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CTaTuCTUKO-I0JIbOBA TEOPis ik 6araTOKOMIIOHEHTHOIO IJINHY:
miaxig, mo 6a3yeTbcs HA METOi KOJEKTUBHUX 3MiHHUX

O. Manaran, I. Mpurmoz, 2K.-M. Kaiitons

Amnorartisi. BukopuctoByodn MeTo KOJIEKTHBHIX 3MIHHUX, PO3TJISTHY TO
OCHOBHI CITIBBi/IHOIIIEHHSI CTATHCTUKO-TIOJILOBOI Teopil 6araTroKOMIIOHEH-
THOI IIPOCTOPOBO-HEOTHOPITHOT cucTemu. [lokazaHno, Mo isi, oTpruMaHa B
IIPEe/ICTaBJIEHH] KOJIEKTUBHAX 3MIHHUX, 3aJI€2KUTh Bil JIBOX HAOOPIB CKa-
JIIPHUX TIOJIB, & CaMe TOJIB pPq, AKI OMUCYIOTH (PJIYKTYaIlil JIOKAJIHLHOT
IYCTUHU YACTHHOK COOPTY (¢ 1 TOJIB Wy, CHPSKEHUX 10 Pqo. SHANIEHO
SBHI BUPA3W I KOPEJIAMITHIX (DYHKIH OJIB KOJEKTUBHIUX 3MIHHUX,
a TAKOXK 1X 3B’s130K 3 Kopessiiiianmu dyukiismu ryctuau. Chopmyiibo-
BaHa Tepisg 30ypeHb 1 MeTAJIbHO PO3IVISHYTO HAOJUKEHHS CEPEeIHBOIO
IIOJISA.

Statistical field theory for a multicomponent fluid: The collec-
tive variables approach

O. Patsahan, I. Mryglod, J.-M. Caillol

Abstract. Using the collective variables (CV) method the basic relations
of statistical field theory of a multicomponent non-homogeneous fluids
are reconsidered. The corresponding CV action depends on two sets of
scalar fields - fields p, connected to the local density fluctuations of
the ath species of particles and fields w, conjugated to p,. The explicit
expressions for the CV field correlations and their relation to the density
correlation functions are found. The perturbation theory is formulated
and a mean field level (MF) of the theory is considered in detail.
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1. Introduction

In recent years much attention has been focused on an issue of the phase
transitions in multicomponent fluid mixtures, especially in ionic fluids. In
spite of significant progress in this field, such systems are far from being
completely understood. The investigation of complex models is of great
importance in understanding the nature of critical and phase behavior of
real ionic fluids which demonstrate both the charge and size asymmetry.
The powerful tools for the study of multicomponent continuous systems
are those based on the functional methods. In many cases the partition
function of multicomponent models (see, e.g. [1]) can be re-expressed as
a functional integral after performing the Hubbard-Stratonovich trans-
formation [2, 3], a simple device proposed in the 50ies. Nearly at the
same time another method, the method of collective variables (CVs),
that allows in a explicit way to construct a functional representation
for many-particle interacting systems was developed [4,5]. The method,
proposed initially in the 1950s [4-6] for the description of the classical
charged many particle systems and developed later for the needs of the
phase transition theory [7-10], was in fact one of the first successful
attempts to attack the problems of statistical physics using the func-
tional integral representation. Recently, the rigorous scalar field KSSHE
(Kac-Siegert-Stratonovich-Hubbard-Edwards) theory [11,12], which us-
es the Stratonovich-Hubbard transformation, was developed to describe
the phase equilibria in simple and ionic fluids. As was shown [13, 14],
both groups of theories are in close relation.

In [13] the CV representation of simple (one-component) fluids was
reexamined from the point of view of statistical field theory. Our goal
here is to derive the exact functional representation for the grand canon-
ical partition function of a non-homogeneous multicomponent fluid. We
reformulate the method of CV in real space and derive the CV action
that depends on two sets of scalar fields - fields {p,} connected to the
densities of the ath species and fields {w, } conjugate to {p, }. We study
the correlations between these fields as well as their relations to the
density correlations of the fluid.

The CV method is based on: (i) the concept of collective coordi-
nates being appropriate for the physics of the system considered (see,
for instance, [15]) and (ii) the integral identity allowing to derive an
exact functional representation for the configurational Boltzmann fac-
tor. Being applied to the continuous system the CV method uses the
idea of the reference system (RS), one of the basic ideas of the liquid
state theory [16]. The idea consists in the splitting of an interparticle
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interaction potential in two parts: the potential of short-range repulsion
which describes the mutual impenetrability of the particles and the po-
tential describing mainly the behaviour at moderate and large distances.
The equilibrium properties of the system interacting via the short-range
repulsion are assumed to be known. Therefore, this system can be re-
garded as the “reference” system. The remainder of the interaction is
described in the phase space of CVs (collective coordinates). The fluid of
hard spheres is most frequently used as the RS in the liquid state theory
since its thermodynamic and structural properties are well known. In
this paper we derive the functional representation for the grand canon-
ical partition function of a multicomponent fluid which includes both
short-range and long-range interactions.

The paper is organized as follows. In Section 2 we obtain the exact
expression for the functional of the grand partition function of a multi-
component non-homogeneous mixture. Section 3 is devoted to the study
of the correlations of CVs fields and their relation to the density correla-
tion functions of a multicomponent fluid. In Section 4 we formulate the
perturbation theory. The MF level of the theory is considered in detail.

2. The functional representation of the grand parti-
tion function

2.1. The model

Let us consider a classical m-component system consisting of N particles
among which there exist IV; particles of species 1, Ny particles of species
2, ...and N, particles of species m.The potential energy of the system
is assumed to be of the form

m N m N
U = 5 D0 Vet xf) + > bl (2)
a=1i=1

a,B i#j

where Uyg(rg, r? ) denotes the interaction potential of two particles and
the second term is the potential energy due to external forces.
We present the pair interaction potential Uy g(r, r? ) as

Uaﬁ(rf‘,r?) = 005(r8, 1)) + wap(xd, ), (2.2)

where vgﬁ (re, r? ) is a potential of a short-range repulsion that can be
chosen as an interaction between two hard spheres of respective diame-

ters 0, and og. We call the m-component system with the interaction
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vg5(rd, r? ) a reference system (RS). The thermodynamic and structural

properties of the RS are assumed to be known. wag(r¥, rf ) is some poten-

tial which can describe both repulsion (e.d. soft repulsion) and attractive

interactions. In general, wag(r$, r? ) can be presented in the form

A
wo‘ﬁ(r?a I‘f) = wgﬁ(rzqv I‘f) + Wop (I‘?, I‘?),

where w(}jﬁ(rf‘, r?) and wg‘ﬁ(ri ,r?

the interaction potential wqs(re, r

@ r’) are repulsive and attractive parts of

JB) Since wqg(rs, rf) are arbitrary in
the core, i.e.for r < 0,3 = (04 + 03)/2, we assume that the wag(rf, rf)
have been regularized in such a way that their Fourier transforms waz (k)
are well-behaved functions of k; and that wag(0) are finite quantities.
We denote by 2 the domain of volume V' occupied by particles.

We present the potential energy Uy, .. n,, as follows

1 ~ ~
UN,.. N = VNN, + 5 PalwaplPs) + (Yalba) = Navg,  (23)

where
No
Palr) = > 3(r —12) (2.4)
i=1

is the microscopic density of the ath species in given configuration and
1o (r) is some external one-body potential acting on particles of species
a. The following notations are introduced in (2.3): Vﬁf _N,, 1s the contri-

bution from a m-component RS, v is the self-energy of the ath species

1
v = 5 Waa(0). (2.5)

In (2.3) we have also introduced Dirac’s brackets notations

(Paltas|Pp) = / Ardrd P (r)wes (s, 12)ps(x0),

<"/’a|ﬁa> = /er(ll wa(r?)ﬁa(r?)'

In the above formulas summation over repeated indices is meant.

The system under consideration is at equilibrium in the grand canon-
ical (GC) ensemble, 8 = 1/kpT is the inverse temperature (kg Boltz-
mann constant), i, is the chemical potential of the ath species. Then,
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the GC partition function can be written as

Sl = X a2 e 3w @Des [0V Ly,

Ni>0 ' No>0 Nm>0
B, N S
_§<pa|waﬁ|pﬁ> + (Talpa) | 5 (2.6)

where 7, (r) = vy +15 — $1)4(r) is the local chemical potential of the ath
species and v, = Bla—3In Ay, ALY = (27ma S~ /h?)'/? is the inverse de
Broglie thermal wavelength. (dI') = [], dI'x,, dl'y, = r{drg...dr{
is the element of the configurational space of N particles.

For a given volume V', Z[v,] is a function of the temperature 7" and
a log-convex functional of the local chemical potentials v, (r®).

2.2. The collective variables representation

We introduce the collective variable p,(r) which describes the field of
the number particle density of the ath species. To this end we use the
identity

exo (500l ) = [Dooslp-glew (3 i) 1)

In (2.7) the functional “delta function” dr [p] is defined as [17]

57 (0] = / Duo exp (i {wlp)) , (2.8)

Using (2.8) we can present the Boltzmann factor which does not include
the RS interaction in the form

exp (5 Galvasl®) = [ DoDw exo (5 lpaluaslos)
+i <wa| {pa - ﬁa}>) . (29)

Inserting equation (2.9) in the definition (2.6) of the GC partition func-
tion Z[v,] one obtains

Slvall = [ Do e (=5 (alinslon) ) Tlonmal] . (210
where the Jacobian

T pa:Va}] = /Dw exp (i(walpa)) Ers[{Va — iwa}] (2.11)

ICMP-07-04E 5

allows one for the passage from the microscopic variables r® (the Carte-
sian coordinates of particles) to the collective variables p,(r) (fields of
the number density of particles). In (2.11) Egs[{Va — iwa }] = Ers[Z*] is
the GC partition function of a m-component RS

= . 1 1 1

N12>0 N2>0

x exp (—AVN: w,.) [ 27 (), (2.12)

where Z*(r) =[], Zi(r) = exp(v}(r)). Z}, is the activity of the species
a associated with the dimensionless local chemical potential v*(r) =
Uo(r) —iwe(r). It should be noted that J[{pa,7«}] does not depend on
the pair interaction wqg(r;, r;) but only on the GC partition function of
the RS ZErg[Z*] which is supposed to be known.

Equation (2.10) can also easily be recast in the form of a standard
statistical field theory, i.e. as

= [{ra}] = / DpDw exp (~H{vo poriwad]) . (2.13)

where the action H[{Va, pa,wa}] of the CV field theory reads as

H[{va, pa;wal] = g (palwaplpp) —1{walpa) —InErs {Va —iwa}] -
(2.14)
Functional integrals which enter the above-mentioned formulas can
be given a precise meaning in the case where the domain 2 is a cube of
side L ( V = L3) with periodic boundary conditions. This means that
we restrict ourselves to fields p,(r) and w,(r) which can be written as
Fourier series

1 ikr
pol®) = 25 3 i € (2.15)
KeEA
and 1
wa(r) = 73 D wiea € (2.16)
KeA

where A = (27/L) Z? is the reciprocal cubic lattice. The reality of p,
(and w,) implies that, for k # 0 p_k o = pi, (W_ka = wi ), where
the star means complex conjugation. Then, the normalized functional
measure Dp (and Dw) is defined as [18]
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Dp = HH dpka (2.17)

a keA
dpk,edp—ka = 2dRpk.a d%pk,aa k#0. (2.18)

Equation (2.17) can be rewritten as

dpo,a dRpqg.a dSpq.a
Dp = | [ [ , 2.19
p V2TV e Vv ( )

where the sum in the r.h.s. runs over only the half A* of all the vectors
of the reciprocal lattice A. We have for Dw, respectively

dwo dRwg.o dSw
Dw = —= L L2 2.20
1;[ 2rvV qg* Vv ( )

Now let us present the action (2.14) for the isotropic interaction po-
tential wqg(r) as follows

Hlvar peroad] = 5503 Bas(Kpiap ks — 1D D wkabica
a k

a3 k
—InERs[{Pa — iwa }H, (2.21)

Here CV py o describes the kth mode of number density fluctuations
of the ath species. ®up(k) = %f&aﬁ(k), where wWag(k) is the Fourier
transform of the interaction potential wqag(r).

In order to obtain another equivalent representation of the action
H[{Va, Pars wa }] we first distinguish the chemical potential 0 of the par-
ticle of the species a in the RS. To this end we put

Vo — iwa(r) = 10 — iw, (1) (2.22)
and obtain ,
iwe (r) = Avy + iw, (1)
with Av, = U, — 0. As a result, the action (or the Hamiltonian) (2.21)

can be written as

H[{Vompavwa} = _ZAVapk 0, + < Zz(baﬁ Pk,aﬂ—k,ﬁ

aﬁk

—i) " Wi afra — InErs[{1) —iw, }]. (2.23)
a k
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We have obtained the exact representations of the grand partition
function of a multicomponent system (egs. (2.13)-(2.14), (2.21) and
(2.23)) in terms of CVs p,(r), which are number density fields of the
ath species particles (or fluctuation modes of the ath species number
density) We also stress that p,(r) and w,(r) are two real scalar fields
and that egs. (2.13)-(2.14) (as well as egs. (2.21) and (2.23)) are valid
for repulsive, attractive as well as arbitrary pair interactions.

Besides the usual GC average (A)gc of a dynamic variable we intro-
duce statistical field averages of the type

(Al{paswallley = E[val]™ /Dpr Al{pa;wa}]
x exp (=H [{va; pa; wa}l), (2.24)

where A [{pa,wa}] is a functional of the two CV fields p, and wy,.

3. Correlation functions

3.1. General relations

Let us write some important relations. First, according to [20,21] we
introduce the ordinary and truncated (or connected) density correlation
functions

D {radl(1, ) = <H >
1=1 GeC
o =[{va}]
EVa] 6V02( ). 0V, ()’
L R T

Our notation emphasizes the fact that the correlation functions (con-
nected and not connected) are functionals of the local chemical potential
Ve (r) and functions of the coordinates (1,2,...,n) = (r1,ra,...,r,). For
the sake of simplicity, we omit below the notations which indicate the
functional dependence of the correlation functions of v,(r). In standard
textbooks of liquid theory [16] the n-particle correlation functions are
more frequently defined as functional derivatives of = or log = with re-
spect to the activities Z, = exp(v,) rather than with respect to the local
chemical potentials

pal...an(1,2,...,n) 677,5

1
Z: )2 (2).. 2o () EoZs (0750072 () P
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P (L2m) 1 5" InE 3.3
Zy, (1) Z8,(2) ... 25, (n)  E6Z7,(1)625,(2)...625, (n)
We also define the partial distribution function ga, .. a,(1,2,...,n)
and the partial correlation functioni hq, .. ., (1,2,...,7) [20]

Pas...an (1,2,...,0)
Poy (1)p0¢2 (2) - Pang, (n)

gal...an(1727' -y ) = (34)

and
pglman(l, 2,...,n)
Par(1)paz(2) .. pa, (n)
Expressions (3.1) and (3.4)-(3.5) differ by the terms involving prod-
ucts of delta functions. For instance, for n = 2 and for a homogeneous
system one has

Ggﬁ)(l’ 2) Pappdas(l,2) + padapd(l,2),
GOT(1,2) = papshas(1,2) + padasd(1,2), (3.6)

where p,, is the equilibrium density of the species a. Besides, functions
hag(r) and gag(r) are connected by the relation hag(r) = gag(r) — 1 for
a homogeneous case.

hay..o, (1,2,...,n) = (3.5)

3.2. CV field correlations

Let us consider the correlations of fields p, and w,. We start with the

definitions of the correlation functions
n
i=1 cv

G e a1, )
<Hwai (i)> , (3.7)
1=1 cvV

GG, [{radI(1,- )

and their truncated (connected) parts

G (1m) = GO n)
SN | K ESARCRE AR
m<n
(n), T _ (n)
Gwal...wan(la"-an) —_ Gwal Wan (1,,TL)
_ (m)T . .
ST GO (i) (38)
m<n

where the sum of products is carried out over all possible partitions of
the set (1,...,n) into subsets of cardinality m < n.

ICMP-07-04E 9

Correlation functions Gg;)l,,,pan. Now we introduce the modified
partition function

g {Va, Ja}] = /DPDW exp (—Hov {Vas pas wa ] + (Jalpa)) 5 (3.9)

where J, is a real scalar field and =! [{v,, J, }] is the generator of field
correlation functions GEJZ)I —.pay, [19]. As a result, we have

1 8" EY{Va, Ja}]
E{va}] 6Ja,(1)...8J4, (n)

GO {rad)(,...n)

)

Ja; =0

8" log Z [{va, Ju }]
G, T MLm= ’ 3.10
Pay -+-Pan [{I/ }]( n) 5Jo¢1 (1) o 5Jan (n) T —0 ( )
The simplest way to obtain the relations between the
Poq oy UVa}](1,...,n) and the density correlation functions is
to start from the deﬁmtlon (3.1). One has
1 0" E[{va}]

G o 1,...,n) =

1.0

EM}] 50 (1) - . 60, (1)

1 .
= g {Va} /Dpr exp (5 (Palwislps)
0" Ers[{Ta — iwa }
Vo (1) ... 0V, (n)
1 *
= {Va} /Dpr exp (5 (Palwislos)

+i <wa|pa>)

" Hrsl{Ta — iwa }]
- “&ual() o, (n)

—Pwag and use the equality

+i{walpa))

where we introduce the notation w, 5=

o" ERS[{ﬁa — iwa}] _ ( nd” ZRS [{va — iwa}]
oy, (1) ... 00y, (n) dwe, (1) ... 0wy, (n)

Performing now n integral by parts yields
1
DpDw exp (— palualos
{Va} / < B >

6" exp (i (walpa))
dwa, (1)...0wq, (n)

(3.11)

G o 1,...,n) =

a1...0n

+InErs[{Ta — iwa}])

= <H Po; (Z)> :
i=1 cv
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We have just proved the expected result

GO oy (el (L) =G5V, {val] (L im) (3.12)

Obviously, the following relation is also valid for the truncated (connect-
ed) correlation functions

G el () =G T [{va] (Lo im) (3.13)

Correlation functions GSIL)I,,,%”. Let us define the modified parti-
tion function

22 [{va, Ja}] = /Dpr exp (—Hev [{Vas pas wat] + (Jalwa))
(3.14)
where J,, is a real scalar field. 22 [{v,, J, }] is the generator of the func-
tions Gg;)l,,,wan and we thus have

1 0" Z2{va, Ja}]
wal Way, [{Va}]( ) = =2 5J 1 5J ’
E2[{val} 0Ja,(1)...6Ja, (n) Jo; =0
" log Z2[{va, Jo}]
”)T = ©a 3.15
G ey P}l m) oD - 0dan ) |, (8.15)
In order to relate the correlation functions GE}?I,,,% and
G((ﬁ),,,an (1,...,n) we perform the change of variables p, — po +1J, in

eq. (3.14). The functional Jacobian of the transformation is of course
equal to unity and one obtains the relation

— 1 * —_ sk
In =2 {va, Jo}] = -5 <Ja|wa5|Jﬁ> +1In=! [{Va,lwaﬁ *Jg}] , (3.16)

where the star x means space convolution and Z! is defined in (3.9). The
idea is to perform now n successive functional derivatives of both sides of
eq. (3.16) with respect to J,. Since it follows from the expression (3.10)
that

5" log Z [{va, wy 5 Jg}] o , . ,

= 1,1)...
5T (1) - 0en(m) |, wg 0, (L 1) w0, (00)

GE’Z)I,T pan, [{VOZ}](]‘/? s 7n/)7
(3.17)

X
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one obtains

(Wor Wy = 1,0, (11 (o, (1))

cv
walwa [{V }]( ) = - alag(l 2) alal/(l 1)
X a2a2/ (2 2 )Ggi) ,,1;)(1 , [{Va}] (1/72/) )
GOT o el (e in) = 1wy, (1L1) o o, (nyn))

X Ggi)lf'”%/ {va}] (1'7 co,n), n>3.

4. The perturbation theory

4.1. Mean-field theory

Let us consider the functional of the GC partition function (2.13) with
the action given by eq. (2.21) for the case of an isotropic interaction
potential wqag(r). At the MF level one has [19]

Enr[{va}] = exp(=H[{ra; Pa, Wa}l); (4.1)

where, for p, and @,, the action is stationary, i.e.

d H[{Va, pos wa}] _ 0 H[{¥a, pa; wa}]
0pa 5. T) Owq

=0. (42

(Pa@a)
Replacing the CV action by its expression (2.21) in eq. (4.2) leads to
implicit equations for p,, and @y:

Pa(l) = 7o (1) = po°[{#a — Wa }(1),
(I)aﬁ(172)pﬁ(2), (43)
where pf*¥[{D, —iw,}](i) denotes the ath species number density of the

RS fluid with the chemical potentials {7, — iw,}. For a homogeneous
system (4.3) can be rewritten in the form

—
3
Q
—
—_
~—
|

Pa = ﬁg/IF—pgs[{ﬂa_iwa}]v
i, = pﬁ(I)aﬁ(O), (4.4)

It follows from the stationary condition (4.2) that the MF density is
given by
6 InEmr {va}]

)~ P i@ (1), (45)

o [{ra}] (1) =
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and that the MF grand potential reads

InEymr {Va}] = nEgrs [{Va — iwa}] + g <pg/IF|waﬁ|pg/IF> ) (4.6)

The MF Kohn-Scham free energy of a multicomponent system defined
as the Legendre transform

BAwr [{pa}] = sup {{palva) —InEmr {va}l}, (4.7)

has the following form in the MF approximation

8w {pa] = s o) + 5 (puluanlos) =5 [ dr wna(O)pae)

(4.8)
Using the formulas

52 In EMF [{Va}]

oy (1) 81a,(2) 7

_ 0% Awr [{pa}]
6o (1) 0pay(2)

where (1,2,...,n) = (r1,r2,...,r,), one can get the well-known expres-
sions for the partial pair correlation and vertex (or direct correlation)

Gar o v}l (1,2)

O\ aros Pa}] (1,2) =

functions in the MF approximation. 015/?1)7 arag [1Pa}] (1,2) is obtained
readily from the expression (4.8)

), T
Cﬁ%,aﬁ(l 2) = Gl(\/2[Faﬁ1( 2) = C}({28aﬁ( 2)_waﬁ(172)=

where CRS aﬁ( ,2) means the exact two-point proper vertex of the RS
fluid at the mean field density pMF. The two-point vertex function

Cls,[F ap 18 connected to the usual direct correlation function of the theory
of hqu1ds emr,as(1,2)

Chthap(1,2) = cnrap(1,2) — Sap0(1,2).

1
pa(1)
In order to calculate Gl(\i%,’zﬁ(l, 2) we start with equation

6P1(;/IF[{501 — iwa }](1) _ apgs[{pa — g }](1)
8Vﬁ(2) 8Vﬁ(2) '

T
Gitphs(1,2) = (4.9)

ICMP-07-04E 13

pRS[{v,}] depends on v, directly but also through the mean field @,,.
Therefore, one has

9 OpRS[{Ds — iwa }](1 0PRSS — iwa }](1
Gy = Wt B | e E)
0w~ (3)
X 9502). (4.10)

Taking into account (4.3) and (4.9) we obtain finally

T T
Gf\i)F aﬁ( 2)= Ggs aﬁ( 2) - 5G1v21% ay(l 3)“)75(3 4)GRS 55( 2).
(4.11)
(4.11) can be rewritten in a matricial form as [12]

GO (L,2) =GR (1,2) - GO (1, 3)w(3, 4G T (4,2),  (4.12)

where GMF RS)(’L j) denotes the matrix of elements GMF(RS) b j) and

w(,j) that of elements Swags(4, ). The formal solution of eq. (4.12) is
then

-1
G2 = (1+wx6R7) <6102, (4.13)
where 1 = §,39(1, 2) is the unit operator and the “x” denotes a convolu-

tion.

4.2. Beyond the MF approximation

In order to take into account fluctuations we present CVs p, and w, in
the form:

Pa(1) = Do +0pa(l), wa(l) =Wa + dwa(l),

where the quantities with a bar are given by (4.3).
The function InZgrg[{Ps; —iwa}] in (2.14) can be presented in the
form of the cumulant expansion

lnERS[{ﬁa—iwa}]:Z(_ni')n > /dl.../dn

n>1 (02 RYERTIe 203

*Maran (L, n)owa, (1) ... 0wa, (n),  (4.14)
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where My, o, (1,...,n) is the nth cumulant defined by

1 0"InErs[{Va —iwa}]
M. can(ly5m) = (=)™ O0wa, (1) ... 0w, () |5, —g '

(4.15)

As is seen from (4.15) and (3.1), the nth cumulant is equal to the
n-particle partial truncated (connected) correlation function at w, =
Wa- The expressions for the several cumulants given in the Cartesian
coordinate phase space are as follows

mal(l) = pal(l)v (416)
Mayras(1,2) = pa; (1)pas (2)haras (1,2) + pai (1)8a10,0(1,2)],  (4.17)

Marazas(1,2,3) = pai (1)pas(2)pas (3)harasas (1,2,3)
+Pa1 (1)Pas (2)hasas (1,2)a,a56(1, 3)
+Pa1(1)paa(3)ha1a3( 3)day0,0(1,2)
+Pas(2)pas (3)hasas (2,3)0a,0,0(1,2)
+Par (1)aya5001050(1,2)0(1, 3), (4.18)
ma1a2a3a4(1a273a4) = pal(1)/’&2(2)pa3(3)pa4(4)ha1a2a3a4(172a374)

+ Z Pai (1) pa; (3)Pay. (F) Mooy o (45 5, k)
i,7,k,l

XO0q;0, 0 Z pal pozk heay, (z,k)

i,7,k,l
X(Saiajéakal(s(ihj)é(k?l) + Z pai(i)paz (l)
i,7,k,l

Xheasay (1 1)0c;a;0c; 0, 0 (8, )0 (1, k) + pay (1)
X Oy op Oy o3 O g 0(1,2)0(1, 3)8(1,4).  (4.19)
In the above formulas py, (7) is the local density of the «;th species in

the RS and hq, . o, (1,...,n)is the n-particle partial correlation function
of a m-component RS, defined in the GC ensemble (see egs. (3.4)-(3.5)):

haias(1,2) = garas(1,2) = gay (1)gas (2),
harasas(1,2,3) = gayasas(1,2,3) = garas (1,2)gas (3)
—Garas(1:3)905(2) = gazas(2,3)ga, (1)
290, (1)ga2(2)gas (3)

horanasos(1,2,3,4) = Garasanas(1,2,3,4) — ... (4.20)

ICMP-07-04E 15

In the case of a homogeneous system a Fourier image of the nth cumulant
can be presented in the form

malman (k17 s 7kn) = (<N061>7 s <Nan>)1/nsa1---an (klv R kn)
XOky 4.4k s (4.21)
where So, .. o, (K1, ..., k) is the n-particle partial structure factor of the
RS.
Substituting (4.14) in (2.13) one can obtain
_ _ L g
E{va}t = ZErs[{Va —iwa}] /D&p’Déw exp {—— (0palwapldps)
+i (dwa|dpa) Z /dl /dn
n>2 Q1,0
XMoo (1,00, n)0we, (1) ... 0wy, (n)} . (4.22)

Integrating in (4.22) over dwq, (i) we have in the homogeneous case

Sl = ZurZ [@pew {5 Y Laalb)opads-cs

“a,8 k

+ ZHn(épa)}. (4.23)

n>3

Gaussian approximation. In the Gaussian approximation, which
corresponds to taking into account in (4.23) only the terms with n < 2
(H,, = 0), we have Lyg(k) = Cup(k), where Cop(k) are the Fourier
transforms of the partial direct correlation functions. After integrating
in (4.23) we arrive at the GPF of a m-component system in the random
phase approximation (RPA).

Using the Gaussian averages one can develop a loop expansion of
E[{va}] in the CV representation as it was done recently for a one-
component fluid [13].

5. Conclusion

Using the CV method we have reconsidered the basic relations of sta-
tistical field theory of a multicomponent non-homogeneous fluids that
follow from this approach. In contrary to the KSSHE theory [12] the
corresponding CV action depends on two sets scalar fields - field p, con-
nected to the number density of the ath species particles and field w,
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conjugate to p,. We derive the explicit expressions for the CV field cor-
relations and obtain their relation to the density correlation functions of
a multicomponent system.

Contrary to the theories based on the Stratonovich-Hubbard trans-
formation [2, 3], the CV representation has some important advantages
which could be very useful for more complicate models of fluids. In partic-
ular, it is valid for an arbitrary pair potential (including a pair interaction
wap(1,2) which does not possess an inverse) and is easily generalized for
the case of n-body interparticle interactions with n > 2.
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