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1. Introduction

The physics of amphiphilic systems is important in many areas, including
industrial and domestic applications like washing, cleaning, emulsifica-
tion et al. Amphiphilic molecules (surfactants) consists of two different
parts: a hydrophobic (oil-like) tail and hydrophilic (water-like) head. Due
to such a chemical structure they self-assemble into surfaces in a water
and/or oil solution so that the tails are separated from the water and the
heads are separated from the oil. Depending on thermodynamical con-
ditions (i.e., temperature, surfactant concentration, etc) these surfaces
arrange themselves into a large variety of structures such as micelles,
vesicles, lamellas and complex bicontinuous phases. In the bicontinuous
phase (or microemulsion) the system is homogeneous and disordered on
macroscopic length scales but it is highly inhomogeneous on mesoscopic
scales.

Most theoretical approaches to amphiphilic systems employ lattice
models (see, e.g., Refs. [1–8]). In the lattice models, the surfactants and
other “molecules” are placed on the lattice sites, with certain constraints,
and with different strengths for the relevant intermolecular (attractive)
forces. Such lattice models are sometimes called “semi-microscopic” (or
“quasi-microscopic”) models because the lattice site usually corresponds
to a cluster of molecules rather then to a single molecule [8]. Although
they exhibit rich phase behaviour and share many important properties
of realistic systems, they cannot be applied accurately to problems at
the molecular level.

Another approach is a Landau-like theory in which one or more or-
der parameters are introduced and a Landau–Ginsburg–Wilson (LGW)
free energy functional (also called an effective LGW hamiltonian) is con-
structed on the basis of symmetry considerations (see, e.g., Refs. [1, 9–
12]); it often appears as a more correct description of amphiphilic sys-
tems. It is worthwhile to mention here the functional due to Teubner and
Strey [9], which leads naturally to two correlation lengths characteriz-
ing microemulsions, and which has been very successful in interpretation
of small angle neutron scattering experiments. However, the parameters
which appears in such a functional are only indirectly related to inter-
molecular interactions and are usually left in a purely phenomenological
sense.

There have also been introduced so-called “charge frustrated” models,
both microscopic lattice [4–7] and field-theoretical [13–15], which are
based on the electrostatic analogy of amphiphilic systems. The main
idea is that due to the intra-molecular structure of surfactant molecules
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there should be Coulombic terms in a free-energy functional or (lattice)
microscopic hamiltonian. Recently, we have derived the charge-frustrated
free-energy functional from a simple microscopic continuous model by
using the collective variable technique [16]. In this paper we make an
attempt to derive a LGW functional of the Teubner–Strey form from a
similar microscopic model. To accomplish this task we employ again the
collective variables method, though slightly modified on account of the
local incompressibility condition which is used in the present derivation
of the Teubner–Strey functional. This local incompressibility is plausible
in the long-wavelength limit, and its use is also partially motivated by
the fact that it often appears naturally in lattice models; the effect of its
relaxation will be studied in future works.

The remainder of the paper is arranged as follows. In section 2.1 we
present the details of the model. The method of collective variables is
recalled and discussed in sections 2.2 and 2.3, while some technical de-
tails are left to appendix A. In section 3 we derive the Teubner–Strey
functional and calculate the mean-field phase diagram. Structural prop-
erties of a homogeneous phase (microemulsion) are studied in section 4.
Finally, our results are summarized and discussed in section 5.

2. Model and method

2.1. Model

We consider a ternary mixture consisting of molecules A and B, repre-
senting a polar water-like and non-polar oil-like solvent, respectively, and
molecules S representing surfactants. The latter molecules are modelled
by two types of particles, viz., by particles SA (A-like) and SB (B-like)
whose centers are located at a fixed distance `. For simplicity we assume
that particles A, B, SA and SB are spherical hard-cores with the same
radius d. The interparticle interaction potential is divided into a short-
range repulsive part ξab(r) and an isotropic long-range part υab(r), where
a, b denotes the sort of particles (A, B, SA and SB). Thus, the potential
function of the model can be presented as a sum U = U1 + UR, where

U1 =
1

2

∑

a,b

Na,Nb
∑

i,j

υab(rij) , (2.1a)

UR =
1

2

∑

a,b

Na,Nb
∑

i,j

ξab(rij) +

NS
∑

i,j

ξS(rij) . (2.1b)
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Here Na is a number of particles of a-th sort, with NS = NSA = NSB , and
ξS(r) symbolizes “sticky site” interaction of the surfactant components.
Note that the part of UR (for a, b ∈ S := {SA, SB}) corresponds to the
well-known reference interaction site model (RISM) [17, 18].

In order to make calculations more transparent we restrict our con-
siderations to the following simple case. We assume that particles of both
sorts A and SA interact via the same potential υA(r), and, similarly, par-
ticles of both sorts B and SB interact via the same υB(r). Finally, the
interaction between the particles of either sort A or SA and the particles
of either sort B or SB is described by υAB(r). In other words, sorts A and
SA are identical, as well as sorts B and SB are identical, differing only
in that the particles SA and SB form a dimer imitating the surfactant
molecule.

It will prove useful to introduce

εa = −
(

4πd3
/

3
)−1

∫

V

dr υa(r), a = A,B ; (2.2a)

εAB =
(

2πd3
/

3
)−1

∫

V

dr υAB(r) , (2.2b)

and

Λ = 1 + εB/εA + εAB/εA , (2.2c)

where V is the volume. Here positive εA and εB describes attraction,
whereas εAB > 0 corresponds to repulsion. The parameter Λ describes
mutual solvability of particles A and B, in the case that the surfactant
molecules are not present; it corresponds roughly to the surface ten-
sion between the components A and B. Note that there are only two
independent energy parameters, inasmuch as εA is taken as an ener-
gy unit, and that there is no parameter which can be related to the
amphiphilicity of the surfactant molecule. Furthermore, the second pa-
rameter, ε = 1 − εB/εA, will not appear in the following because of the
local incompressibility condition; this will become apparent later.

2.2. Grand partition function

In order to study thermodynamical and structural properties of the mod-
el one needs to calculate the grand partition function. In the following we
need to calculate the partition function with local density constraints,
specifically, with the local incompressibility condition. To do this we use
the following method. We first introduce field variables which satisfy
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〈ϕa(r)〉 = 〈n̂Na
(r)〉, where n̂Na

(r) =
∑Na

i δ(r − ra
i ) is the local den-

sity operator and 〈. . . 〉 means an equilibrium ensemble average. Next,
the partition function is expressed as a functional integral over these
fields. The local density constraints are then taken into account in a
rather natural way by inserting the corresponding delta functions in-
to the functional integral. The details of the approach are discussed in
appendix A. Here we only note that short-range and long-range interac-
tions are treated in a different manner. Basically, the idea is as follows
[19]. Long-range potentials υab(r) are assumed smooth enough (belong-
ing to L2 class of functions) and they appear explicitly in the partition
function. A system with only short-range interactions (UR), referred to
as a reference system, is usually assumed isotropic and, although it does
not have such nice properties, it is quite well studied and its thermody-
namical and structural properties are assumed to be known. It is also
assumed that the reference system does not undergo phase transitions
in the range of the model parameters under consideration. The contri-
bution from the underlying reference system is taken into account in the
Jacobian of the transition to the field variables. Following this approach
one finds for the grand partition function (see appendix A, eq. (A.8))

Ξ ∝

∫

∏

a

Dϕa,k M[{ϕa,k}]J [{ϕa,k}] (2.3)

× exp







∑

a

µ(1)
a ϕa,0 −

β

2(2π)3

∑

a,b

∫

dkϕa,k υab(k)ϕ
∗
b,k







,

where µ(1)
a is the chemical potential of the a-th sort of particles (see

eq. (A.9b)), β is inverse of the temperature multiplied by the Bolts-
mann constant, and ϕa,k and υab(k) is the (three dimensional) Fourier
transform of ϕa(r) and υab(r), respectively (k = |k|). M[{ϕa,k}] is the
functional delta function which reflects the local incompressibility con-
dition; we return to this later. The Jacobian J [{ϕa,k}] is given by (see
appendix A, eqs. (A.16) and (A.18))

J [{ϕa,k}] =

∫

∏

a

Dνa,k

2π
exp

{

iV

2(2π)3

∫

dk
∑

a

ν∗a,k ϕa,k (2.4)

+
∑

n>0

(−iV )n

(2π)3nn!

∑

{ai}

∫

dk1 · · · dkn ua1···an
({ki}) ν

∗
a1,k1

· · · ν∗an,kn







,

where ua1···an
({ki}) (for i = 1, · · · , n) is the n-particle structure fac-

tor of the reference system times an average number of particles of a-th
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sort N̄a. Evaluation of J is a rather difficult mathematical problem and
hereafter we restrict our considerations to the harmonic (Gaussian) ap-
proximation, leaving only the terms up to the quadratic order in νa,k. In
this approximation one can readily calculate J analytically to obtain

JG [{ϕa,k}] ∝ exp







∑

a,b

u−1
ab (0)N̄b ϕa,0 (2.5)

−
V

2(2π)3

∑

a,b

∫

dkϕa,ku
−1
ab (k)ϕ∗

a,k







,

where u−1
ab (k) is the ab-th element of matrix inverse of the matrix û(k)

made out of components uab(k), and we have used the fact that ua(k) =
N̄a δk,0 and uab(k,k

′) = uab(k) δk,−k′ for an isotropic reference system.
We note that within this approximation an expression in the exponent

in eq. (2.3) remains quadratic in ϕa,k; it suffices for our present purposes.
An inclusion of the higher order terms in νa,k in eq. (2.4) gives rise to
higher order terms in ϕa,k in eq. (2.5), and modifies its quadratic part
too. Numerically, however, the quadratic term is not altered too much
[20]. One therefore expects that the Gaussian approximation should yield
qualitatively correct results, at least in some range of the model param-
eters. It should be noted, however, that under certain circumstances the
higher order terms in ϕa,k would manifest themselves even if only the
quadratic term is of interest.

2.3. Structure factors of the reference system

To complete this section we recall the form of structure factors of the
RISM model and calculate û−1(k); it is needed to compute the Jaco-
bian (2.5).

One has for an isotropic system:

uab(r) = N̄a [δ(r) δab + %b hab(r)] ; hab(r) = gab(r) − 1 , (2.6)

where hab(r) is a pair correlation function, gab(r) is a distribution func-
tion and %a = N̄a/V . Following the work by Cummings and Stell [18]
we write for the distribution function of the surfactant components:

gab(r) =
(1 − δab) δ(r − `)

4π%a`2
+ g

(0)
ab (r) , a, b ∈ S , (2.7)

where the first term on the right-hand side of eq. (2.7) is the intra-
molecular structure factor of the surfactant molecules and g(0)

ab (r) is the
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distribution function of the system with the short-range repulsive inter-
actions (the first term of UR, see eq. (2.1)). We recall that %SA = %SB =
%S. Combining eqs. (2.7) and (2.6) and taking Fourier transform one
finds for the symmetrized uab(k):

uab(k) =
(

N̄aN̄b

)1/2
[

∆ab(k) + (%a%b)
1/2

h
(0)
ab (k)

]

;

∆ab(k) = δab + (1 − δab) δa,Sδb,S
sin(k`)

k`
. (2.8)

Finally, using the site-site Ornstein–Zernike equation [18, 19] we obtain
for the elements of matrix inverse of û(k):

u−1
ab (k) =

(

N̄aN̄b

)−1/2
[

∆−1
ab (k) − (%a%b)

1/2 c
(0)
ab (k)

]

, (2.9)

where c(0)ab (k) is the Fourier transformed direct correlation function of
the system with the short-range repulsive interactions. In the assumption
that sizes of all particles are equal, and for a hard-core potential ξab(r) =

ξhs(r), one has c(0)ab (k) = chs(k), ∀ a, b.

3. Mean-field phase diagram

We are interested in properties and phase boundaries of the homoge-
neous phase. To calculate the phase diagram we proceed as follows. We
first pass to new field variables in eqs. (2.3) and (2.5), defined via a trans-
formation: φi(r) =

∑

a T
−1
ia ϕa(r). Here a = 1, 2 corresponds to particles

A and B, and a = 3, 4 correspond to particles SA and SB, respectively.
The matrix T is given by

T−1 =









1 −1 1 −1
1 1 1 1
0 0 1 0
0 0 0 1









. (3.1)

This defines

φ1(r) = ϕA(r) + ϕSA(r) − [ϕB(r) + ϕSB(r)] (3.2a)

and

φ2(r) =
∑

a

ϕa(r) . (3.2b)
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The field φ2(r) is related to the total number density. We note that
there is an “intrinsic” total number density %̃ =

∑

a %a = %A + %B + 2%S

and an “observable” total number density % = %A + %B + %S. In the
local incompressibility condition φ2(r) = %̃ at any space point, hence,
M[φ2,k] = δ(φ2,k − %̃ δk,0). The field φ1(r) is related to an order param-

eter. In the homogeneous phase 〈φ1(r)〉 = φ
(0)
1 = %A − %B, therefore, it

is instructive to define

φ1(r) = φ
(0)
1 + ψ(r) , (3.3)

where ψ(r) describes fluctuations (note that 〈ψ(r)〉 = 0). Then, from
eqs. (2.5) and (2.3), and using eq. (3.3), one finds for the grand partition
function (the terms linear in φi,0 in the exponent have been dropped
since they are irrelevant for further analysis):

ΞG ∝

∫

Dψk exp

{

−
1

2(2π)3

∫

dkψkA(k)ψ∗
k

}∫

∏

i6=1

Dφi,k M[φ2]

× exp







−
1

2(2π)3

∫

dk





∑

i,j 6=1

φi,kAij(k)φ
∗
j,k+ 2

∑

i6=1

φi,kAi1(k)ψ
∗
k











,

where

A(k)≡A11(k) =
β

4
[υA(k) + υB(k) − 2υAB(k)] +

%A + %B

4%A%B
, (3.4a)

Aij(k)=Aji(k) =
(

T T
[

βυ̂(k) + V û−1(k)
]

T
)

ij
. (3.4b)

Note that in the small wave-vector limit there are Coulomb-like terms
in eq. (3.4b):

Aij(k) ∼ zizj

/

k2 , i, j = 3, 4 , (3.5)

where z3 = −z4 = (3/%S`)
1/2 is a “frustrating charge”. These terms

originate from the intra-molecular structure factors of the surfactant
molecules (see eqs. (2.8) and (2.9), see also Ref. [16]). It is worthwhile to
mention that electrostatic terms have been adopted in a number of mod-
els of microemulsions, both (lattice) microscopic and field-theoretical [4–
7, 13–15].

When all fields but ψk are removed altogether we find

ΞG ∝

∫

Dψk exp

{

−
1

2(2π)3

∫

dkψk a(k)ψ
∗
k

}

, (3.6)
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where

a(k) = A(k) −W (k) ·B−1(k) ·WT (k) , (3.7)

whereWT (k) = (A13(k), A14(k)) and B(k) is a 2×2 matrix with the ele-
ments {A33(k), A34(k); A43(k), A44(k)}. Expanding a(k) up to the forth
order in k one finds

ΞG ∝

∫

Dψk exp
{

−HTS [ψk]
}

; (3.8)

HTS =
πd3

6(2π)3

∫

dkψk

{

a2 + c1 (`k)2 + c2 (`k)4
}

ψ∗
k . (3.9)

Functional HTS [ψk] of the form (3.9) was introduced by Teubner and
Strey [9] to explain typical features of scattering curves of microemul-
sions. We note also that a similar functional was employed by Lifshitz
[21] to study spatially modulated structures.

The coefficients of the expansion read:

a2

(

{%̄a}, β̄
)

=−Λβ̄ + (%̄A + %̄B + 4%̄S)
/

4D, (3.10a)

c1
(

{%̄a}, β̄
)

=3Λβ̄p2

/

10 − %̄S(%̄A + 2%̄C)(%̄B + 2%̄C)
/

3D2, (3.10b)

c2
(

{%̄a}, β̄
)

=−Λβ̄p4

/

56 + (%̄S/180D3)
{

80%̄4
S (3.10c)

+ P (%̄A, %̄B, %̄S) + P (%̄B, %̄A, %̄S)
}

,

where we have introduced dimensionless quantities: %̄a = 4πd3%a/3 and
β̄ = T̄−1 = βεA. In eqs. (3.10),

D (%̄A, %̄B, %̄S) = %̄A%̄B + %̄S (%̄A + %̄B) , (3.11)

P (%̄A, %̄B, %̄S) = 11%̄2
A%̄

2
S + 72%̄3

S%̄A + 14%̄S%̄
2
A%̄B

+3%̄2
A

/

2 + 37%̄2
S%̄A%̄B , (3.12)

and pn is related to the n-th moment of the function υA(r) + υB(r) −
2υAB(r):

pn =
n+ 3

4πd3εAΛ`n

∫

V

dr rn
{

υA(r) + υB(r) − 2υAB(r)
}

, (3.13)

with p0 = 1.
Some comments are in order at this stage. First, notice that the di-

rect correlation function chs(k) does not appear in eqs. (3.10) and that
the long-range potentials appear only in the combination υA+υB−2υAB

(see eqs. (2.2c) and (3.13)), and, as a consequence, eqs. (3.10) are sym-
metric with respect to the interchange of %A with %B. Of course these
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assertions would not hold if a more general case of the model was con-
sidered. On the other hand, the direct correlation function chs is present
in eqs. (3.4b), namely, it contributes to the matrix element A22(k). How-
ever, because integration over the field φ2 is covered by the local incom-
pressibility condition, i.e., by M[φ2] = δ(φ2,k− %̃), the direct correlation
function does not enter expressions (3.10). The same concerns the func-
tion υA(k) − υB(k) which contributes to A12(k) = A21(k); it does not
enter eqs. (3.10) either. Next, we emphasize that the last terms on the
right-hand side of eqs. (3.10b) and (3.10c) are entirely due to the intra-
molecular structure factor of the surfactant molecules (see eq. (2.8), cf.
also eq. (3.5)). Thus, these terms are new as to compare to a simple
n-component fluid; evidently they vanish when %S = 0. Further, because
effects we are going to study are due to the presence of these terms,
hereafter we assume p4 = 0 in eq. (3.10c) for simplicity. This assump-
tion is also supported by the following observation. At small surfactant
concentration (%S/% ≈ 0) the coefficient c2 is small comparing to the co-
efficient c1 (in fact, one expects, in analogy with a simple fluid, that the
ratio c2/c1 � 1 for %S = 0), hence, for small values of k the term ∼ k2

dominates over the k4 term, and the latter term can at all be neglected.
The k4 term is however important at a large surfactant concentration,
for which c1 vanishes or becomes negative (cf. Fig. 2 below). However,
because the second term on the right-hand side of eq. (3.10c) increas-
es with increasing %S (cf. Fig. 2), while the first term (∼ p4) does not
depend on %S, the %S-dependent term dominates over the term ∼ p4 at
large %S/%. We note that a similar assumption has also been made in
Refs. [4, 5] (see section 5 for a discussion on these works).

On the mean-field level the homogeneous phase is unstable with re-
spect to fluctuations with the wave-vector kc when the coefficient at
ψkψ

∗
k

vanishes. If c1 > 0 it gives kc = 0 and a2

(

{%̄a}, T̄
)

= 0, which
corresponds to the phase separation (the solid line in Fig. 1). This line
is continued for c1 ≤ 0 by the line c1 = −2(c2 a2)

1/2. On this line the
homogeneous phase is unstable with respect to fluctuations with the

wave-vector kc =
(

−c1
/

2c2
)1/2

(the long dashed line in Fig. 1). For tem-
perature T̄ below this line one would expect an occurrence of lamellar or
other lyotropic phases. We emphasize, however, that in the framework
of the present analysis we merely determine the limit of stability of the
homogeneous phase, whereas the actual transition can be discontinuous
and occur at the higher temperature T̄ . Indeed, there are arguments
in the literature that a continuous (order-disorder) phase transition pre-
dicted by a mean-field approximation can become a first order transition
if fluctuations are taken into account [22, 23]. It is worthwhile to note

ICMP–05–04E 10

0 0.3 0.6

0.2

0.4
(a)DL LL

H

A/B coexistence
and lyotropic phases

T̄
/
Λ
%̄

%S/%

0 0.3 0.6

0.2

0.4 (b)DL LL

H

A/B coexistence
and lyotropic phases

T̄
/
Λ
%̄

%S/%

Figure 1. Mean-field phase diagram for p2 = 1, p4 = 0, and (a) for
symmetric mixture (%A = %B) and (b) for %B/%A = 4. The lines where the
homogeneous phase (H) is unstable with respect to the phase separation
(kc = 0) is denoted by the solid line. It is continued for c1 ≤ 0 by the
line where the H-phase is unstable with respect to fluctuations with the

wave-vector kc =
(

−c1
/

2c2
)1/2

(long dashed line). The short dashed line
and the dot-dashed line denotes the disorder line (DL) and the Lifshitz
line (LL), respectively (see section 4, cf. also Fig. 2).

that an essential ingredient of such a consideration is the presence of
quartic (or higher order) terms in ψk in the functional (3.9), which, in
turn, means that one must go beyond the harmonic approximation in
calculation of the Jacobian (2.4); studies of this kind are deferred for
future works.
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0.3 0.6

0

3

6

c i

%S/%

−c1
c2

Figure 2. The coefficients −c1 and c2 (see eqs. (3.10)) of the functional
(3.9) as functions of the surfactant concentration %S/% for symmetric
mixture (%A = %B), and for T̄ = 3Λ%̄/10, p2 = 1 and p4 = 0. The
stright dashed line corresponds to ci = 0, and the circle and the square
corresponds to the disorder line (c1 = c

(DL)
1 ) and the Lifshitz line (c1 =

0), respectively (cf. Fig. 1).

In Fig. 1 we also show the disorder line (DL) and the Lifshitz line
(LL). Beyond the disorder line (toward larger values of %S) there are os-
cillations in the real-space order parameter–order parameter correlation
function, and at yet higher surfactant concentration, beyond the Lifshitz
line, the peak of the (order parameter–order parameter) structure factor
is at non-zero wave-vector. This is discussed in more detail in the next
section.

4. Structure factor

The order parameter–order parameter correlation function can be de-
duced from the following generating functional:

Z[J ] = Ξ−1

∫

Dψk exp

{

−HTS [ψk] +
1

(2π)3

∫

dkJkψ
∗
k

}

, (4.1)

which is normalized such that Z[0] = 1. Thus, the two-point correlation
function is

〈ψk ψ
∗
k〉 = V 2 δ2 Z[J ]

δJkδJ∗
k

)

J=0

, (4.2)
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where V is the volume. Using eqs. (4.2) and (3.9), one finds, after simple
calculations,

〈ψk ψ
∗
k〉 =

3V

πd3

[

a2 + c1(k`)
2 + c2(k`)

4
]−1

. (4.3)

Fourier transformation of eq. (4.3) gives the real-space correlation func-
tion; simple evaluation yields [1]

G(r) ∝
1

r
sin(r/λ) exp(−r/ξ) , (4.4)

where

λ =

[

1

2

(

a2

c2

)1/2

−
c1
4c2

]−1/2

(4.5a)

and

ξ =

[

1

2

(

a2

c2

)1/2

+
c1
4c2

]−1/2

. (4.5b)

The correlation function (4.4) shows two characteristic features of mi-
croemulsions: oscillations, indicating alternating arrangement of mole-
cules of the A and B sorts, and an exponential decay, indicating the
absence of long-range order [1]. In other words, the wavelength λ gives
the domain size of coherent A and B regions, while ξ characterizes the
decay of the local order. The line

c1 = c
(DL)
1 = 2(c2a2)

1/2, (4.6)

called the disorder line (the short dashed line in Fig. 1), separates the
region where G(r) decays monotonically (that is, where c1 > c

(DL)
1 ,

whence, where %S < %
(DL)
S , see Fig. 2) and the region of oscillatory

behaviour of the correlation function, i.e., it is the line at which the
oscillatory behaviour first appears upon increasing the surfactant con-
centration %S/%; notice that λ diverges at the disorder line if we think of
decreasing %S/%. Note, incidentally, that the correlation length ξ diverges
on the line c1 = −c

(DL)
1 (the long dashed line in Fig. 1). As noted in

section 3, this line corresponds to a continuous phase transition between
the homogeneous (disordered) and ordered phases.

From eq. (4.3) one easily finds that the maximum of the order pa-
rameter–order parameter structure factor 〈ψk ψ

∗
k
〉 occurs at the wave-

vector km given by

(km`)
2 = −c1

/

2c2 , (4.7)
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0.4 0.60

0.3

0.6

0.9

k
m
`

%S/%

Figure 3. The peak’s position km of the order parameter–order parameter
structure factor as a function of the surfactant concentration %S/% for
symmetric mixture (%A = %B), and for T̄ = 3Λ%̄/10, p2 = 1 and p4 = 0.

hence, the peak in the structure factor moves off km = 0 when c1 de-
creases to zero (cf. Fig. 2). The line c1 = 0 defines the Lifshitz line

(the dot-dashed line in Fig. 1). At the Lifshitz line the ratio λ/ξ = 1
(see eqs. (4.5)), which means that the correlation function (4.4) becomes
dominated by oscillatory behaviour. In Fig. 3 the peak’s position km is
plotted against the surfactant concentration %S/%. We observe that km

increases starting from zero at the Lifshitz line. This trend inverses, how-
ever, when %S/% is further increased, and km begins to decrease. We recall
that the length ∼ k−1

m is a measure of the domain size in a micro(meso)-
phase separated structure. Therefore, such a behaviour of km at large
%S/% would suggest the formation of complex structures with the fun-
damental wavelength larger than the length of a surfactant molecule
(∼ ` in our model). It should be noted, however, that the coefficients c1
and c2 increase rapidly with increasing the surfactant concentration (see
Fig. 2) and, probably, simple gradient expansion (3.9) is insufficient in
this region of the model parameters.

Finally, in Fig. 4 we present examples of the order parameter–order
parameter structure factor 〈ψk ψ

∗
k
〉 plotted as a function of the wavevec-

tor k, for the homogeneous phase and for a few values of the surfactant
concentration %S/%. It is known that the structure factor is proportion-
al to the scattering intensity which can be measured, for instance, in
a small angle neutron scattering experiment [1]. In Fig. 4(a) 〈ψk ψ

∗
k
〉 is

shown for relatively small values of %S. In accord with the experimental
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(a)

%S/% = 0.3
%S/% = 0.35
%S/% = 0.37
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0 1 2 30

0.1

0.2

(b)

%S/% = 0.5
%S/% = 0.6
%S/% = 0.7

G

`k

Figure 4. The order parameter–order parameter structure factor G =
(πd3/3V )〈ψkψ

∗
k
〉 (see eq. (4.3)) for (a) small and (b) large values of the

surfactant concentration %S/%. In this plot %A = %B, T̄ = 3Λ%̄/10, p2 = 1
and p4 = 0.

observations (see, e.g., Refs. [9, 24, 25]), the magnitude of the structure
factor decreases as the surfactant concentration increases, and the peak’s
position km moves off zero wave-vector and goes toward larger values of
k (cf. Fig. 3). However, as discussed above, for large %S/% the peak’s po-
sition goes toward small k, though the magnitude of 〈ψk ψ

∗
k
〉 continues

to decrease, which is shown in Fig. 4(b).
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5. Summary

We have considered a simple microscopic continuous model of (weak)
surfactant solutions. The model consists of four sorts of particles: two
sorts of particles represent the oil-like (A) and water-like (B) molecules,
and the two remaining components (SA and SB) form a dimer represent-
ing the surfactant molecule. Using a simple modification of the collec-
tive variables method, we have derived (in the Gaussian approximation)
an effective Landau–Ginsburg–Wilson hamiltonian for microemulsions,
functional form of which was first proposed by Teubner and Strey [9].
In such a way we have linked the phenomenological parameters appear-
ing in the Teubner–Stray functional with the microscopic parameters of
our model (see eqs.(3.10)). Using a mean-field approximation, we have
calculated the phase diagram, namely, the phase boundary of a homo-
geneous phase. Our calculations show that the homogeneous phase can
be unstable with respect to fluctuations with zero as well as a non-zero
wave-vector. The latter instability indicates the existence of spatially
modulated phases in our simple model. We note, however, that more
elaborate calculations must be carried out in order to study the struc-
ture of such phases (as well as the order of the transition, see section 3).
In order to study the structure of the homogeneous phase we have cal-
culated the order parameter–order parameter correlation function. It is
shown, in particular, that there are oscillations in the real space correla-
tion function, and that for a sufficiently large concentration of surfactants
the peak of the order parameter–order parameter structure factor occurs
at a non-zero wave-vector, which is characteristic for microemulsions (see
Figs. 3 and 4). This effect is related to the fact that the coefficient c1
at the k2 term can change sign, depending on the temperature and the
surfactant concentration (see Fig. 2).

It is interesting to point out certain similarity of our model and the
lattice model of Woo et al. [4, 5]. The authors of these works have derived
the functional (3.9) (albeit to higher orders in ψk) from the “frustrated”
Ising model with spin ±1, where each value of the spin represents an oil
and water molecule. Some of the sites, representing surfactant compo-
nents, are endowed with the ”frustrating charges” and interact via the
Coulombic potential (cf. eq. (3.5)). The fact that the spin takes only
the values ±1 merely indicates that there is always a molecule on the
site, and this corresponds roughly to our local incompressibility condi-
tion M[φ2]. The parameters σ, ∆ and the lattice spacing a of Refs. [4, 5]
are, in a certain sense, analogous to our parameters Λ, ` and d, respec-
tively. Furthermore, our order parameter (the field φ1, see eqs. (3.2a))
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is in fact equivalent to the order parameter used is Refs. [4, 5]. In the
above-mentioned works it emerges naturally as an average value of the
spin, hence, it corresponds to the oil–water concentration difference, in-

cluding also the surfactant’s components concentration difference. It is
therefore no surprising that the phase diagram presented in our work
(Fig. 1) is very similar to the phase diagram calculated in Ref. [4].
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A. Grand partition function with density constraints

The approach discussed here has a rather strong resemblance with the
collective variable method introduced by Zubaryev [26] and further de-
veloped by Yukhnovskii and co-workers [19, 20, 27–29]. The difference is
merely due to density constrains which we impose on a system. Because
of these constraints it is more convenient to introduce a “collective” vari-
able in R-space instead of k-space, as it is conventionally done in the
collective variables approach.

We consider an M -component system whose particles interact via a
pairwise additive potential Uab(ri, rj). The potential function is

U =
1

2

M
∑

a,b

Na,Nb
∑

i,j

Uab(ri, rj), (A.1)

where the absence of the terms with i = j for the same sort of parti-
cles is understood. For further purposes it is convenient to divide the
interaction potential Uab(ri, rj) into a short-range and long-range part,
ξab(ri, rj) and υab(ri, rj), respectively; the former is usually referred to
as a reference system. The kinetic part of the hamiltonian is assumed
to be of the usual quadratic form. The integration over the momenta
yields the standart de Broglie thermal wavelength factors Λa (for a-th
component). Consequently, the grand partition function is

Ξ = Sp e−βU =
∏

a

∑

Na

eβµaNa

Λ3Na

a Na!

∫

(dΓ) e−βUR e−βU1 , (A.2)
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where

UR =
1

2

∑

a,b

∑

i,j

ξab(ri, rj) , (A.3a)

U1 =
1

2

∑

a,b

∑

i,j

υab(ri, rj) . (A.3b)

In eq. (A.2), β is inverse of the temperature multiplied by the Boltz-
mann constant kB, and (dΓ) =

∏

a

∏

i(dR
a
i /V ), where V is the vol-

ume and Ra
i is the position of the i-th particle (of sort a) in coordi-

nate space. The chemical potential µa is determined by the equation
N̄a = ∂ ln Ξ/ ∂(βµa), provided N̄a (an average number of particles of
a-th sort) is known. We present the grand partition function as follows

Ξ = ΞR Ξ1 , (A.4)

where

ΞR =
∏

a

∑

Na

eβµ(R)
a

Na

Λ3Na

a Na!

∫

(dΓ) e−βUR (A.5)

is the grand partition function of the reference system and

Ξ1 =
〈

eβ

P

a
µ′

a
Nae−βU1

〉

R
. (A.6)

Here
〈

· · ·
〉

R
means averaging over the reference system,

〈

· · ·
〉

R
= Ξ−1

R

∏

a

∑

Na

eβµ(R)
a

Na

Λ3Na

a Na!

∫

(dΓ)
(

· · ·
)

e−βUR , (A.7)

µ
(R)
a is the chemical potential of the reference system, determined by the

equation N̄ (R)
a = ∂ ln ΞR/ ∂(βµ

(R)
a ), and µ′

a = µa −µ
(R)
a ; it is convenient

to divide µa so that N̄a = N̄
(R)
a .

Let us introduce a local density operator n̂Na
(r) =

∑Na

i δ(r − ra
i ),

where δ(r) is the (three dimensional) Dirac delta function. Note that
Na ≡ nNa

=
∫

V
dr n̂Na

(r). We want to calculate the partition func-
tion (A.2) with local density constraints. By those we mean that at any
phase-space point a linear combination L ({n̂Na

}) of the density opera-
tors n̂Na

(r) is fixed in the sense that
∫

VG

drL ({n̂Na
(r)}) = CVG for an

arbitrary volume VG, where C is a constant. Note that C must have the
dimension of number density. A generalization to what can be called an
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integral density constraint, i.e., the constraint for a linear combination
of nNa

, is straightforward. To introduce constraints into the partition
function Ξ we proceed as follows. First, we pass to field variables in
eq. (A.6) by introducing functional integrals

∫

Dϕa(r) together with the
Dirac delta functions δ(ϕa(r) − n̂Na

(r)). One easily finds

Ξ1 =

∫

∏

a

[dϕaDϕa(r)] exp

{

β
∑

a

µ(1)
a ϕa − β Φ[{ϕa(r)}]

}

×J1[{ϕa, ϕa(r)}] , (A.8)

where

Φ[{ϕa(r)}] =
1

2

∑

a,b

∫

V

dr1

∫

V

dr2 ϕa(r1)ϕb(r2)υab(r1, r2), (A.9a)

µ(1)
a = µ′

a +
1

2
υaa(0) = µ′

a +
1

2V

∑

k

υaa(k) . (A.9b)

The last term in µ(1)
a is due to the absence of the i = j (for a = b) terms

in eq. (A.1); J1 reads

J1 =

〈

∏

a

δ(n̂Na
(r) − ϕa(r)) δ(nNa

− ϕa)

× δ

(

nNa
−

∫

V

dr n̂Na
(r)

)〉

R

(A.10a)

=
∏

a

δ

(

ϕa −

∫

V

dr ϕa(r)

)

J [{ϕa, ϕa(r)}] , (A.10b)

where the last delta function in eq. (A.10a), which ensures a correct
relation between n̂Na

(r) and nNa
, has been taken out of 〈 〉R by using

the integral representation of the Dirac delta function. In eq. (A.10b),

J [{ϕa, ϕa(r)}] =

〈

∏

a

δ(n̂Na
(r) − ϕa(r)) δ(nNa

− ϕa)

〉

R

. (A.11)

The aforementioned constraints can now be easily taken into account by
inserting the corresponding delta functions into eq. (A.11). By taking
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similar steps as in (A.10) one obtains

Ξ = ΞR

∫

∏

a

[

dϕaDϕa(r) δ

(

ϕa −

∫

V

drϕa(r)

)]

×
∏

α

δ
(

Lα({ϕa(r)}) − Cα

)

(A.12)

× exp

{

β
∑

a

µ(1)
a ϕa − β Φ[{ϕa(r)}]

}

J [{ϕa, ϕa(r)}] .

It is now convenient to pass to Fourier space. Due to the linearity of our
constraints, and because Fourier series has a unit Jacobian, eq. (A.12)
simply becomes

Ξ = ΞR

∫

∏

a

Dϕa,k

∏

α

δ
(

Lα({ϕa,k}) − Cαδk,0

)

J [{ϕa,k}]

× exp







β
∑

a

µ(1)
a ϕa,0 −

β

2V

∑

a,b

∑

k

ϕa,kυab(k)ϕ∗
b,k







, (A.13)

where, because ϕa(r) is a real field, the integration over ϕa,k is restricted
to ϕa,k = ϕ∗

a,k, i.e., k ∈ Ω =
{

k ∈ R
3 | kz > 0; kx, kz = 0, ky ≥ 0; kz =

0, kx, ky > 0
}

, and

J [{ϕa,k}] =

〈

∏

a

∏

k∈Ω

δ
(

ρ̂Na
(k) − ϕa,k

)

〉

R

, (A.14)

where ρ̂Na
(k) is the Fourier amplitude of the density operator n̂Na

(r),
i.e.,

ρ̂Na
(k) =

∫

V

dr n̂Na
(r) exp

(

ikr
)

=

Na
∑

i

exp
(

ikri

)

. (A.15)

In eq. (A.13) we have integrated out over dϕa using ρ̂Na
(0) = nNa

=
Na. Using the integral representation of the delta function we rewrite
eq. (A.14) as follows

J [{ϕa,k}] =

∫

∏

a

(dνa,k) exp

{

i
∑

a

∑

k

ν∗a,kϕa,k

}

K[{νa,k}]. (A.16)

Here

(dνa,k) =
dνa,0

2π

∏

k∈Ω0

dν
(<)
a,k

2π

dν
(=)
a,k

2π
, (A.17)

ICMP–05–04E 20

where Ω0 = Ω\{k = 0}, and

K[{νa,k}] =

〈

exp

{

−i
∑

a

∑

k

ν∗a,kρ̂Na
(k)

}〉

R

(A.18)

= exp







∑

n>0

(−i)n

n!

∑

a1,...,an

∑

k1,...,kn

ua1···an
(k1, . . . ,kn)ν∗a1,k1

· · · ν∗an,kn







,

where we have used the cumulant expansion theorem [30]. In eq. (A.18),

ua1···an
(k1, . . . ,kn) =

〈

ρ̂Na1
(k1) · · · ρ̂Nan

(kn)
〉(R)

c
, (A.19)

where
〈

· · ·
〉(R)

c
means cumulant avaraging over the reference system;

ua1···an
(k1, . . . ,kn) is the n-particle cumulant of the reference system,

i.e., the n-particle structure factor (of the reference system) times N̄a.
In the thermodynamic limit

∑

k
7→ V/(2π)3

∫

dk, and eq. (A.17) defines
the measure of functional integral Dνa,k/2π.

References

1. G. Gompper and M. Schick, in Phase Transitions and Critical Phe-

nomena, edited by C. Domb and J. Lebowitz (Academic, London,
1994), vol. 16, and references therein.

2. J. C. Wheeler and B. Widom, J. Am. Chem. Soc. 90, 3064 (1968).
3. A. Ciach, J. S. Høye, and G. Stell, J. Chem. Phys. 90, 1214 (1989).
4. H.-J. Woo, C. Carraro, and D. Chandler, Phys. Rev. E 52, 6497

(1995).
5. H.-J. Woo, C. Carraro, and D. Chandler, Phys. Rev. E 53, R41

(1996).
6. M. Grousson, G. Tarjus, and P. Viot, Phys. Rev. E 62, 7781 (2000).
7. M. Grousson, G. Tarjus, and P. Viot, Phys. Rev. E 64, 036109

(2001).
8. V. Babin, Ph.D. thesis, Institute of Physical Chemistry, Warsaw

(2003), and references therein.
9. M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 (1987).

10. G. Gompper and M. Schick, Phys. Rev. Lett. 65, 1116 (1990).
11. G. Gompper and S. Zschocke, Phys. Rev. A 46, 4836 (1992).
12. D. Roux, C. Coulon, and M. E. Cates, J. Phys. Chem. 96, 4174

(1992).
13. F. H. Stillinger, J. Chem. Phys. 10, 321 (1983).
14. D. Wu, D. Chandler, and B. Smit, J. Phys. Chem. 96, 4077 (1992).



21 Препринт

15. M. W. Deem and D. Chandler, Phys. Rev. E 49, 4268 and 4276
(1994).

16. M. Holovko and S. Kondrat, J. Mol. Liq. 92, 125 (2001).
17. D. Chandler and H. C. Andersen, J. Chem. Phys. 57, 1930 (1972).
18. P. T. Cummings and G. Stell, Mol. Phys. 46, 383 (1982).
19. I. R. Yukhnovskii and M. F. Holovko, Statistical Theory of Classical

Equilibrium Systems (Naukova Dumka, Kÿıv, 1980), in Russian.
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