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3yMoBJIeHA MarHiTHUM IIOJIEM CIIiH-TIAWEPJICOBA HECTINKIiCTh y
CUJIBHO (PPYCTPOBAHUX KBAHTOBUX CIIIHOBUX rpaTKax

HNoranec Pixrep, Ouer Jlepxko i Mopr Ilymen6ypr

Amwnoranis. ns kiracy dpycrpoBannx aHTU(GEPOMATHITHUX CIIHOBUX
rpaToK (30Kpema, IpaToK KBaJpaTHe KaroMi i Karomi) Mu 06roBOpioe-
MO 1X CTIMKICTH IIOJIO JIUCTOPCii, BUKOPUCTOBYIOUM HEJIABHO 3HAIEH]
(mst mux rparok) rouni BiacHi cranu. Li Biacui craHu € He3aJeKHU-
MU JIOKAJIi30BAaHUME MAarHOHAMHU y (hepOMATrHITHOMY OTOYEHHI; BOHU CTa-~
IOTh OCHOBHHUMH CTaHAMHU y CHJIbHUX MATrHITHUX Toagax. s Bigmosin-
HHUX T'PATKOBUX JINCTOPCIii, MPUIACOBAHUX JIO CTPYKTYPH JIOKAJII30BAHUX
MAarHOHIB, O0YMCJIEHE TOYHO 3MEHIEHHsT MATHITHOI eHeprii € mpoIoTiii-
He JI0 3MiIlleHb aTOMIB, IO CBITYUTH PO CIIH-TTAREPICOBY HECTIMKICTBD.
OCKIJIBKY 11l JIOKAJII30BaHl CTaHU € ICTOTHUMU JIMIIe NI CUJILHUX Marl-
HITHUX MOJIB, [ HECTIHKICTh MOXKe 3 SIBJISITUCS i3 3MIHOIO MArHITHOTO
oj1st. Mu 06TOBOPIOEMO TAKOXK TiCTEPE3nC CIiH-TAREPICOBOIO TEPEXOLY.

Magnetic-field induced spin-Peierls instability in strongly frus-
trated quantum spin lattices

Johannes Richter, Oleg Derzhko and Joérg Schulenburg

Abstract. For a class of frustrated antiferromagnetic spin lattices (in
particular, the square-kagomé and kagomé lattices) we discuss the im-
pact of recently discovered exact eigenstates on the stability of the lattice
against distortions. These eigenstates consist of independent localized
magnons embedded in a ferromagnetic environment and become ground
states in high magnetic fields. For appropriate lattice distortions fitting
to the structure of the localized magnons the lowering of magnetic ener-
gy can be calculated exactly and is proportional to the displacement of
atoms leading to a spin-Peierls lattice instability. Since these localized
states are present only for high magnetic fields, this instability might be
driven by magnetic field. The hysteresis of the spin-Peierls transition is
also discussed.
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Antiferromagnetically interacting spin—% systems on geometrically
frustrated lattices have attracted much attention during last years. Such
systems have rich phase diagrams exhibiting a number of unusual quan-
tum phases [1,2]. A striking example is the kagomé lattice antiferromag-
net having a liquid-like ground state with a gap for magnetic excitations
and a huge number of singlet states below the first triplet state (see e.g.
Ref. [3] and references therein). Another intriguing example is the struc-
tural phase transition in spin systems driven by magnetoelastic coupling
(spin-Peierls instability) observed, e.g., in CuGeOs [4]. Frustrating in-
teractions may also provide a route to generating fractional phases in
two dimensions which manifest itself in the dynamic correlations probed
by inelastic neutron scattering experiments [5].

In the presence of an external magnetic field frustrated quantum spin
systems exhibit a number of unusual properties. In particular, plateaus
and jumps can be observed in the zero-temperature magnetization curve
for such models [1,6]. The theoretical investigation of exotic magnetiza-
tion curves has been additionally stimulated by the experimental obser-
vation of plateaus e.g. in CsCuCls [7] or SrCuz(BO3)s [8].

Though the treatment of quantum spin systems often becomes more
complicated if frustration is present, in some exceptional cases frustration
is crucial to find simple ground states of product form [9,10]. Recently,
for a wide class of frustrated spin lattices exact eigenstates consisting
of independent localized magnons in a ferromagnetic environment have
been found [11,12]. They may become ground states if a strong magnetic
field is applied and lead to a macroscopic jump in the zero-temperature
magnetization curve just below saturation.

In the present paper we examine the stability of antiferromagnet-
ic spin lattices hosting independent localized magnons with respect to
lattice distortions through a magnetoelastic mechanism. We are able to
present rigorous analytical results completed by large-scale exact diago-
nalization data for lattices up to N = 54 sites. We discuss the field-tuned
changes of the ground-state properties owing to a coupling between spin
and lattice degrees of freedom.

The effect of a magnetoelastic coupling in frustrated antiferromagnets
is currently widely discussed. First of all the investigation of the Peierls
phenomena in frustrated 1D spin systems is in the focus (see, for in-
stance, Ref. [13] and references therein). But also in 2D and 3D quantum
spin systems lattice instabilities breaking the translational symmetry
are reported. The frustration-driven structural distortions in the spin-
% square-lattice Ji-Jo Heisenberg antiferromagnet studied in Ref. [14]
might be relevant for Li; VOSiO4 and VOMoO, [14,15]. For 3D frustrat-
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Figure 1. Square-kagomé lattice with one distorted square (left) and
kagomé lattice with one distorted hexagon (right) which can host local-
ized magnons. The parts of the lattices before distortions are shown by
dashed lines. All bonds in the lattices before distortions have the same
length.

ed antiferromagnets containing corner-sharing tetrahedra one discusses
several examples for lattice distortions. Inelastic magnetic neutron scat-
tering on ZnCro04 revealed that a lattice distortion can lower the energy
driving the spin system into an ordered phase [16]. NMR investigation
of the three-dimensional pyrochlore antiferromagnet YoMooO7 gives ev-
idence for discrete lattice distortions which reduce the energy [17]. A
lifting of a macroscopic ground-state degeneracy of frustrated magnets
through a coupling between spin and lattice degrees of freedom in spin-
1 pyrochlore antiferromagnets was studied in Refs. [18,19], which may
have relevance to some antiferromagnetic compounds with pyrochlore
structure [19].

In all those studies the lattice instability is discussed at zero field. As
pointed out already in the late seventies [20] a magnetic field may act
against the spin-Peierls transition and might favor a uniform or incom-
mensurate phase. In contrast to those findings, in the present paper we
discuss magnetic systems for which the magnetic field is essential for the
occurence of the lattice instability.

To be specific, we consider two geometrically frustrated lattices,
namely, the square-kagomé lattice (Fig. 1, left) and the kagomé lattice
(Fig. 1, right). The ground state and low-temperature thermodynam-
ics for the Heisenberg antiferromagnet on both lattices are subjects of
intensive discussions (see e.g. Refs. [1-3,21,22]). The Hamiltonian of N
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quantum (s = 3) spins reads

H= Jnm (% (stsm +spsh) + Asisfn> — hS*. (1)
)

(nm

Here the sum runs over the bonds (edges) which connect the sites (ver-
tices) occupied by spins for the lattice under consideration, Jp, > 0
are the antiferromagnetic exchange constants between the sites n and
m, A > 0 is the anisotropy parameter (in most cases throughout this
paper A = 1), h is the external magnetic field and S* = )" s7 is the
z-component of the total spin. We assume that all bonds in the lattice
without distortion have the same length and hence all exchange constants
have the same value J.

From Ref. [11] we know that independent localized one-magnon states
embedded in a ferromagnetic background are exact eigenstates of the
Hamiltonian (1) for the considered models. More specifically, by direct
computation one can check that

S LT =L T+ LT = [T ] 1, 2)
1
7 (LTI = LTI + [ T1I17T)
TN+ LTI = LT ] 1) )
are the one-magnon eigenstates of the Hamiltonian (1) on the square-
kagomé and kagomé lattices, where |... T ...) stands for the embedding

fully polarized ferromagnetic environment. The corresponding energies
(h = 0) of the one-magnon states (2) and (3) are

1
—J+ T+ (2N —12) 7, (4)
1 1

—5J +27 + (2N ~18) 7. (5)

The magnons (2) or (3) are trapped (localized) on a square or on a
hexagon, respectively. We separate explicitly in (4), (5) the contributions
to the energy from those bonds which form a magnon trapping cell (first
terms), from the bonds connecting this cell with the environment (second
terms) and from the ferromagnetic environment (third terms). One can
proceed to fill the lattices with n > 1 localized magnons; the state with
maximum filling (“magnon crystal”’) has n = nyax independent localized
magnons with ng.x = %N and %N for the square-kagomé and kagomé
lattices, respectively [11,12]. Since S* commutes with the Hamiltonian
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(1), the energy in the presence of an external field h # 0, E(S*, h), can
be obtained from the energy without field, E(S*), through the relation
E(S5%,h) = E(S*) — hS*?. Since each magnon carries one down spin, a
localized magnon state with n independent magnons has S* = %N -n
and consequently Egs. (4), (5) give E(S* = $ N —1) for the corresponding
systems.

Under quite general assumptions it was proved [23,24] that these lo-
calized magnon states have lowest energies in the corresponding sector of
total S%. As a result, these states become ground states in a strong mag-
netic field. More specifically, the ground-state energy in the presence of a
field is given by Eo(h) = Epnin(S%) — hS* and the ground-state magneti-
zation S* is determined from the equation h = Eppin(S?) — Epin (5% —1).
Since for S% = %N, e %N — Nmax (.6, 0 < n < npay) the localized
magnon states are the lowest states, one has

Emin(S7) = %NJ —3nJ = —NJ +3J5° (6)

for both models. Due to the linear relation between E,,;, and S* one has
a complete degeneracy of all localized magnon states at h = hq, i.e. the
energy is —NJ at h = h; for all %N — Nmax < 5% < %N, where h; = 3J
is the saturation field (identical for both models). Consequently, the
zero-temperature magnetization S* jumps between the saturation value
1N and the value 1N (&N) for the square-kagomé (kagomé) lattice.
The effects of the localized magnon states become irrelevant if the spins
become classical (s — 00).

We want to check the lattice stability of the considered systems with
respect to a spin-Peierls mechanism. For this purpose we assume a small
lattice deformation which preserves the symmetry of the cell which hosts
the localized magnon (in this case the independent localized magnon
states remain the exact eigenstates) and analyze the change in the to-
tal energy (which consists of the magnetic and elastic parts) to reveal
whether the deformation is favorable or not. To find a favorable defor-
mation one needs optimal gain in magnetic energy. For that we use the
circumstance that due to the localized nature of the magnons we have an
inhomogeneous distribution of nearest-neighbor (NN) spin-spin correla-
tions (s;s;) [12]. In case that one magnon is distributed uniformly over
the lattice the deviation of the NN correlation from the ferromagnetic
value, (s;s;) — i, is of the order % On the other hand for a localized
magnon (3) [(2)] we have along the hexagon [square] hosting the localized
magnon actually a negative NN correlation (s;s;) = — [—1] and all
other correlations are positive. Hence a deformation with optimal gain
in magnetic energy shall lead to an increase of antiferromagnetic bonds
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on the square (hexagon) and to a decrease of the bonds on the attaching
triangles. The corresponding deformations are shown in Fig. 1. For the
square-kagomé lattice (Fig. 1, left) the deformations lead to the following
changes in the exchange interactions: J — (1 + \/55) J (along the edges
of the square) and J — (1 — %\/5 (\/5 — 1) 5) J (along the two edges of
the triangles attached to the square), where the quantity ¢ is propor-
tional to the displacement of the atoms and the change in the exchange
integrals due lattice distortions is taken into account in first order in 4.
For the kagomé lattice (Fig. 1, right) one has J — (1 + §) J (along the
edges of the hexagon) and J — (1 — 16) J (along the two edges of the
triangles attached to the hexagon). The magnetic energies (4) and (5)
are lowered by distortions and become %NJ —3J — %\/5 (3 + \/5) oJ
and $NJ — 3J — 36J, respectively. This is in competition with the in-
crease of the elastic energy, which is given in harmonic approximation by
2 (6 — v/3) ad? (square-kagomé) and by 9ad? (kagomé). The parameter
« is proportional to the elastic constant of the lattice. The change of
total energies due to distortions read

_%\/5(34_\/5) 5]+2(6—\/§) ad?, (7)
—gw + 9042, (8)

where for n independent localized magnons with n related distortions

these results have to be multiplied by n. Minimal total energy is obtained
for 6 = 6* = VE(B+vE) g for the square-kagomé and § = 6* = L < for

16(67\/5) @ 12 «
the kagomé lattice.

We have considered only a special class of lattice deformations (under
which the independent localized one-magnon states survive). Although
we are not able to prove rigorously that these lattice deformations are
the most favorable, we have presented above nonrigorous arguments that
these deformations take advantage of the localized magnons in an op-
timal way. However, we have rigorously shown that there exist lattice
deformations which yield a gain in the total energy for large values of
S# leading to a spin-Peierls instability of the lattice for an appropriate
(large) magnetic field hy.

To discuss the scenario of spin-Peierls instability more specifical-
ly we consider a magnetic field above the saturation field h;. For the
corresponding fully polarized ferromagnetic state a lattice distortion is
not favorable. Decreasing h till h; the homogeneous ferromagnetic state
transforms into the “distorted magnon crystal”; this transformation is
accompanied by the aforementioned magnetization jump. On the ba-
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sis of general arguments [25,26] we expect that the “magnon crystal”
state has gapped excitations and the system exhibits a magnetization
plateau between h; and he < hy at S* = %N — Nmax- 10 support
this statement we calculate the plateau width Ah = h; — ho for fi-
nite systems of N = 27,36,45,54 (kagomé) and N = 24,30,48,54
(square-kagomé) for the undistorted lattice, where hy is obtained by
hy = Emin(SZ = %N - nmax) - Emin(Sz = %N — Mmax — ]-) USing a %
finite-size extrapolation we find indeed evidence for a finite Ah = 0.07.J
(Ah = 0.33J) for the kagomé (square-kagomé) lattice in the thermody-
namic limit. This plateau width might be enlarged by distortions (see
below).

Now the question arises whether the lattice distortion under con-
sideration is stable below this plateau, i.e., for S* < %N — Nmax. We
are not able to give a rigorous answer but can discuss the question
again for finite systems of size N = 24,30, 48,54 (square-kagomé) and
N = 18,27,36,45,54 (kagomé) with np,.x distorted squares/hexagons.
We calculate the magnetic energy for zero and small distortion param-
eter § for different values of S*. Adopting for the magnetic energy the
ansatz

Emin(S%,6) = Emin(S%,0) + AP (9)

and taking & of the order of 10™* we can estimate the exponent p from
the numerical results. Evidently, the lattice may become unstable if p < 2
(and, of course, A < 0) whereas p > 2 indicates lattice stability.

Of course, the numerical results reproduce the analytical findings re-
ported above for S* = %N —Nmax- More interesting is the sector of S* just
below, i.e. % = %N — Nmax — 1. Remarkably both lattices behave differ-
ently as h becomes smaller than hs. For the finite square-kagomé lattices
considered we find p = 1.001, 1.000, 1.000, 1.000 for N = 24,30, 48, 54,
respectively, if §% = %N — Nmax — 1. Moreover, p remains equal to 1
for smaller S?. Therefore, we conclude that the distorted square-kagomé
lattice remains stable for S* < %N — Nmax. On the other hand, for fi-
nite kagomé lattices we obtain p = 2.000, 1.002, 2.000, 1.998, 2.055 for
N = 18,27, 36,45, 54, respectively, if S = %N — Nmax — 1. The “outrid-
er” for N = 27 may be attributed to finite-size effects, indeed we have
p = 1.994 for the next lower S* = %N — NMmax — 2. Moreover, p re-
mains about 2 for smaller S%. We interpret small deviations from 2 also
as finite-size effects and conclude that the spin-Peierls instability in the
kagomé lattice (within the adopted ansatz for the lattice deformation) is
favorable only for %N — Nmax < 9% < %N and the distortion disappears
for h < hs.
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The origin for the different behavior of the square-kagomé and the
kagomé lattice below ho can be attributed to the circumstance, that
the square-kagomé lattice has non-equivalent NN bonds but the kagomé
lattice has not. This non-equivalency of NN bonds leads to a special
affinity of the magnetic system to the considered lattice distortions.

Let us now briefly discuss the influence of the lattice distortion on
the saturation field h;. Since the fully polarized ferromagnetic state

is not distorted, hy is shifted to higher values according to —hlgf*) =
34+ 7332((2;\/2)% for the square-kagomé and @0 — 3 1 LJ for the

kagomé lattice, i.e. the “distorted magnon crystal” remains stable un-
til h1(6*) > hy. On the other hand, starting at large magnetic fields
h > h; the fully polarized ferromagnetic state remains (meta)stable until
hy = 3J. Consequently, we have a hysteresis phenomenon in the vicinity
of saturation field.

We mention that our considerations basically remain unchanged for
the anisotropic Hamiltonian (1) with A # 1. The presence of anisotropy
leads only to quantitative changes in our results. For the sectors of S*
below the localized magnon states we have checked that numerically
for N = 18 (kagomé) and N = 24 (square-kagomé). For the sectors of
S* with localized magnon states it becomes obvious from the change
in magnetic energy of a localized-magnon state due to distortions giv-
en by — (\/§ + %\/ﬁ (\/5 - 1) A) 0J (square-kagomé) and — (1 + %A) oJ
(kagomé), where these expressions for A = 1 transform to the first terms
in Egs. (7) and (8), respectively.

The spin-Peierls instability in high magnetic fields may appear in oth-
er lattices hosting independent localized magnons provided it is possible
to construct a lattice distortion preserving the symmetry the localized-
magnon cell. Appropriate candidates are e.g. the kagomé-like chain of
Ref. [27] or the dimer-plaquette chain (see Ref. [28] and references
therein). However, we did not find such a distortion for the sawtooth
chain [29,30] or for the kagomé-like chain of Ref. [31].

From the experimental point of view the discussed effect should most
spectacularly manifest itself as a hysteresis in the magnetization and
the deformation of kagomé-lattice antiferromagnets or the kagomé-like
magnetic molecules in the vicinity of the saturation field. Unfortunately,
to our best knowledge at the moment such materials are not available
(see, however, recent studies [32,33] on a spin-1 kagomé-like compound).

To summarize, we have reported a spin-Peierls instability in strong
magnetic fields for several frustrated Heisenberg antiferromagnets host-
ing independent localized magnons. This spin-Peierls instability may
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or may not survive for smaller fields in dependence on details of lat-
tice structure. In particular, for the Heisenberg antiferromagnet on the
kagomé lattice we have found evidence that the spin-Peierls instability
breaking spontaneously the translational symmetry of the kagomé lat-
tice appears only in a certain region of the magnetic field. The field
dependence of the magnetization and the deformation in the vicinity of
saturation displays a hysteresis.

We would like to thank A. Honecker, J. Schnack and D. Ihle for
discussions and comments. The present study was supported by the DFG
(project 436 UKR 17/17/03). O. D. acknowledges the kind hospitality
of the Magdeburg University in the autumn of 2003.
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