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Amnoranist. Y pamMkax TeOPETHKO-TPYIIOBOTO INJIXOy TPOAHAJI30BAHO
CKeHJIIHrOBl BJIACTUBOCTI BUIAIKOBUX OJIyKaHb 6€3 caMOIepeTHHiB Ha d-
BUMIpHIl po3BejieHiil epKoOJIsALiiHIli IpaHii. 3 i€ METOK pPO3IJIsia-
€ThCsl MOJIeJIb, 3anpononoBana y pobori Meijipa ta I'apica (Phys. Rev.
Lett., 63, 2819 (1989)). ¥ Toil yac K OTPUMAHUIA HOIEPEHUKAMU De-
3yJbTaT Ha 0a3i MEPIIOro MOPSIKY TeOpir 30ypeHb He Y3roKyBaBCs i3
JAHUMU 1HITUX JTOCJII/IZKEHb, MU OTPUMAJIH, [0 ACUMIITOTUIHA TTOBEIiH-
Ka BUIAJIKOBUX OJIyKaHb 0€3 caMOIepeTHHIB Ha MEPKOJIAIINHOMY KJiac-
Tepi KepyeTbes TOKa3HUKOM v, = 1/2 + /42 + 110e2/213, ¢ = 6 — d.
Ileit anamiTuaHMil pe3yabTaT H00PE Y3rOKYEThCS i3 BIIOMUMA TAHUME
pocaimxkens MonTte Kapso Ta MeTomiB TOYHOrO MipaxyHKy Y IMTHPOKIN
JiASHI 3HaYeHb BuMipHOCTI 2 < d < 6.

Where two fractals meet: the scaling of a self-avoiding walk on
a percolation cluster

C. von Ferber, V. Blavats’ka, R. Folk, Yu. Holovatch

Abstract. The scaling properties of self-avoiding walks on a d- dimen-
sional diluted lattice at the percolation threshold are analyzed by a field-
theoretical renormalization group approach. To this end we reconsider
the model of Y. Meir and A. B. Harris (Phys. Rev. Lett., 63, 2819
(1989)). While the former first order perturbation did not agree with
the results of other methods, we find that the asymptotic behavior of a
self-avoiding walk on the percolation cluster is governed by the exponent
vp = 1/2 4+ £/42 4+ 1102 /213, ¢ = 6 — d. This analytic result gives an
accurate numeric description of the available MC and exact enumeration
data in a wide range of dimensions 2 < d < 6.
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Polymers and percolation clusters are among the most frequently en-
countered examples of fractals in condensed matter physics [1-3]. When
a long polymer chain is immersed in a good solvent its mean-square
end-to-end distance R2 scales with the monomer number N as:

R2 ~ N2vsaw, N — oo (1)

with the exponent vsaw(d) which depends on the (Euclidean) space di-
mension d only. This scaling of polymers (1) is perfectly described by the
self-avoiding walk (SAW) on a regular d-dimensional lattice [1] and the
fractal dimension of a polymer chain readily follows: dsaw = 1/vgaw. For
space dimensions d above the upper critical dimension dy, = 4 the scal-
ing exponent becomes trivial: vsaw(d > 4) = 1/2, whereas for d < dy,
the non-trivial dependence on d is described e.g. by the phenomenolog-
ical Flory formula [1] vsaw = 3/(d + 2). This found its further support
by the renormalization group (RG) € = 4 — d-expansion known currently
to the high orders [4]: vsaw = 1/2+ /16 + 1582/512+ ...

When a SAW resides on a disordered (quenched diluted) lattice — such
a situation might be experimentally realized studying a polymer solution
in a porous medium, but is of its own interest as well — the asymptotic
scaling behavior is a more subtle matter [5-7]. Numerous MC simulations
[8-13] and exact enumeration studies [14-20], which last since early 80-
ies [7], lead to the conclusion that there are the following regimes for the
scaling of a SAW on a disordered lattice: (i) weak disorder, when the
concentration p of bonds allowed for the random walker is higher than
the percolation concentration ppc and (ii) strong disorder, directly at
p = ppc. By further diluting the lattice to p < ppc no macroscopically
connected cluster, “percolation cluster”, remains and the lattice becomes
disconnected. In regime (i) the scaling law (1) is valid with the same
exponent vgaw for the diluted lattice independent of p, whereas in case
(ii) the scaling law (1) holds with a new exponent v, # vsaw. A hint
to the physical understanding of these phenomena is given by the fact
that weak disorder does not change the dimension of a lattice visited by
a random walker, whereas the percolation cluster itself is a fractal with
fractal dimension dependent on d: dpc(d) = d — Bpc/vpc, where fBpc
and vpc are familiar percolation exponents [2]. In this way, vsaw (d) must
change along with the dimension dpc of the (fractal) lattice on which
the walk resides. A modified Flory formula [8] for the exponent of a SAW
on the percolation cluster v, = 3/(dpc + 2) along with results of similar
theoretical studies [21-28] gives numbers in an astonishing agreement
with the data observed (see Table ). Since d,, = 6 for percolation [2],
the exponent v,(d > 6) = 1/2 [32].
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Although the Flory-like theories [21-28] offer good approximations
for vp(d) in a wide range of d, even more astonishing is the fact that
up to now there do not exist any satisfactory theoretical estimates for
vp(d) based on a more refined theory, which takes into account non-
Markovian properties of the SAW, a task which was completed for regular
lattices already in mid-70-ies [1]. Existing real-space RG studies [14,21,
29,33] give satisfactory estimates for d = 2, whereas the field-theoretical
approaches aimed to describe the situation at higher dimensions lead
to contradictory conclusions. In particular, the field theory developed
in Ref. [14] supported du, = 6 and presented a calculation of v, in
the first order of ¢ = 6 — d. However the numerical estimates obtained
from this result are in poor agreement with numbers observed by other
means, leading in particular to the surprising estimate v, ~ vgaw in
d = 3 (see Table ). In turn, a subsequent study [34] even questioned the
renormalizability of this field theory and suggested another theory with
dyup = 4 which is obviously disproved by computer simulations and exact
enumerations at dimensions d = 4,5 [13,14].

There is another important reason, why the scaling of a SAW on
a percolation cluster calls for further theoretical study. As it became
clear now, higher-order correlations of a fractal object at another fractal
lead to multifractality [35]. Recently studied examples of multifractal
phenomena are found in such different fields as diffusion in the vicinity
of an absorbing polymer [36], random resistor networks [37], quantum
gravity [38]. A SAW on a percolation cluster is a good candidate to
possess multifractal behavior. Indeed such behavior is found in computer
simulations [19], moreover it naturally emerges in the RG scheme, as we
will explain below.

Let us consider a diluted lattice with sites x; in terms of variables
pij = 0,1 that indicate whether a given bond between the sites x; and
x; is present or not. To describe the critical properties of SAWs on this
lattice following the idea of de Gennes [1] we introduce m-component
spin variables S, (x;), @« = 1,...,m, and evaluate the theory for m = 0.
To allow for the averaging over the quenched disorder the spins are n-fold
replicated which gives for the Hamiltonian:

e s =< exp{—% sz'j Z Z SH(xi)SH(x;} > (2)

ij a=1p=1

where we denote by < ... >, the average over the random variables p;;
which take the value 1 and 0 with probabilities p and (1 —p) respectively,
and K is an interaction parameter. In the following we will work with
a field theoretical representation of the effective Hamiltonian defined in
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Table 1. The exponent v, for a SAW on a percolation cluster. FL: Flory-
like theories, EE: exact enumerations, RS, RG: real-space and field-
theoretic RG. The first line shows vgaw for SAW on the regular lattice
(d=2130], d =3 [31]).

d 2 3 1 5 6

USAW 3/4 | 05882(11) | 1/2 12 | 1/2

FL, [21] | 0.778 0.662 0.593 0543 | 1/2

[22] | 0.69(1) | 057(2) | 0.49(3) 1/2

[23] 0.70(3) 0.63 056 | 1/2

[24] | 0.770 0.656 0.57 052 | 1/2

[25] | 0.76 0.65 0.58 1/2

[26] | 0.75-0.76 | 0.64-0.66 | 0.57-0.59 | 0.55-0.57 | 1,2

[27] | 0.77 0.66 0.62 056 | 1/2
MC, [8] ~2/3

9] | ~wvsaw | 0.612(10)
10] >~ USAW 0605(10)

18] | 0.770(5) | 0.660(5)
19] | 0.778(15) |  0.66(1)

19] | 0.787(10) | 0.662(6)
RS, [29] | 0.767

[

[11] | 0.77(1)

[12] | 0.783(3)

[13] 0.62-0.63 | 0.56-0.57
EE, [14] | 0.76(3) | 0.67(4) | 0.63(2) | 0.54(2)

[15] | 0.81(3)

[15] | 0.745(10) | 0.635(10)

[16] 0.65(1)

[17] | 0.745(20) | 0.640(15)

[

[

[

[

[21] | 0.778 0.724
RG, [14] | 0.595 0.571 0.548 0524 | 1/2
(9) | 0.785 0.678 0.595 0.536 | 1/2

(2). This is achieved [14] via a Stratonovich-Hubbard transformation
A1y

to tensor fields ¢ (x) with components ¢}}3~"% (x) conjugated to the

product Hf:ngﬁ (x) of k components of the replicated spin with 8; <
... < k. This results in the effective Hamiltonian up to order ¢? [14]:

Hy = %/ddq zk:(rk +¢*)Pr(Q) s Yr(—a) +
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& [ atevo. (3)
where 15 (q) is the Fourier transform of ¢ (x), the inner product reads:

Ur(@) : Pr(—a) = Y > [ (q)l?,
{ai} {Bi}

and 93(x) is a symbolic notation for a product of three 1 fields. On-
ly those cubic terms 1% are allowed for which all pairs (c;, 3;) appear
exactly twice. A second condition on the diagrammatic contributions to
perturbation theory can be derived from the de Gennes limit m = 0,
namely, if any index (a, 3) appears only on the internal propagator of a
diagram, then its contribution vanishes.

We note the unusual dependence of “masses" r; on k. This is remi-
niscent of the fact that in the m = 0 limit the theory (2) becomes mul-
ticritical [14,39]. This has impact on the renormalization of the theory
(3) as we will show in the following.

We choose to calculate the critical properties of the theory by analyz-
ing its vertex functions, in particular I'®(q), T® ({¢}), and TV ({g})
where the latter includes an insertion of the v:9 operator. Each of these
I-functions will depend on the family of masses {ry}. The Feynman
graphs of the contributions to the two-point vertex function I'®(q) in
the two lowest orders are shown in Fig. .

Figure 1. The Feynman graphs of the vertex function I'®)(¢) in the two
lowest orders.

The contributions to I'*1) are found from this by placing an inser-
tion on each of the inner propagator lines. These integrals are evaluated
then in dimensional regularization in dimension d = 6 — ¢ and minimal
subtraction [40] using a Laurent-expansion in €. Usually the renormaliza-
tion of the vertex functions is defined in terms of Z-factors in such a way
that the products Zwl"(Q)7 ZwI'G) Ly 'Y are free of e-poles. However,
the insertion of the v:i-operator together with the k-dependence of the
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masses 7y, leads to the following renormalization procedure. The vertex
function T'>1) even when evaluated at zero mass remains k-dependent:

r@D =Y 4 g 4 g2rdY 4 “)

and it can not be renormalized by one multiplicative Z-factor. The essen-
tial feature of this expansion is that each term shows a different scaling
behavior. In this way the multicriticality recognized already by Derri-
da [39] and Meir and Harris [14] manifests itself in our present formalism

and leads to a spectrum of exponents. Instead of a single Z-factor Z2
2,1) .
i

i

a whole family of factors Zg:)w is necessary to renormalize each I'
(4). This allows to define RG-functions

n

Bw) = - n )

that describes the RG-flow of the coupling with respect to the rescaling
parameter x and

d ) d., o
n(w) = 1 InZy, Ny (W) = 1 InZ,’, (6)
which define the anomalous dimensions of the corresponding operators.
At the stable fixed point w* with S(w*) = 0 the family of correlation
exponents is given by

v = 12— n(w) + i (w)] 7 (™)

We note that v(® = vpc and vV = v, as introduced above, whereas
the v for i > 2 are connected with higher order correlations. The
B-function (5) is the familiar RG function of the ¢® Potts model [41].

The explicit calculations proceed as follows: (i) One starts with the

vertex function I‘Efk) corresponding to the propagator of the field . (ii)

For the masses one inserts the expansion 7, = ,uz;io u;kd. (iii) The

insertion of :1 is defined by the derivative Q%FEZB evaluated at zero

mass for g = 0. (iv) Performing the summation over the replica indices

the contributions to the different FEQ’D are generated by rearranging the

expansion in k. One finds the multiplicative renormalization for FZ@’I)

for appropriate linear combinations of the different orders of k.
Following this procedure we obtain € = 6 — d expansions for n(i,) .

Substituting them together with the known result [41] n = —¢/21 —
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206c2/213 into (7) we arrive at the following spectrum of correlation
exponents:

VO = upo =1/2+5¢/84+ 5892 /423, (8)
v =y =1/24 /4241102213, (9)
VB = 1/2+4¢/24413907£2/1100736, . . .. (10)

By (8) we recover the familiar e-expansion for the percolation exponent
vpc [41] and in (9) we extend the first order result for v, [14]. The
physical interpretation and properties of the remaining exponents /(%)
of the family is the subject of a separate study [42]. Contrary to the
family of v-exponents defined in Ref. [19], the v govern the non-trivial
scaling of properly defined cumulants of the distribution of SAWs for
given end-to-end distance [42]. Evaluating the result for v, (9) by direct
substitution of € = 6 — d one finds nearly perfect correspondence with
available MC and exact enumeration results over the range d = 2,...,5,
see Table . This presents a qualitative improvement over the linear result
as seen in Fig. where we also show that the result is in between the limits
given by the shortest and longest SAWs on percolation cluster [44].

A rather peculiar finding is that results of the phenomenological
Flory-like formulae evaluated using the fractal characteristics of the per-
colation cluster are numerically very close to our result in the same region
of dimensions. Note however the ambiguity [18] in defining a Flory-like
scheme leading to the different results in Table .

The 3 theory as applied to the present problem inevitably has the
upper critical dimension d,,;, = 6. This in particular allows us to describe
the discussed non-trivial scaling for dimensions d = 4,5. This is out of
reach following the approach of Ref. [34] which gives trivial scaling for
d > dy, = 4 and relies on a ¢*-theory with two couplings of different
symmetry. Moreover, in the de Gennes limit m = 0 the symmetry of the
two couplings coincides [6] leading back to a theory of SAWs on the pure
lattice with a redefined coupling parameter, a fact neither exploited in
Ref. [34] nor in the similar approaches [45,46].

From the physical point of view, our result for the exponent v, to-
gether with the data of EE and Flory-like theories (see Table ) predicts a
swelling of a polymer coil on the percolation cluster with respect to the
pure lattice: v, > vgaw for d =2 — 5. Up to now, this phenomenon has
clearly been observed only in MC simulations for d = 2 [12]|. Although
simulations on d = 3 percolation clusters have been claimed to show
this effect [8-10,13], these studies were subsequently criticized for using
inappropriate data analysis [9,15,20] and for lack of accuracy. At d =3
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Figure 2. The correlation exponent 1,. Bold line: (9), thin line: one-loop
result [14], filled boxes: Flory result v, = 3/(dpc + 2) with dpc from
[43]. Exponents for the shortest and longest SAW on percolation cluster
[44] are shown by dotted lines.

our formula (10) predicts a 13% increase of v, with respect to vgaw
which is larger than at d = 2 (5%) and should be more easily observed
by current state-of-art simulations. Given that even at d = 2 we are in
nice agreement with MC and EE data and the reliability of the pertur-
bative RG results increases with d, this number calls for verification in
MC experiments of similar accuracy.
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