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Abstract. We discuss the effects of the regularly alternating Hamilto-
nian parameters on the quantum (zero-temperature) phase transition
inherent in the spin- 1

2 transverse Ising chain. We demonstrate that for
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The present paper is related to some basic concepts of the quantum
phase transition theory. Quantum phase transitions are the phase tran-
sitions which are driven by entirely quantum rather than temperature
fluctuations. The quantum phase transitions occur in the ground state,
i.e., at zero temperature, under the change of some parameters (external
field, pressure, concentration etc.). In fact, the quantum phase transi-
tions have been known since early 70s. However, they have become the
subject of intensive research since early 90s attempting to understand
the properties of high-temperature superconductors and other strong-
ly correlated materials. Obviously, this is a very broad field nowadays
which contains a lot of important findings (the relevant references can
be found in numerous review papers and monographes, e.g., [1–4], to
name just a few). Of course, the present paper is not a complete review
of the subject. In what follows I have restricted myself to a particular
problem which has been recently examined by Johannes Richter (Uni-
versität Magdeburg), Taras Krokhmalskii (ICMP NASU, L’viv), Oles’
Zaburannyi (ICMP NASU, L’viv) and by the present author [5]. Before
explaining our results I shall remind some generally known ideas. Thus, I
start with recalling common wisdoms from statistical physics concerning
phase transitions (Section 1). Then I discuss the famous experiment by
D. Bitko, T. F. Rosenbaum and G. Aeppli [6] demonstrating that a phase
transition may be driven in the ground state by quantum fluctuations
(Section 2). Possibly the simplest relevant statistical mechanics model
which describes such a phenomena is the Ising chain in a transverse field
(Section 2). The main goal of the paper is to show what happens with
this generic model of quantum phase transitions if we slightly modify it
assuming the Hamiltonian parameters (i.e., the intersite Ising exchange
interactions and the on-site transverse fields) to be given by a regularly
varying sequence (Section 3). Finally, I present some technical details
of the performed calculations which are based on the Jordan-Wigner
transformation [7] and exploit the continued fractions [8] (Section 4).

1. Classical (temperature-driven) phase transitions

One of the purposes of statistical physics is to describe different phases of
many-particle systems and the phase transitions between different phas-
es. As a rule, we associate the changes of the properties of a substance
with the temperature changes. However, such changes may be driven by
other parameters (external field, pressure, concentration etc.) at a given
constant (nonzero) temperature.

P. Ehrenfest suggested a classification of phase transitions. Accord-
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ing to his classification we say that the phase transition is of the order
one if the free energy is continuous across the phase transition whereas
its first derivatives (with respect to temperature and other variables)
are discontinuous. Furthermore, we say that the phase transition is of
the order two (three) if the free energy and its first (first and second)
derivatives are continuous across the phase transition whereas its second
(third) derivatives are discontinuous and so on.

A few years later L. Landau suggested to differ discontinuous and
continuous phase transitions. The discontinuous (continuous) phase tran-
sition is characterized by a discontinuous (continuous) change in the or-
der parameter. Since the first derivative of the free energy may play a
role of the order parameter (such as magnetization) the discontinuous
phase transitions are usually viewed as the first-order phase transitions
whereas the continuous phase transitions are usually considered to be
the second-order (or higher-order) phase transitions.

The important difference between discontinuous and continuous
phase transitions is as follows. In discontinuous phase transitions the
two phases coexist at the phase transition temperature. For example, ice
and water coexist at the ice melting temperature. In continuous phase
transitions the two phases do not coexist at the phase transition tem-
perature. For example, ferromagnet and paramagnet do not coexist at
the Curie point of a ferromagnet.

In what follows our focus will be on the continuous phase transitions
only.

Statistical mechanics provides several models of continuous phase
transitions within the framework of which we can follow how the short-
range interparticle interactions may lead to long-range interparticle cor-
relations at the continuous phase transition point. The most simple mod-
el was invented by E. Ising [9]. It became especially popular after L. On-
sager had found an exact solution of the model in two dimensions [10].
The model consists of the magnetic moments (spins) which may have
two values ± 1

2 . The spins interact with the nearest neighbors on the lat-
tice of a certain topology. Moreover, they may interact with an external
field.

In one dimension the corresponding Hamiltonian is as follows:

H = −
N
∑

n=1

Jsz
nsz

n+1. (1.1)

If J > 0 the parallel alignment of all the spins is favorable (ferromagnetic
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exchange interaction). Using the Pauli matrix

τz =

(

1 0
0 −1

)

for representation of the spin variable, sz = 1
2τz , the partition function

of the model (1.1) can be rewritten as follows:

Z =
∑

{sz
n=± 1

2}
exp (−βH) = Tr exp (−βH) . (1.2)

The trace in the r.h.s. of Eq. (1.2) can be evaluated using the transfer
matrix method [11]. We can also calculate the spin correlation functions
〈

sz
nsz

n+m

〉

,

〈(. . .)〉 =
1

Z
Tr (exp (−βH) (. . .)) .

It appears that for the one-dimensional Ising model the critical temper-
ature is zero, Tc = 0. Moreover,

〈

sz
nsz

n+m

〉

=
1

4
exp

(

−m

ξ

)

, ξ ∼ exp

(

J

2kT

)

(1.3)

as T → Tc = 0, i.e., the correlations (1.3) become long-range since
the correlation length ξ diverges. However, real systems exhibit phase
transitions at finite temperatures.

Consider further the Ising model in two dimensions. Instead of (1.1)
we now have for the square-lattice topology

H = −
Nx
∑

nx=1

Ny
∑

ny=1

(

Jhsz
nx,ny

sz
nx+1,ny

+ Jvsz
nx,ny

sz
nx,ny+1

)

(1.4)

where Jh and Jv are the exchange interactions in horizontal and vertical
directions, respectively. Thanks to L. Onsager we know how to calculate
the partition function of the spin model (1.4)

Z =
∑

{

sz
nx,ny

=± 1
2

}

exp (−βH) = Tr exp (−βH) .

Knowing the spin correlations
〈

sz
nx,ny

sz
mx,my

〉

we can calculate the mag-

netization per site

mz =
1

NxNy

Nx
∑

ix=1

Ny
∑

iy=1

〈

sz
ix,iy

〉

.
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Figure 1. Temperature fluctuations of magnetization mz. The order,
which is present at zero temperature, mz = 1

2 , becomes completely de-
stroyed owing to the thermal fluctuations at the Curie temperature Tc,
mz = 0.

The square-lattice Ising model exhibits a phase transition at a nonzero
temperature, Tc 6= 0. At zero temperature all spins are aligned in the
same direction, having, for example, the value of 1

2 (see the left panel
in Fig. 1). As temperature increases some spins owing to temperature
fluctuations flip and become oriented in the opposite direction. As a
result the magnetization per site mz reduces and becomes smaller than
its saturation value 1

2 . Finally, as temperature achieves the value Tc the
numbers of spin-up and spin-down are the same and the magnetization
is zero (see the right panel in Fig. 1). The temperature fluctuations
completely destroy the ferromagnetic order. At the critical temperature
Tc the spin correlations become long-range. Specifically, for |i − j| → ∞

〈

sz
i s

z
j

〉

∼ exp

(

−|i− j|
ξ

)

, ξ ∼ 1

|T − Tc|
(1.5)

as T → Tc. Moreover, the thermodynamic quantities have peculiarities
at Tc (Fig. 2). For instance, the specific heat exhibits a logarithmic sin-
gularity (lower panel in Fig. 2).

We do not know the exact solution of the Ising model in three di-
mensions. However, qualitatively the picture remains the same. Thus, the
magnetization decays according to a power law with exponent β ≈ 0.312
(instead of β = 0.125 in two dimensions), the specific heat exhibits a
power-law singularity with exponent α ≈ 0.013, the correlation length ξ
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Figure 2. Square-lattice Ising model: The behavior of thermodynamic
quantities in the vicinity of the phase transition temperature. From top
to bottom: magnetization mz, entropy s, specific heat c.

diverges according to a power law with exponent ν ≈ 0.638 (instead of
ν = 1 in two dimensions, Eq. (1.5)).

Statistical mechanics provides other models of continuous phase tran-
sitions (for example, the spherical model); some examples can be found
in Ref. [11]. Still ongoing numerous experimental studies of different
substances in the vicinity of the continuous phase transition points
have shown that such a point is characterized by a set of exponents
which may be identical for different substances. As a result, scaling con-
cepts have emerged, renormalization-group ideas have appeared, many
renormalization-group schemes for calculation of the critical exponents
have been elaborated. This material is presented in standard text-books
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on temperature-driven continuous phase transitions (see, for example,
Ref. [12]). In what follows we shall not discuss thermal phase transitions
any more.

2. Quantum (zero-temperature) phase transitions

We turn to a discussion of the zero-temperature (ground-state) proper-
ties of many-particle systems when there are no thermal fluctuations.
Nevertheless, the order may be destroyed due to the quantum fluctua-
tions.

We start with the famous experiment by D. Bitko, T. F. Rosenbaum
and G. Aeppli [6] demonstrating how quantum fluctuations suppress the
ferromagnetic order in a model magnet lithium holmium fluoride. The
magnetic properties of LiHoF4 at T < 2K arise owing to the magnetic
interaction of the spins of neighboring holmium ions Ho3+; the spins
prefer to be directed up/down with respect to a certain crystalline axis;
this compound is a three-dimensional ferromagnetic Ising model. The
authors examined the ferromagnetic transition in LiHoF4 in the presence
of an external magnetic field Ht applied perpendicularly to the Ising
axis. For this purpose they measured the real and imaginary parts of the
magnetic susceptibility along the Ising axis at different temperatures.
Their findings can be seen in Fig. 3.

Let us consider these results more closely. Note, that the considered
system can be described by the model Hamiltonian

H =
∑

i,j

Ji,js
z
i s

z
j − Ω

∑

i

sx
i (2.1)

where

sx =
1

2

(

0 1
1 0

)

, sy =
1

2

(

0 −i
i 0

)

, sz =
1

2

(

1 0
0 −1

)

.

Let us first move along the horizontal axis of the phase diagram shown
in Fig. 3, i.e., Ht = 0. We recognize a familiar picture (recall Fig. 1).
As temperature deviates from zero the temperature fluctuations cause
the flip of some spins from the ordered ground-state configuration which
reduces magnetization. As temperature achieves the value Tc ≈ 1.53K
(the Curie temperature) the magnetization becomes zero and for higher
temperatures we are in the paramagnetic phase. That is a conventional
phase transition driven by temperature fluctuations. However, we can
destroy the order at zero temperature in a completely different way. Re-
ally, let us move along the vertical axis of the phase diagram shown in
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Figure 3. Experimental data for the ferromagnetic transitions in lithium
holmium fluoride in the external magnetic field Ht (see [6]). LiHoF4 is
a three-dimensional Ising ferromagnet.

Fig. 3, i.e., assume T = 0 (see Fig. 4). If Ht (Ω in Eq. (2.1)) is zero
all spins are, say, in the up state. However, if the transverse field devi-
ates from zero, tunneling between the up and down states is permitted
and consequently the magnetization is reduced despite the system being
at zero temperature. If Ht achieves the critical value Ht

c the order is
completely destroyed and the Ising magnetization becomes zero. More-
over, at that field, Ht = Ht

c, the spin correlations become long-range.
Thus, the quantum fluctuations at zero temperature have suppressed
the order. Obviously, as both T and Ht have nonzero values both ther-
mal and quantum fluctuations occur. In Fig. 5 we indicate in the plane
temperature – transverse field the classical phase transition point, the
quantum phase transition point, the line of phase transitions separat-
ing ferromagnetic and paramagnetic phases, as well as the regions where
quantum/temperature fluctuations should be taken into account.

Statistical mechanics provides a simple model which, on the one hand,
exhibits a quantum phase transition, and, on the other hand, can be
solved exactly. This is the so-called transverse Ising chain, i.e., the one-
dimensional Ising model in a transverse field. The Hamiltonian of the
model reads

H =

N
∑

n=1

Jsx
nsx

n+1 +

N
∑

n=1

Ωsz
n. (2.2)
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Figure 4. Quantum fluctuations of the Ising magnetization mz at zero
temperature. Tunneling between up and down states is allowed if Ht (Ω
in Eq. (2.1)) is nonzero.

I have rotated the spin axes in comparison with the specification used
in Eq. (1.1) (and Eq. (2.1)); besides now J = 2I < 0 corresponds to the
ferromagnetic exchange interaction. The introduced model (2.2) can be
solved rigorously (i.e., without making any simplifying approximations)
using the Jordan-Wigner transformation [7,13] (some details are given in
Section 4 for convenience). From this solution we know how the system
behaves in the ground state as Ω increases. If Ω becomes nonzero the
Ising magnetization mx = 1

N

∑N

i=1 〈sx
i 〉 becomes less than 1

2 ; the Ising
magnetization mx tends to zero as Ω approaches Ωc = |I|. This is in
accordance with what we have discussed above explaining the phase
diagram of LiHoF4. Moreover, we know the behavior of different ground-
state quantities. Thus, in the vicinity of Ωc

mx ∼ (Ω − Ωc)
1
8 , (2.3)

mz =
1

N

N
∑

i=1

〈sz
i 〉 ∼ (Ω − Ωc) ln |Ω − Ωc| , (2.4)

χz =
∂mz

∂Ω
∼ ln |Ω − Ωc| . (2.5)
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Figure 5. Phase diagram in the plane temperature – transverse field.

Moreover, the quantum phase transition is accompanied by vanishing of
the energy gap ∆,

∆ ∼ |Ω − Ωc| . (2.6)

It should be stressed that the discussed zero-temperature phase tran-
sition is a pure quantum effect due to noncommutativity of the spin
variables. It is not observed in the classical counterpart of the model.
Really, consider a classical spin chain in which the spin is presented as
a 3-component vector

s = (s sin θ cosφ, s sin θ sin φ, s cos θ)

(hereafter the length of spin s = 1
2 ) with the Hamiltonian

H =

N
∑

n=1

2Is2 sin θn sin θn+1 cosφn cosφn+1 +

N
∑

n=1

Ωs cos θn. (2.7)

The ground-state energy ansatz for (2.7) reads

E0(θ) = −1

2
N |I| sin2 θ +

1

2
NΩ cos θ (2.8)

where the angle θ is determined from the equation

∂E0(θ)

∂θ
= 0. (2.9)

From Eqs. (2.8), (2.9) one immediately finds

cos θ =











1, if Ω
2|I| < −1,

− Ω
2|I| , if − 1 ≤ Ω

2|I| < 1,

−1, if 1 ≤ Ω
2|I| .

(2.10)
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Table 1. Towards the correspondence between the thermodynamic prop-
erties of the square-lattice Ising model and the ground-state properties
of the transverse Ising chain (under the relations (2.12)).

square-lattice Ising model transverse Ising chain

mz ∼ (Tc − T )
1
8 mx ∼ (Ωc − Ω)

1
8

c ∼ ln |T − Tc| χz ∼ ln |Ω − Ωc|
ξ ∼ |T − Tc|−1 ∆ ∼ |Ω − Ωc|

Now, using this result (2.10), we get the ground-state energy per site,
the Ising magnetization mx = s sin θ, the transverse magnetization mz =
s cos θ and the transverse susceptibility

χz =
∂mz

∂Ω
=











0, if Ω
2|I| < −1,

− 1
4|I| , if − 1 ≤ Ω

2|I| < 1,

0, if 1 ≤ Ω
2|I| .

(2.11)

Obviously, χz (2.11) does not become singular at Ω = Ωc as χz (2.5)
does.

Finally, comparing Eqs. (2.3) – (2.5) with the critical behavior of the
square-lattice Ising model (Fig. 2) one can notice a similarity which was
found explicitly by M. Suzuki [14]. Namely, considering the square-lattice
Ising model with the exchange interactions in horizontal and vertical
directions Jh and Jv, respectively, and the transverse Ising chain with
the Ising interaction and transverse field J and Ω, respectively, M. Suzuki
found that in the limit

Jh → 0, Jv → ∞,
exp

(

− Jv

2kT

)

Jh

2kT

=
Ω

|J | (2.12)

the thermodynamic properties of the square-lattice Ising model are
equivalent to the ground-state properties of the transverse Ising chain.
We compare the corresponding dependences in Table 1.

3. Spin-1

2
transverse Ising chain

with regularly alternating bonds/fields

Now I turn to a discussion of the effects of the regularly alternating
Hamiltonian parameters on the quantum phase transition inherent in
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Figure 6. The ground-state phases and phase transitions tuned by the
transverse field for the uniform chain (p = 1).

the transverse Ising chain. It is quite natural to introduce some modifi-
cations into the basic model and to see what the consequences of these
changes are. In fact, there were numerous studies of the ‘modified’ trans-
verse Ising chains. For example, an analysis of the critical behavior of
the chain with an aperiodic sequence of interactions was performed in
Ref. [15], an extensive real-space renormalization-group treatment of the
random chains was reported in Ref. [16], a renormalization-group study
of the aperiodic chain was presented in Ref. [17]. However, a simpler
case of the transverse Ising chain with regularly alternating bonds/fields
apparently was overlooked. Nevertheless, as we shall see below, the regu-
larly alternating Hamiltonian parameters may have intriguing effects on
the quantum phase transition points and critical behavior.

Specifically, we consider a chain of quantum spins 1
2 with the Hamil-

tonian

H =
∑

n

2Insx
nsx

n+1 +
∑

n

Ωnsz
n (3.1)

and assume that a sequence of parameters in (3.1) has a period p, i.e.,

I1Ω1I2Ω2 . . . IpΩpI1Ω1I2Ω2 . . . IpΩp . . . .

Of course, the above considered uniform case corresponds to p = 1.
However, we can perform rigorous analytical calculations of the ther-
modynamic quantities for any finite (in practice not too long) period of
alternation [8,5]. In what follows I discuss the cases p = 2 and p = 3 in
some detail.

Let us consider the changes in the ground-state properties owing to
regular alternation as the tranverse field varies. I start recalling what we
already know about the uniform case p = 1 (Fig. 6). If the transverse
field is small the system exhibits the Ising magnetization mx 6= 0, which
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Figure 7. The ground-state phases and phase transitions for the regularly
alternating transverse Ising chain of period 2 with Ω1,2 = Ω ± ∆Ω,

∆Ω <
√

|I1I2|.

plays a role of the order parameter, and its nonzero value indicates the
Ising (ferromagnetic) phase. When a value of the transverse field exceeds
the critical one (Ωc = |I|) the Ising magnetization becomes zero and the
system is in the paramagnetic phase. The transition between the ferro-
magnetic and paramagnetic phases occurs according to the second-order
quantum phase transition scenario and belongs to the square-lattice Ising
model universality class.

Now we pass to a chain of period 2. Assume that

Ω1,2 = Ω ± ∆Ω, ∆Ω > 0

and let us see what happens to the quantum phase transitions tuned by
Ω. It appears that the answer strongly depends on the strength of nonuni-
formity controlled by ∆Ω. If the strength of nonuniformity is weak,

∆Ω <
√

|I1I2|,

only quantitative changes in comparison with the uniform case take place
(compare Fig. 7 and Fig. 6). Namely, the system may exhibit either
the ferromagnetic order (in weak transverse fields) or the paramagnetic
order (in strong transverse fields). The positions of the quantum phase
transition points between these phases are as follows:

±
√

∆Ω2 + |I1I2|. (3.2)

The critical behavior remains as in the uniform chain, i.e., it is of the
square-lattice Ising model universality class. Further, if

∆Ω =
√

|I1I2|
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Figure 8. The ground-state phases and phase transitions for the regularly
alternating transverse Ising chain of period 2 with Ω1,2 = Ω ± ∆Ω,

∆Ω =
√

|I1I2|.

in addition to the changes of the critical field values in accordance with
(3.2) a point of weak singularities in the ground-state quantities appears
at Ωc = 0 (Fig. 8). The critical behavior in the vicinity of this point is like
the fourth-order phase transition in Ehrenfest’s sense: that is, the static
transverse susceptibility χz remains finite and only its second derivative

with respect to field, ∂2χz

∂Ω2 , exhibits a logarithmic singularity. Finally, if
the strength of nonuniformity is strong,

∆Ω >
√

|I1I2|,

a number of quantum phase transitions tuned by varying Ω increases
(Fig. 9). The critical fields are as follows:

±
√

∆Ω2 ± |I1I2|; (3.3)

the system exhibits the low-field (if |Ω| <

√

∆Ω2 − |I1I2|) and the high-

field (if
√

∆Ω2 + |I1I2| < |Ω|) paramagnetic phases and the ferromag-

netic phase (if
√

∆Ω2 − |I1I2| < |Ω| <

√

∆Ω2 + |I1I2|); all phase tran-

sitions belong to the square-lattice Ising model universality class.
Postponing an explanation of how these findings can be derived till

the last Section let us discuss the dependence of energy gap on Ω in all
three cases (Figs. 10, 11, 12). The energy gap ∆ may play a role of
the order parameter and the vanishing energy gap indicates a quantum
phase transition point. As can be seen in Figs. 10, 11, 12 the considered
regularly alternating transverse Ising chain may exhibit either two, or
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Figure 9. The ground-state phases and phase transitions for the regularly
alternating transverse Ising chain of period 2 with Ω1,2 = Ω ± ∆Ω,

∆Ω >
√

|I1I2|.

three, or four quantum phase transition points. The actual number of
quantum phase transition points depends on a relation between ∆Ω and
√

|I1I2|. Moreover, the energy gap may vanish either linearly (second-
order quantum phase transition) or proportionally to a deviation from
the critical point squared (fourth-order quantum phase transition).

Since the transverse Ising chain is, as a matter of fact, the system
of free fermions (see Section 4, Eq. (4.19)) its Helmholtz free energy per
site can be written as

f = −kT

∫ ∞

−∞
dEρ(E) ln

(

2 cosh
E

2kT

)

= −2kT

∫ ∞

0

dEER(E2) ln

(

2 cosh
E

2kT

)

(3.4)

where the density of states ρ(E) (R(E2)) describes the distribution of
the elementary excitation energies (the distribution of the squares of
elementary excitation energies, see Eqs. (4.20), (4.22)). The gapless chain
has the zero-energy elementary excitation that implies

R(E2) ∼ 1√
E2

(3.5)

as E → 0. On the other hand, using (3.4) one gets the specific heat

c

k
= 2

∫ ∞

0

dEER(E2)

(

E
2kT

cosh E
2kT

)2

. (3.6)
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Figure 10. A transverse Ising chain of period 2 with Ω1,2 = Ω ± ∆Ω,

∆Ω <
√

|I1I2|: Energy gap ∆ versus transverse field Ω.

From Eqs. (3.6), (3.5) it can be read off that the vanishing energy gap
produces a linear low-temperature dependence of the specific heat on
temperature. Really, splitting the interval of integration in (3.6) and
expanding the integrand in the first integral in which E < kT ,

c

k
= 2

∫ kT

0

dEE
C√
E2

(

E

2kT

)2

+ 2

∫ ∞

kT

dEER(E2)

(

E
2kT

cosh E
2kT

)2

,(3.7)

one notes that the second integrand (for which E > kT ) tends to zero
as T → 0 whereas the first integral in (3.7) after a rescaling of the vari-

able, 1
2CkT

∫ 1

0 dxx2, appears to be proportional to temperature. Exact
analytical calculations of the specific heat [5] are in complete agreement
with the results on the energy gap clearly indicating the quantum phase
transition points (3.2), (3.3) seen in Figs. 10, 11, 12.

Unfortunately, we cannot analytically calculate the spin correlation
functions in a regularly alternating transverse Ising chain. However, they
can be computed numerically for very long chains of a few thousand sites
(see, for example, [18]). Knowing the two-site correlation function of x

spin components we can find the Ising magnetization mx looking for a
limiting value of the square-root of such correlation function as the in-
terspin distance goes to infinity. The behavior of the ground-state Ising
magnetization versus the transverse field confirms the above discussed
effects of regularly alternating transverse field on the quantum phase
transition. Again, if ∆Ω <

√

|I1I2| we may observe paramagnetic phase
(the x magnetization equals to zero) and ferromagnetic phase (nonzero

ICMP–03–24E 16

Figure 11. A transverse Ising chain of period 2 with Ω1,2 = Ω ± ∆Ω,

∆Ω =
√

|I1I2|: Energy gap ∆ versus transverse field Ω.

values of the x magnetization); if ∆Ω =
√

|I1I2| the x magnetization

tends to zero in the ferromagnetic phase if Ω = 0; if ∆Ω >
√

|I1I2| we
may observe high-field and low-field paramagnetic phases (the x mag-
netization equals to zero) and ferromagnetic phase at moderate fields
(nonzero values of the x magnetization). The appearance of the param-
agnetic phase (mx = 0) at weak fields Ω can be associated with a classical
picture when owing to the regular alternation of the on-site transverse
fields,

(Ω + ∆Ω) (Ω − ∆Ω) (Ω + ∆Ω) (Ω − ∆Ω) . . . ,

∆Ω large, all on-site magnetizations are directed parallel/antiparallel
to the z-axis in spin space. Naturally, this picture may play only an
auxiliary role for the considered quantum system.

The results concerning the quantum phase transitions tuned by the
transverse field Ω in the regularly alternating transverse Ising chain
of period 2 with Ω1,2 = Ω ± ∆Ω can be summarized as follows. If

∆Ω <
√

|I1I2| the system shows two quantum phase transitions; if

∆Ω >
√

|I1I2| the system shows four quantum phase transitions; at

the boundary between these regions, i.e., if ∆Ω =
√

|I1I2|, the system
shows two quantum phase transitions and a point of weak singularities.

What happens when we increase the period of alternation? More
specifically, we consider a transverse Ising chain of period 3 assuming

Ω1,2,3 = Ω + ∆Ω1,2,3, ∆Ω1 + ∆Ω2 + ∆Ω3 = 0, |I1I2I3| = 1.

A possible number of phase transition points for such a chain is shown
in Fig. 13. Thus, as far as the transverse field Ω varies such a chain may
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Figure 12. A transverse Ising chain of period 2 with Ω1,2 = Ω ± ∆Ω,

∆Ω >
√

|I1I2|: Energy gap ∆ versus transverse field Ω.

show either two, or four, or six second-order quantum phase transitions.
Moreover, for special relations between parameters weak singularities
may additionally occur in the Ising phases.

What about an arbitrary period of alternation? Quantum phase tran-
sition points follow from the condition

Ω1Ω2 . . . Ωp = ±I1I2 . . . Ip (3.8)

which was obtained long ago by P. Pfeuty [19] (note, however, that
Eq. (6) in this paper does not contain two signs as Eq. (3.8) does; the
minus sign immediately follows by symmetry after simple spin axes ro-
tations). The number of quantum phase transitions, i.e., the number of
critical transverse fields Ωc which satisfy (3.8), strongly depends on a
concrete set of the Hamiltonian parameters. However, it cannot exceed
2p where p is the period of alternation. The critical behavior is similar
to the square-lattice Ising model, i.e.,

∆ ∼ |Ω − Ωc|, χz ∼ ln |Ω − Ωc|, ξ ∼ 1

|Ω − Ωc|
, mx ∼ (Ωc − Ω)

1
8

as Ω → Ωc. However, for some sets of parameters a weak singularity may
occur as well, i.e.,

∆ ∼ |Ω − Ωc|2,
∂2χz

∂Ω2
∼ ln |Ω − Ωc|, ξ ∼ 1

|Ω − Ωc|2

as Ω → Ωc. For further details see Ref. [5].
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Figure 13. Towards a possible number of quantum phase transitions
in the transverse Ising chain of period 3 with Ω1,2,3 = Ω + ∆Ω1,2,3,
∆Ω1 + ∆Ω2 + ∆Ω3 = 0, |I1I2I3| = 1: the central region (two quantum
phase transitions), the region denoted by vertical lines (four quantum
phase transitions), the rest regions (six quantum phase transitions), weak
singularities (one or two) occur for the parameters corresponding to the
boundaries between different regions.

4. Technical details

In this concluding Section I briefly explain how the reported results on
the uniform and regularly alternating transverse Ising chains can be ob-
tained. The essential tool for these calculations is the Jordan-Wigner
transformation which permits us to map the considered spin chains on-
to the spinless fermions with the Hamiltonian which is a bilinear form
in terms of the creation and annihilation operators [7]. To bring this
Hamiltonian into the diagonal form we perform the Bogolyubov trans-
formation. Alternatively, for the calculation of thermodynamic quantities
we may use the Green functions method which becomes extremely use-
ful in the case of regularly alternating transverse Ising chains after being
completed by the continued fraction approach.
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4.1. Jordan-Wigner fermionization

We consider the spin- 1
2 anisotropic XY chain in a transverse field with

the Hamiltonian

H =
∑

n

(

2Ix
nsx

nsx
n+1 + 2Iy

nsy
ns

y
n+1

)

+
∑

n

Ωnsz
n

=
∑

n

(

Ix
n + Iy

n

2

(

s+
n s−n+1 + s−n s+

n+1

)

+
Ix
n − Iy

n

2

(

s+
n s+

n+1 + s−n s−n+1

)

+ Ωn

(

s+
n s−n − 1

2

))

; (4.1)

here s± = sx ± isy. At first glance Eq. (4.1) seems to be very simple
since it does not contain the products of four spin raising and lower-
ing operators. However, a closer look reveals a difficulty: although the
Hamiltonian (4.1) is indeed a bilinear form in terms of the spin raising
and lowering operators the commutation rules they obey are of the Fermi
type at one and the same site,

{

s−j , s+
j

}

= 1,
(

s+
j

)2
=
(

s−j
)2

= 0, (4.2)

and of the Bose type at different sites,

[

s−n , s+
m

]

=
[

s+
n , s+

m

]

=
[

s−n , s−m
]

= 0, n 6= m. (4.3)

The key to a solution is to introduce the operators which satisfy the
Fermi commutation relations using the Jordan-Wigner transformation

c1 = s−1 , c2 = (−2sz
1) s−2 , . . . ,

cn = (−2sz
1) (−2sz

2) . . .
(

−2sz
n−1

)

s−n , . . . ;

c+
1 = s+

1 , c+
2 = (−2sz

1) s+
2 , . . . ,

c+
n = (−2sz

1) (−2sz
2) . . .

(

−2sz
n−1

)

s+
n , . . . . (4.4)

(Sometimes Eq. (4.4) is written with exp (±iπs+s−) =
exp

(

±iπ
(

sz + 1
2

))

instead of (−2sz), which is, obviously, equiva-
lent.) Let us first check whether the operators introduced by Eq. (4.4)
really satisfy the Fermi commutation relations. Evidently, the commu-
tation relations at one and the same site remain of the Fermi type. For
example,

{

cj , c
+
j

}

= s−j (−2sz
1)

2 (−2sz
2)

2
. . .
(

−2sz
n−1

)2
s+

j

+s+
j (−2sz

1)
2
(−2sz

2)
2
. . .
(

−2sz
n−1

)2
s−j =

{

s−j , s+
j

}

= 1 (4.5)
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owing to (4.3) and the equality

(−2sz)
2

= 1. (4.6)

Consider now different sites assuming for concreteness n < m. Using
(4.3) and (4.6) we find

c+
n cm = s+

n (−2sz
n) . . .

(

−2sz
m−1

)

s−m;

cmc+
n = s−m (−2sz

n) . . .
(

−2sz
m−1

)

s+
n . (4.7)

To get the lower line in the r.h.s. in (4.7) from the upper line in the
r.h.s. in (4.7) one has to permute s+

n and sz
n which is accompanied by

the change of sign. As a result

c+
n cm = −cmc+

n . (4.8)

Repeating calculations similar to (4.7), (4.8) for other pairs of the intro-
duced operators we became convinced that they anticommute at different
sites.

Let us rewrite the Hamiltonian (4.1) in terms of the introduced op-
erators. We have already seen (Eq. (4.5)) that s+

n s−n = c+
n cn. Using (4.4)

and the properties of the Pauli matrices one is easily convinced that

c+
j c+

j+1 = s+
j

(

−2sz
j

)

s+
j+1 = s+

j s+
j+1, c+

j cj+1 = s+
j s−j+1,

cjc
+
j+1 = s−j

(

−2sz
j

)

s+
j+1 = −s−j s+

j+1, cjcj+1 = −s−j s−j+1 (4.9)

and consequently the Hamiltonian (4.1) becomes

H =
∑

n

(

Ix
n + Iy

n

2

(

c+
n cn+1 − cnc+

n+1

)

+
Ix
n − Iy

n

2

(

c+
n c+

n+1 − cncn+1

)

+ Ωn

(

c+
n cn − 1

2

))

. (4.10)

(I have omitted the boundary term (which is present if periodic boundary
conditions are implied in (4.1)) which is not important for the calculation
of thermodynamic quantities.)

4.2. Diagonalization (uniform chain)

To calculate the thermodynamic quantities for the spin model we must
diagonalize a bilinear form (4.10) reducing a problem to a study of ther-
modynamics of noninteracting (spinless) fermions. It can be easily done
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in the uniform case Iα
n = Iα, Ωn = Ω after performing the Fourier trans-

formation and the Bogolyubov transformation.
In detail, introducing new Fermi operators

c+
n =

1√
N

∑

κ

exp (iκn) c+
κ , cn =

1√
N

∑

κ

exp (−iκn) cκ, (4.11)

with κ = 2π
N

n, n = −N
2 ,−N

2 + 1, . . . , N
2 − 1 (N is even) we can rewrite

(4.10) as follows

H =
∑

κ

(

−Ω

2
+ (Ω + (Ix + Iy) cosκ) c+

κ cκ

− i

2
(Ix − Iy) sin κ

(

c+
κ c+

−κ + cκc−κ

)

)

=
∑

κ

′ (
−Ω + (Ω + (Ix + Iy) cosκ)

(

c+
κ cκ + c+

−κc−κ

)

−i (Ix − Iy) sin κ
(

c+
κ c+

−κ + cκc−κ

))

=
∑

κ

′ (
c+
κ c−κ

)

(

A −iC
iC −A

)(

cκ

c+
−κ

)

; (4.12)

A = Ω + (Ix + Iy) cosκ, C = (Ix − Iy) sin κ;

the prime denotes that in the thermodynamic limit κ varies from 0 to π.
Introduce new Fermi operators

(

βκ

β+
−κ

)

=

(

iuκ vκ

vκ iuκ

)(

cκ

c+
−κ

)

; (4.13)

the unknown functions uκ and vκ are real. Moreover, u−κ = −uκ, v−κ =
vκ, u2

κ + v2
κ = 1. The inverse to (4.13) transformation reads

(

cκ

c+
−κ

)

=

(

−iuκ vκ

vκ −iuκ

)(

βκ

β+
−κ

)

. (4.14)

If uκ, vκ satisfy the equation

uκ

vκ

=
A

C
±

√

(

A

C

)2

+ 1 =
A ± sgn(C)Λκ

C
,

Λκ =
√

A2 + C2 =

√

(Ω + (Ix + Iy) cosκ)
2

+ (Ix − Iy)
2
sin2 κ, (4.15)
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that is, if

uκ = sgn ((Ix − Iy) sin κ)
1√
2

√

1 +
Ω + (Ix + Iy) cosκ

Λκ

,

vκ =
1√
2

√

1 − Ω + (Ix + Iy) cosκ

Λκ

, (4.16)

one arrives at
(

iuκ vκ

vκ iuκ

)(

A −iC
iC −A

)(

−iuκ vκ

vκ −iuκ

)

=

( √
A2 + C2 0

0 −
√

A2 + C2

)

. (4.17)

Thus, after the Bogolyubov transformation (4.13), (4.16) the Hamilto-
nian (4.12) takes the form

H =
∑

κ

′ (
β+

κ β−κ

)

(

Λκ 0
0 −Λκ

)(

βκ

β+
−κ

)

=
∑

κ

′
Λκ

(

β+
κ βκ − β−κβ+

−κ

)

=
∑

κ

Λκ

(

β+
κ βκ − 1

2

)

. (4.18)

It is now easy to calculate the partition function (and hence all ther-
modynamic quantities) of the spin chain. Really, for the fermions with
the Hamiltonian (4.18) we have

Z =
∏

κ

(

exp

(

Λκ

2kT

)

+ exp

(

− Λκ

2kT

))

=
∏

κ

2 cosh
Λκ

2kT
. (4.19)

The described scheme becomes cumbersome if p exceeds 1. Namely,
the size of the matrix appearing in Eq. (4.12) increases (for p = 2 one
face the 4 × 4 matrix [20]) 1. Of course, the bilinear form (4.10) can be
brought to the diagonal form

H =
N
∑

k=1

Λk

(

η+
k ηk − 1

2

)

(4.20)

1It is interesting to mention here a recent preprint [21] in which a completely
different approach for calculation of the partition function of quantum spin chains
has been used. Namely, the partition function can be calculated by the combinatorial
method avoiding the eigenvalue problem of the Hamiltonian. In particular, the authors
have calculated the Helmholtz free energy of a period-two XY chain in a transverse
field.
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by a unitary transformation

ηk =
∑

i

(

gkici + hkic
+
i

)

, η+
k =

∑

i

(

hkici + gkic
+
i

)

, (4.21)

after imposing certain conditions on gki = 1
2 (Φki + Ψki) and hki =

1
2 (Φki − Ψki) (see [7] for the uniform chain and Eq. (4.23) for a nonuni-
form transverse Ising chain). However, to find the unknown functions
Φki and Ψki and the energies Λk in the case of regularly alternating
Hamiltonian parameters having an arbitrary period p is a difficult task.
Nevertheless, if we are interested in the thermodynamic quantities only,
we may proceed taking an advantage of the fact that only a set of ele-
mentary excitation energies {Λk} is needed. Really, the Helmholtz free
energy (3.4) is known if the density of states

R(E2) =
1

N

N
∑

k=1

δ
(

E2 − Λ2
k

)

(4.22)

is known. To calculate the density of state R(E2) (4.22) we may use the
Green functions approach which recovers the results obtained by diag-
onalization of the fermionic Hamiltonian and, what is more important,
which can be extended for regularly alternating chains.

4.3. Green functions, continued fractions
(transverse Ising chains)

Let us consider a nonuniform transverse Ising chain (Ix
n = In, Iy

n = 0)
for which a set of equations for unknown quantities Φki, Ψki, Λk has the
following form

Ωn−1In−1Φk,n−1 +
(

Ω2
n + I2

n−1 − Λ2
k

)

Φk,n + ΩnInΦk,n+1 = 0,

ΩnIn−1Ψk,n−1 +
(

Ω2
n + I2

n − Λ2
k

)

Ψk,n + Ωn+1InΨk,n+1 = 0. (4.23)

We may rewrite Eq. (4.23) in the matrix form

(

H− Λ2
k1
)











Φk,1

Φk,2

...
Φk,N











= 0 (4.24)
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with the three diagonal band matrix

H =









...
...

...
...

...
...

...
. . . 0 Ωn−1In−1 Ω2

n + I2
n−1 ΩnIn 0 . . .

...
...

...
...

...
...

...









. (4.25)

Let us introduce the Green functions Gnm = Gnm(E2) by the following
equation

(

E21 − H
)

G = 1. (4.26)

Since the matrix H (4.25) can be diagonalized (see Eq. (4.24)), i.e.,

UHU+ =











Λ2
1 0 . . . 0

0 Λ2
2 . . . 0

...
...

...
...

0 0 . . . Λ2
N











,

from Eq. (4.26) we have

UGU+ =













1
E2−Λ2

1

0 . . . 0

0 1
E2−Λ2

2

. . . 0

...
...

...
...

0 0 . . . 1
E2−Λ2

N













,

and hence

N
∑

k=1

1

E2 − Λ2
k

= Tr
(

UGU+
)

=

N
∑

n=1

Gnn(E2). (4.27)

Utilizing in Eq. (4.27) the famous symbolic identity

1

x ± iε
= P 1

x
∓ iπδ(x), ε → +0

we find the relation between the diagonal Green functions defined by
(4.26) and the density of states (4.22)

R(E2) = ∓ 1

Nπ

N
∑

n=1

=Gnn

(

E2 ± iε
)

. (4.28)
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Now our task is to find the diagonal Green functions defined by (4.26).
From Eq. (4.26) one can easily obtain the following continued fraction
representation for the diagonal Green functions

Gnn =
1

E2 − Ω2
n − I2

n−1 − ∆−
n − ∆+

n

, (4.29)

∆−
n =

Ω2
n−1I

2
n−1

E2 − Ω2
n−1 − I2

n−2 −
Ω2

n−2
I2

n−2

E2−Ω2
n−2

−I2
n−3

−
...

,

∆+
n =

Ω2
nI2

n

E2 − Ω2
n+1 − I2

n − Ω2
n+1

I2
n+1

E2−Ω2
n+2

−I2
n+1

−
...

.

This representation becomes extremely useful for periodic sequences of
the Hamiltonian parameters since the continued fractions in (4.29) be-
come periodic and can be evaluated by solving square equations.

I illustrate how this scheme works in the simplest case p = 1. For the
uniform case ∆−

n = ∆+
n = ∆ (do not confuse with the energy gap ∆!)

and

∆ =
Ω2I2

E2 − Ω2 − I2 − ∆
. (4.30)

Now

Gnn = ∓ 1
√

(E2 − Ω2 − I2)2 − 4Ω2I2

(4.31)

and the density of states has the following form

R(E2) =

{

1

π
√

−(E2−a1)(E2−a2)
if a1 < E2 < a2,

0, otherwise
(4.32)

with a1,2 = (Ω ± I)
2
. (Now it becomes clear why we adopted the square-

root singularity of R(E2) in Eq. (3.5).)

4.4. Critical behavior

Finally, let us explain how the critical behavior can be derived. We start
from the ground-state energy per site

e0 = −
∫ ∞

0

dEE2R(E2). (4.33)
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Here the density of states has the following form (compare with (4.32))

R(E2) =

{ |Zp−1(E
2)|

πp
√

A2p(E2)
, if A2p(E

2) > 0,

0, otherwise
(4.34)

where Zp−1(E
2) and A2p(E

2) are the polynomials of the
order p − 1 and 2p, respectively. Moreover, A2p(E

2) =
−
(

E2 − a1

) (

E2 − a2

)

. . .
(

E2 − a2p

)

where 0 ≤ a1 ≤ a2 ≤ . . . ≤ a2p

are the roots of A2p(E
2). As |Ω − Ωc| = ε → 0 the smallest root a1

vanishes either proportionally to ε2 or proportionally to ε4. As a result
the nonanalytic contribution to the ground-state energy (4.33) has the
following form

− 1

πp

∫

√
a2

√
a1

dEE2 f(E2)√
E2 − a1

. (4.35)

Using the table integral

∫

dx
x2

√
x2 − a2

=
1

2

(

x
√

x2 − a2 − a2 ln
(

x −
√

x2 − a2
))

one finds that the nonanalytic contribution to the ground-state energy
(4.35) behaves either as

∼ ε2 ln ε (4.36)

(if a1 ∼ ε2 and the energy gap ∆ ∼ ε) or as

∼ ε4 ln ε (4.37)

(if a1 ∼ ε4 and the energy gap ∆ ∼ ε2). Taking the derivatives with
respect to Ω in (4.36) or (4.37) one immediately gets (2.4), (2.5) or the
critical behavior in the vicinity of the weak singularity point.
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