation of total phonon number to its asymp-
totic value depending on 7,5. As one can see from figure (6.4b), taking
into consideration the correlational part of collision integral results in
smooth relaxation (solid line), while disregard of running correlations
leads to non-motivated flexure of dashed line at long times.

In figure (6.5) we plotted the energy dependence of nonequilibrium
phonon distribution function npp(e,t) at fixed times with finite phonon
relaxation 7,,=350fs and zero quasiparticle damping. One can observe
relaxation from initial distribution with maximum at zero energy to dis-
persionless asymptotic value at long times. A remarkable feature should
be noted: this asymptotic value differs from quasiequilibrium phonon
distribution npp (€, t)|t>>7, = npn(t) = 1/[exp(hwro/T(t)) — 1] (marked
by horizontal dashed line) by less then 8%! In our point of view, this
small difference is induced by relatively small value of additional relax-
ation term in phonon collision integral, which, in its turn, is found to
be indispensable for relaxation to equilibrium. In fact, here we face with
dilemma: either to neglect any relaxation mechanism put “by hand” or
not to reach equilibrium asymptotics on long-time scales. Situation could
be partially improved if one composes dynamic equation for quasiparticle
damping function (e, t,¢'), that is, considers damping self-consistently
[14] unlike in our case of fixed . However, even then one cannot avoid
energy disbalance. This is not surprising, because the extra terms in the
energy balance equation are formally beyond the 2-nd Born approxima-
tion used in the derivation of the kinetic equation. In Green’s functions
method, to obtain the collision integrals which involve the quasiparti-
cle damping and are consistent with the energy conservation, one has
to calculate the T-matrices in the full collision integrals, keeping terms
of higher-order in the interactions. In NSO method, presented here, the
problem of consideration of higher order interactions seems to be even
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more difficult [12].

In any case, figure (6.5) is the best possible illustration of the fact
that Lagrange multiplier 3(¢) in relevant statistical operator (3.1) re-
ally means inverse generalized temperature, defining quasiequilibrium
phonon distribution. ©

The importance of running correlations could be traced from figures
(6.6) , (6.7) and (6.11). In figures (6.6)-(6.7) we presented the energy de-
pendence of f.(e,t) at fixed times and v = 0. There is no complete
relaxation toward equilibrium in both cases, but neglecting dynamic
correlations leads to pronounced unphysical behaviour of electron dis-
tribution functions at small energies (Fig.6), while taking of I(¢*"") into
account improves situation greatly (Fig.7). A similar remark concerns
the energy balance in the case of one—zone “semiconductor” disturbed
initially from equilibrium (figure (6.11)) 7. One can see that neglecting
of initial correlations leads immediately to a pronounced energy disbal-
ance, while in the case of nonzero I(¢°"") we keep the constant value
Ekin (t) + €pn(t) + €int (t) within 3-4% accuracy. (The greater accuracy is
not reachable because of non-zero quasiparticle damping which leads to
a deviation from energy balance.)

Figure 8, which describes energy disbalance, is no less interesting.
One can see that taking into account quasiparticle damping (still rela-
tively small!) leads to “overheating” of the system: generalized temper-
ature T'(t) does not reach its asymptotic value whereas zero damping
and smaller phonon relaxation term assure transition to quasiequilibri-
um regime. Another interesting point is that the period of temperature
oscillation is twice shorter than inverse phonon frequency 27/wro. The
other dynamic characteristics (generalized heat capacity, total phonon
number, phonon distribution function) oscillate with phonon period
T, = 2m/wro. At present we do not have an answer why energy ex-
change between two subsystems gives doubled frequency of temperature
oscillation.

Figure 9 is a logical consequence of previous plots. One can see that
long-time asymptotic of phonon distribution function in case of nonze-
ro v (circles) differs much greater from its quasiequilibrium value than
with no quasiparticle damping (squares). When ~ # 0 the system tends

6More precisely, we have to talk about a generalized phonon temperature Tpn(t),
introduced in the section 4. However, the analysis of the behaviour of the electron
and phonon generalized temperatures (see figure (6.10)) shows them to be equal to
T(t) = B(t)~! at long time-scales.

"In fact, we reduce the basic formulae of the previous section to the case of one—
zone model. That is why we took a word “semiconductor” in inverted commas, talking
actually about a one zone metal.
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to its asymptotic characteristic but this state is not equilibrium one: col-
lision integral does not conserve the energy and semiconductor remains
overheated.

The results for two—temperature model are presented on the figure
(6.10). One can see that initially heated electron subsystem is cooling
down, lattice is heating up, while generalized temperature T'(¢), conju-
gated to mean interaction energy, forms an equilibrium background. A
maximum of 7'(¢) is located at a point, which corresponds to the largest
value of (ﬁmtﬁ.

It is interesting also to investigate relaxation of the system after non-
resonant excitation when A = hw — E, < 0. Numerical calculations from
Ref. [10] manifested phonon replicas in conducting zone on long-time
scales due to indirect excitation of the electrons. And, to be able to de-
scribe a complete dynamics of the system during laser pulse as well as at
long times, one has to consider a non-simplified version of total collision
integral with off-diagonal A in (3.14)-(3.15) and non-simplified matrix

t

exponents exp, |—+ [ M(k,t”)dt”| . This problem, though difficult
t’ af

enough, is very promising and the results could give an answer, how

running correlations form quite complicated dynamics of two-zone semi-

conductor under short-lasting laser excitation.
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Figure 6.1. Electron distribution function at fixed times. Thermal
phonons, no quasiparticle damping.
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Figure 6.2. Electron distribution function at fixed times. Thermal

phonons, v = 1/36.
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Figure 6.3. Electron distribution function f.(e,t) at t = 207,415, ¥ = 0.

Dynamical correlations are taken into account in b) and c¢).
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Figure 6.4. Time dependence of total phonon number Ny, (¢): a)y = 0,
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Figure 6.5. Phonon distribution functions ny(e,t) at fixed times. Hori-
zontal dashed line marks equasiequilibrium value.
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f(et)

Figure 6.6. Electron distribution function f.(e,t) at fixed times. No ini-
tial correlations.
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Figure 6.7. Electron distribution function f.(e,t) at fixed times. Initial
correlations are taken into account.
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Appendix A

To obtain the solution for time-ordered matrix exponents (3.8)-(3.9) one
has to consider the system of differential equations (3.10). In general
case of time-dependent field the system can not be solved analytically.
To find the explicit expressions for kinetic kernels one has to neglect the
field-dependent terms in the equations of diagonal A(k,t). Then one can
obtain immediately unperturbed Wigner-Weisskopf form for diagonal
matrix elements:

_ . -
exp_ —% /M(k,t”) dt"| =~exp (—%eck(t — t’)) +o(E?), (A1)
I _

cc

-, _
exp, —% / M(k,t")dt"| ~ exp (—%evk(t —t')> +o(E?) (A2)
L t’ J

VU

with similar expressions for anti- chronologically ordered exponents:

t
exp_ %/M(kﬂf”)dt” ~ exp (%eck(t—t’)> +o(E?), (A.3)
t/

cc

t
exp_ % / M(k,t")dt"| =~ exp (%evk(t—t’)) +o(E?).  (A4)
t/

vU

After substitution of the diagonal elements into the equations (3.10)
for off-diagonal ones and supposing the field amplitude to change much
slower then cosine factor in (2.6), we come to the following form of field-
dependent kinetic kernels:

t t
exp, —%/M(k,t”)dt” = exp_ %/M(k,t”)dt” ~ (A.5)
t! t

cv ve

~ L Est) — Ls—y by oy L 3
~ 2d0E0 {exp (hék t) exp (hékt)] exp (hevkt heth) +o(E?),

where 0, = eck — ek — hw denotes detuning of the system 8

8In rotating wave-approximation for external field [1,10] we neglect non resonant
strongly oscillating term with 5,:' = eck — €yk + hw in favour of resonant one 4, .
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Let us make some conclusions from the expressions (A.1)-(A.5). On
the first hand, the kinetic kernels possess the symmetric properties sim-
ilar to those of retarded and advanced Green’s functions. On the second
hand, one can verify all expressions for matrix kernel to factorize in ¢,
t' (see Eqn.(3.11) for comparison). The last conclusion follows from the
expression for off-diagonal element (A.5): this kernel turns out to be rel-
evant in a narrow zone around excitation energy and could be omitted
when one describes low and high energy domains of distribution func-
tions.

Appendix B

Let us rewrite the last commutator in (3.5) via Kubo identity

pra®), Ho®)] = ) [ P Holt), Hul5(0), (B1)
0

where the symbol “tilde” denotes truncated statistical operator

mm#ziﬁmezAmmmmwM%wmnmm

rel Otﬂ,kq

without interaction part Hin: [12] (remember, we have to work in the
framework of the 2-nd Born approximation). The action of operators
pr,(t), p(t") can be presented in the similar matrix form like (3.8),
namely:

P () anfr (1) = exp [ (k, )] a,

pra(t)akprd (t') = exp [~zA(k,t')] af,
B (' )baprl (1) = exp [¢AP"(g,1')] by,
Pra(t)bhpri(t) = exp [—aAP"(q,t')] b, (B.3)

with the only exception that exp [vA(k, )] ,; can be evaluated explicitly
from the corresponding system of ordinary differential equations (k,t-
dependence in the right-hand side is not written for brevity):

exp [zA (K, 1)]... =

explxzc] (Acc — Ay + \/5) + explzzy) (Aw — Ao + \/5)
2v/D ’
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exp [eA (K, 1)],, e"p[mbg"p[“”} Ao,

exp [eA (K, 1)],, — e"p[m{/‘g"p[m} Moo,

exp [zA(k,t)],, =

explxz,] (Acc — Ay + \/5) + explzz.] (Avv —Aee + \/5)
2vD

In Eqn. (B.4) z.(k,t), z,(k,t) denote eigenvalues of the quadratic form
in the exponent of relevant operator j,e;(t):

(B.4)

Acc(k,t) + Apy (K, t) + 1/ D(k,t)

zc(k,t) =

2 )
Z@(k,t) _ Acc(k,t) + Avv(f,t) — D(k,t)’
Dk, t) = (Aol t) = Auu (k1) + Ak ). (B5)

Lagrange multipliers Ang(k,t) could be eliminated due to self-
consistency conditions (3.3), which can be rewritten in the following
form:

_ -1
lexp{A(k,t)} + Z] 5 = fap(k. 1), [exp{A”"(q,t)} = 1] =n(q,t).

(B.6)

The explicit form of A will be needed for further numerical calculations.

For phonon counterpart it is easy to write down the following relation:

ph =1In 1+n(g,t)
AP (g, t) =1 ( @ h) ) (B.7)

To obtain more than formal matrix relation A,g(k,t) =
In f(k, )~ —Z] . We have calculated all Lagrange multipliers

explicitly taking use of (B.4)-(B.5) (again we omitted time—energy
dependence of corresponding functions):

Acc — lln <X2 — A) + [f]c_cl — [f];vlarcthA’

2 4 VA
2 _ A —1 _ 1411
Ape = %m (X 1 ) - [f]w\/z[f]v” arcthA, (B.8)
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4arcth?A . ., ..
|Acv|2 = T[f]cvl[f]vclﬂ
where
A= \ﬁ(—; A= ([l = o)+ ol X = [Ft+ 0 -2

(B.9)

As one can see, all Lagrange multipliers as well as matrix elements

are in the closed form being expressed via one-particle distribution func-

tions in a very complicated way. Noting that off-diagonal elements of

distribution functions tend to zero in field—free case (after the action

of laser pulse), one can easily reproduce a result for effective one-zone
semiconductor [12].

Appendix C

After transition from sum over wave—vectors to corresponding integrals

with subsequent substitution h%k2/(21) — eg, where p = e and

taking use of factorization properties (3.11) of the kinetic kernels, one
can write down the following schematic system of equations:

flew,t)
at

t
- / "> / dely de i (ex, R (€l )V Fs({f ek ), (el ), (€L )))
to i
(C.1)
=Z/de;€ dey ki(er, t)Gi(ex, e, e, t)

with supplementary variables

Gi(ekv 6;{, e;clvt) = /dt/ Ri(e;wtl)ﬂ({f(ekv t/)v f(e;cvtl)v f(e;clvtl)}) (02)

for which one gets a local differential equations

dGi(ek, €}, er,t)

- — Rileh DE({f(enst), (el t) feft)  (C3)

with initial conditions G;(e, e}, el,t = to) = 0. Summing up, we come
to the system of ordinary differential equations where energy appears
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as a parameter. Then, passing from integrals over e}, e} to the integral
sums with corresponding Gaussian weights, we obtain the system of

dim = 5N? + 12N3 + 1

equations. Here 5N equations are for one particle distribution functions
( for carriers, phonons and polarization), 12N? equations describe dy-
namics of the auxiliary kernels (C.2), and the last equation determines
the generalized temperature T'(t). Taking the energy grid dense enough
with N = 60 points we come to the system of about 2.5x 105 equations
which are being solved numerically with given initial conditions.
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