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Оптична та статична провiднiсть сильноскорельованої заря-

дово впорядкованої системи: точний розв’язок для впоряд-

кованої фази безспiнової моделi Фалiкова-Кiмбала у теорiї

динамiчного середнього поля

О.П. Матвєєв, А.М. Швайка, Дж. Фрiрiкс

Анотацiя. Отримано систему рiвнянь теорiї динамiчного середнього по-

ля для провiдностi у зарядово впорядкованiй фазi на двосортнiй гратцi.

Формалiзм застосований до безспiнової моделi Фалiкова-Кiмбала на гiпер-

кубiчнiй гратцi при половинному заповненнi. Отримано багаточастинкову

густину станiв, статичну зарядову та тепло провiдностi i оптичну про-

вiднiсть. Густина станiв та коефiцiєнти провiдностi проявляють незвич-

ну поведiнку зумовлену появою термiчно активованих станiв у щiлинi.

Встановлено, що повна спектральна густина (середня кiнетична енергiя)

у впорядкованiй фазi може збiльшуватись чи зменшуватись в залежностi

вiд величини взаємодiї.

Optical and dc transport properties of a strongly correlated

charge density wave system: exact solution in the ordered phase

of the spinless Falicov-Kimball model with dynamical mean-

field theory

O.P. Matveev, A.M. Shvaika, J.K. Freericks

Abstract. We derive the dynamical mean-field theory equations for transport

in an ordered charge-density-wave phase on a bipartite lattice. The formalism

is applied to the spinless Falicov-Kimball model on a hypercubic lattice at

half filling. We determine the many-body density of states, the dc charge and

heat conductivities, and the optical conductivity. The density of states and

the transport coefficients show anomalous behavior due to the development of

thermally activated subgap states. We see that the total optical spectral weight

(average kinetic energy) in the ordered phase either decreases or increases

depending on the strength of the interactions.
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1. Introduction

Dynamical mean-field theory was introduced almost two decades ago by
Brandt and Mielsch [1], who solved for the transition temperature into a
charge-density-wave (CDW) phase of the spinless Falicov-Kimball model
at half filling. This work appeared shortly after the idea of examining
strongly correlated electrons in the limit of infinite dimensions was intro-
duced [2]. Since then, the field of DMFT has emerged as one of the most
powerful nonperturbative techniques for solving the many-body problem.
While results for many properties exist in the homogeneous (unordered)
phase [3], there has been little work in examining the properties of the
ordered phase. Brandt and Mielsch worked out the formalism for cal-
culating ordered-phase Green’s functions [4], the order parameter was
shown to display anomalous behavior at weak coupling [5,6], and higher-
period ordered phases have been examined on the Bethe lattice [7]. But,
surprisingly, there has been no work on the transport properties in the
ordered phase. Indeed, it is interesting to compare how transport varies
in the homogeneous phase versus the ordered phase. At weak coupling,
we anticipate the gap formation of the CDW to greatly suppress the dc
transport, while at strong coupling it may be a much milder correction
to the Mott-insulating behavior. What is more interesting is to examine
the temperature dependence. For example, in systems that are metallic
at high temperature, the many-body DOS in the CDW phase develops
strong temperature dependence (with increasing T ) as the CDW gap
region fills in due to thermal excitations, until gap closure is complete
at the transition temperature. But unlike the well-known superconduct-
ing case, where subgap states tend not to form and the gap is simply
reduced in size as T increases, here we have a rapid development of
subgap states, even though the CDW order parameter remains nonzero.
These subgap states should produce anomalous behavior in the low-T
transport, and indeed we find this is so but the quantitative behavior is
not that different from exponential activation of the transport. We an-
ticipate our results should be relevant to different experimental systems
that display charge-density-wave order, especially in compounds which
are three-dimensional like [8] BaBiO3 and Ba1−xKxBiO3.

This contribution is organized as follows: In Section II, we present
the formalism for DMFT in the ordered phase including the techniques
needed to determine the optical conductivity and the dc transport. We
also determine moment sum rules for the Green’s functions in the ordered
phase. In Section III, we apply the formalism to numerical solutions of
the Falicov-Kimball model at half filling and show how the transport



2 Препринт

behaves in the ordered phases. Conclusions and a discussion follow in
Section IV.

2. Formalism for the ordered phase

The Falicov-Kimball model [9] was introduced in 1969 as a model for
metal-insulator transitions in rare-earth compounds and transition-metal
oxides. The spinless version is arguably the simplest many-body problem
that nevertheless possesses rich physics including the Mott transition,
order-disorder phase transitions, and phase separation (for a review see
Ref. [10]). It involves two kinds of electrons: mobile conduction electrons

whose creation and destruction operators are d̂†i and d̂i at site i; and

localized electrons whose creation and destruction operators are f̂ †
i and

f̂i at site i. The Falicov-Kimball Hamiltonian can be represented in terms
of a local operator and a hopping operator as follows

Ĥ =
∑

i

Ĥi −
∑

ij

tij d̂
†
i d̂j , (2.1)

where tij is the hopping matrix and

Ĥi = Un̂idn̂if − µdn̂id − µf n̂if , (2.2)

is the local Hamiltonian with the number operators given by n̂id = d̂†i d̂i

and n̂if = f̂ †
i f̂i.

If the lattice can be divided into two sublattices, and the hopping
is nonzero only between the two sublattices (i. e., there is no hopping
within either sublattice), then the lattice is called a bipartite lattice, and
it has nesting at half filling in the noninteracting system, which implies
the Fermi surface in the Brillouin zone has flat regions that are connect-
ed by the zone-diagonal wavevector Q = (π, π, . . .). Nesting promotes
the formation of a CDW with the average filling of the electrons being
uniform on each sublattice, but changing from one sublattice to another.
This is often called the checkerboard or chessboard CDW, and is the
ordered phase that we will examine in detail in this work.

In order to develop the formalism to determine the Green’s functions
and transport in the ordered CDW phase, we need to introduce some
notation that will help clarify how the ordered phase is determined. It
is convenient to supplement the lattice site index, which we had been
calling i, by a double index (i, a), where i runs over all of the lattice sites
of one of the sublattices, and the label a = A or B denotes the sublattice

ICMP–07–11E 3

Figure 1. Schematic illustration of the transition from a homogeneous
phase to the bipartite CDW phase. The hopping is between nearest
neighbors, which corresponds to the neighboring points in the horizontal
and vertical directions.

(see Fig. 1; we are assuming for simplicity that the two sublattices have
an equal number of lattice sites as they do on the infinite-dimensional
hypercubic lattice or on the infinite-coordination-number Bethe lattice).
We rewrite the Hamiltonian from Eq. (2.1) as

Ĥ =
∑

ia

Ĥa
i −

∑

ijab

tab
ij d̂†iad̂jb, (2.3)

with the local Hamiltonian satisfying

Ĥa
i = Un̂a

idn̂
a
if − µa

dn̂a
id − µa

f n̂a
if ; (2.4)

in this notation, the bipartite lattice condition is simply that tAA
ij =

tBB
ij = 0. We have introduced different chemical potentials for the two

different sublattices at the moment. This is convenient for computations,
because it allows us to work with a fixed order parameter, rather than
iterating the DMFT equations to determine the order parameter (which
is subject to critical slowing down near Tc). Of course, the equilibrium
solution occurs when the chemical potential is uniform throughout the
system (µA

d = µB
d and µA

f = µB
f ).

Our starting point is to find the set of equations satisfied by the
lattice Green’s function. The Green’s function is defined to be

Gab
ij (τ) = −Tr

[

Tτe−βĤd̂ia(τ)d̂†jb(0)
]

/Z, (2.5)

where τ is the imaginary time, the time dependence of the destruc-
tion operator is written in the Heisenberg representation {dia(τ) =

exp[τĤ]dia exp[−τĤ]}, and Z is the partition function Z= Tr exp[−βĤ],



4 Препринт

with β = 1/T the inverse temperature. The symbol Tτ is the time-
ordering operator, which orders the times so that earlier times appear
to the right.

One way to calculate the Green’s function is to use an equation of
motion technique [11], where the derivative with respect to imaginary
time is taken and a differential equation is found for the Green’s func-
tion. In DMFT, this procedure is carried out for the impurity problem
in a time-dependent field, and the field is adjusted so that the impurity
Green’s function is equal to the local lattice Green’s function. In addi-
tion, we need to define the self-energy via Dyson’s equation in order to
complete the iterative DMFT loop needed to solve the full problem. Fi-
nally, an analytic continuation from the imaginary axis to the real axis
is performed to calculate dynamical properties. These techniques are all
well known and have been established in the literature [1,4,11,10], so we
provide just a schematic approach to the derivation, highlighting some
key formulas along the way.

The Dyson equation, which can be thought of as defining the self-
energy is

∑

lc

[(ω + µa
d)δacδil − Σac

il (ω) + tac
il ]Gcb

lj (ω) = δijδab, (2.6)

with ω the real frequency. In the case of nearest-neighbor hopping on an
infinite-dimensional hypercubic lattice, we have that the band structure
satisfies

ǫk = −
∑

j

exp[ik · (RiA − RjB)]tAB
ij = − lim

D→∞

t∗√
D

D
∑

α=1

cos kα, (2.7)

where we scaled [2] the nearest neighbor hopping matrix element by
t = t∗/2

√
D (we will use t∗ = 1 as our energy unit). In addition, the

self-energy is local [12]

Σab
ij (ω) = Σa

i (ω)δijδab, (2.8)

which further simplifies the Dyson equation. It is simpler to transform
from real space to momentum space to solve the Dyson equation. But
we do not assume that the Green’s function is completely translation
invariant, instead, we assume only that there is translation invariance
within each of the sublattices. Then the momentum representation of
the Dyson equation in Eq. (2.6) with the local self-energy in Eq. (2.8)
becomes

Gk(ω) = [z(ω) − tk]
−1

, (2.9)
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where z(ω) and the hopping term are represented by 2 × 2 matrices

z(ω) =

(

ω + µA
d − ΣA(ω) 0

0 ω + µB
d − ΣB(ω)

)

,

tk =

(

0 ǫk

ǫk 0

)

. (2.10)

Substituting Eq. (2.10) into Eq. (2.9) and taking the matrix inverse yields
the following formulas for the momentum-dependent Green’s functions
on the lattice

GAA
k (ω) =

ω + µB
d − ΣB(ω)

Z̄2(ω) − ǫ2
k

, (2.11)

GBB
k

(ω) =
ω + µA

d − ΣA(ω)

Z̄2(ω) − ǫ2
k

, (2.12)

GAB
k

(ω) = GBA
k (ω) =

ǫk

Z̄2(ω) − ǫ2
k

(2.13)

with Z̄ defined by

Z̄(ω) =
√

[ω + µA
d − ΣA(ω)][ω + µB

d − ΣB(ω)], (2.14)

which agree with those of Brandt and Mielsch [4] even though our no-
tation is somewhat different from theirs. The local Green’s functions on
each sublattice then satisfy

Gaa(ω) =
ω + µb

d − Σb(ω)

Z̄(ω)
Fz(ω), (2.15)

where the a sublattice is different from the b sublattice and Fz(ω) is the
Hilbert transform

Fz(ω) =

∫

dǫρ(ǫ)
1

Z̄(ω) − ǫ
. (2.16)

The function ρ(ǫ) is the noninteracting density of states, which is ρ(ǫ) =
exp(−ǫ2/t∗2)/t∗

√
π for the infinite-dimensional hypercubic lattice (as

discussed above, we take t∗ = 1).
In the DMFT solution, we need to map the lattice problem onto a

local (impurity) problem in a time-dependent field that is adjusted to
make the impurity Green’s function equal to the local Green’s function
of the lattice. Here, we have two different local Green’s functions, one on
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the A sublattice and one on the B sublattice; hence we will need two time
dependent fields and two impurity problems to solve in order to complete
the DMFT mapping. We call the dynamical mean fields λa(ω) for each
sublattice. Then the solution of the impurity problem is straightforward
and is summarized by the following set of equations

Ga
0(ω) =

[

Gaa(ω)−1 + Σa(ω)
]−1

(2.17)

=
1

ω + µa
d − λa(ω)

, (2.18)

Gaa(ω) =
(1 − na

f )

ω + µa
d − λa(ω)

+
na

f

ω + µa
d − U − λa(ω)

, (2.19)

Σa(ω) = ω + µa
d − λa(ω) − Gaa(ω)−1, (2.20)

where we must solve these equations for each of the sublattices a = A
and a = B.

The DMFT algorithm for a fixed value of the order parameter starts
by choosing nA

f and nB
f such that nA

f +nB
f is fixed to the total f -electron

filling (the order parameter is ∆nf = nA
f − nB

f ), and choosing µA
d = µB

d .
With those fixed quantities, we propose a guess for the self-energy on
each sublattice, and then compute the local Green’s function on the
real axis from Eqs. (2.14) and (2.15). Then we extract the dynamical
mean field on each sublattice from Eqs. (2.17) and (2.18), then find the
local Green’s function for the impurity from Eq. (2.19) and the new self-
energy from Eq. (2.20). This loop is repeated until the Green’s functions
converge. Then one can calculate the filling of the d-electrons and adjust
them until they match the target filling. But this procedure is not yet
complete, because we need to determine the correct equilibrium order
parameter nA

f − nB
f at the given temperature. To find this, it is actually

more convenient to perform the calculations precisely as described above,
but on the imaginary frequency axis, where ω is replaced by iωn =
iπT (2n+1) the fermionic Matsubara frequencies. Then we calculate the
chemical potential for the f -electrons on each sublattice via

µa
f = −U

2
− T ln

1 − na
f

na
f

− T
∑

n

ln[1 − UGa
0(iωn)], (2.21)

and adjust the order parameter until the two chemical potentials are
equal, which is required for the equilibrium solution. Then, when we
calculate the Green’s functions on the real axis, the chemical potentials
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and fillings are all already known, so they do not need to be adjusted
during the calculation.

This algorithm is much more efficient than an algorithm that starts
with a fixed chemical potential for the f -electrons and iterates to de-
termine na

f on the imaginary frequency axis. This is because the latter
suffers from critical slowing down, and becomes quite inefficient near
the critical temperature, whereas the calculations with the fixed order
parameter converge quite rapidly regardless of how close one is to the
critical point.

When the DOS is calculated for each sublattice in the ordered phase,
one finds interesting temperature dependence of the subgap states as a
function of T . It is illustrative to discuss these evolutions in terms of
the moments of the local interacting DOS. It is well known, that in the
homogeneous phase, the integral of A(ω) = − ImG(ω)/π is equal to 1.
But there are also exact results known for higher moments as well [13,14].
In particular, because the moments are derived from operator identities,
they continue to hold whether in the ordered phase or not. So we learn
the following identities immediately:

∫

dωAa(ω) = 1; (2.22)

∫

dωωAa(ω) = −µa
d + Una

f ; (2.23)

∫

dωω2Aa(ω) =
1

2
+ µa2

d − 2Uµa
dn

a
f + U2na

f . (2.24)

We have checked these moments versus our numerical calculations of the
Green’s functions on the real axis and they all agree to high accuracy
for all temperatures that we consider. Note that at half filling, we have
µa

d = U/2, so the first moment vanishes in the homogeneous phase. As
the system orders, the first moment on one sublattice becomes negative,
and the first moment on the other sublattice becomes positive, which
indicates that the quantum states are shifting in response to the order-
ing. In particular, this redistribution of states causes the average kinetic
energy to evolve more strongly with temperature in the ordered phase,
but its evolution is anomalous, and cannot be predicted by any sim-
ple reasoning about how the states evolve (see below). The evolution of
the average kinetic energy plays an important role in the total spectral
weight for the optical conductivity.

At T = 0, the order parameter goes to 1, so there is one sublattice
(let us say the A sublattice) which has all the f -electrons. Hence nA

f = 1

and nB
f = 0. In this case, the analysis for the Green’s function simplifies.
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Figure 2. DOS at T = 0 for the CDW-ordered phase on a hypercubic
lattice. Panel (a) is for the A sublattice and panel (b) is for the B sublat-
tice. Four cases are plotted: U = 0.5 which is a strongly correlated metal;
U = 1, where a dip develops in the normal-state DOS at the chemical
potential; U = 1.5, which is a near-critical Mott insulator; and U = 2.5,
which is a moderate-size-gap Mott insulator. The T = 0 gap in the DOS
is always equal to U in the ordered CDW phase.

In particular, only one term in Eq. (2.19) survives on each sublattice and
we immediately find ΣA = U and ΣB = 0. Plugging these results into
the remaining formulas for the DMFT algorithm then yields an analytic
formula for the ordered phase DOS

AA,B(ω) = − 1

π
Im GAA,BB(ω) = Re

[
√

ω ± U
2

ω ∓ U
2

]

ρ

(
√

ω2 − U2

4

)

,

(2.25)

where the top sign is for the A sublattice (with a divergence of the DOS at
ω = U/2) and the bottom sign is for the B sublattice (with a divergence
at ω = −U/2); the formula is restricted to half filling where µA

d = µB
d =

U/2. Note that the two DOS on each sublattice are mirror images of
each other and that each sublattice has weight for positive and negative
frequency, but the band that does not have the singularity (lower band
for sublattice A and upper band for sublattice B) has shrinking spectral
weight as U becomes large, because the mobile electrons avoid the sites
with the localized electrons for large U . Note further, that unlike the
Mott insulator, where the DOS vanishes only at the chemical potential
on a hypercubic lattice, a real gap develops here of magnitude U at
T = 0. In Fig. 2, we show the DOS at zero temperature for four values
of U . Panel (a) plots the DOS on the A sublattice and panel (b) plots
the DOS on the B sublattice. One can see that the shape of the DOS is
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Figure 3. DOS on the A sublattice for various T values in the CDW-
ordered phase on a hypercubic lattice with (a) U = 0.5 and (b) U = 1.
The DOS on the B sublattice is a mirror reflection of these results about
the plane ω = 0.

qualitatively similar for all cases, but the size of the gap grows with U .
What is more interesting is to examine the temperature evolution of

the DOS in these different cases. Indeed, the system develops substantial
subgap DOS that is thermally excited within the ordered phase (the
order parameter is determined by the difference in localized electron
filling on the two sublattices). In Fig. 3 (a), we plot the DOS for the
strongly correlated metal at U = 0.5. The fill in of the subgap states is
quite rapid with T as we increase up to Tc = 0.0336. Similar behavior is
also observed for U = 1 with Tc = 0.0615 which has a dip in the DOS in
the normal state [Fig. 3 (b)].

The Mott insulating phases also illustrate interesting behavior. In
particular, the subgap states develop primarily within the upper and
lower Hubbard bands (although on the hypercubic lattice, the Mott in-
sulator has only a pseudogap with the DOS strictly vanishing only at
ω = 0). We illustrate this behavior in Figs. 4 (a) and (b). The transition
temperatures are Tc = 0.0747 for U = 1.5 and Tc = 0.0724 for U = 2.5.
Note how the subgap DOS develop closer to the Mott band edge than
they do to the CDW band edge, which implies they should have an effect
on the transport at low T .

In all cases, the DOS satisfy the three sum rules for the first three
moments to essentially machine accuracy—our actual accuracy is deter-
mined by the step size we use for the real frequency axis in calculating the
DOS and then integrating it over all frequency to obtain the numerical
moments.

Now we develop the formalism for transport in the CDW phase.
The linear response optical conductivity is determined (via the Kubo-
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Figure 4. DOS on the A sublattice for various T values in the CDW-
ordered phase on a hypercubic lattice with (a) U = 1.5 and (b) U = 2.5.

Greenwood formula [15,16]) by the imaginary part of the analytic con-
tinuation of the current-current correlation function to the real axis,

σ(ω) =
1

ω
ImΠjj(ω), (2.26)

with the number current operators defined by

ĵ = i
∑

ijab

tab
ij (Ria − Rjb)d̂

†
iad̂jb, (2.27)

jα =
∑

abk

∂ǫab
k

∂kα

d†a(k)db(k). (2.28)

The procedure to determine the current-current correlation function is a
standard one so we only sketch the derivation briefly. We start from the
imaginary time formula for the current-current correlation function

Πjj(τ − τ ′) = 〈Tτ j(τ)j(τ ′)〉 , (2.29)

where the angle brackets denote a trace over all states weighted by the
statistical operator (density matrix) at the given temperature and the
current operators are represented in the Heisenberg representation with
respect to the equilibrium Hamiltonian (because this is a linear-response
calculation). We then perform a Fourier transformation to go from imag-
inary time to Matsubara frequencies, and then perform an analytic con-
tinuation from the imaginary frequency axis to the real frequency axis.

The Fourier transform of the current-current correlation function de-
fined in Eq. (2.29) can be represented as a summation over Matsubara

ICMP–07–11E 11

frequencies

Πjj(iνl) = T
∑

m

Πm,m+l (2.30)

where we introduced the shorthand notation Πm,m+l = Π(iωm, iωm+iνl)
for the dependence on the fermionic iωm = iπT (2m + 1) and boson-
ic iνl = i2πT l Matsubara frequencies (m and l are integers). In the
CDW phase, the graphic depiction of the Bethe-Salpeter equation for
the generalized polarization Πm,m+ν is plotted in Fig. 5 where the solid

Figure 5. Bethe-Salpeter equation for the generalized polarization.

oval depicts the current operator using the same sublattice indices as we
have used before (the current operator connects the two sublattices), the
solid lines are Green’s functions, and the cross hatched object is the total
(reducible) charge vertex. The current operator vertex contains the fac-
tor ∂ǫk/∂kα which is an odd function of the wavevector. Since the band
structure ǫk and the Green’s functions are even functions of the wavevec-
tor, any summation over momentum that contains one current vertex and
any number of Green’s functions will vanish. Now, in infinite dimensions,
the irreducible charge vertex (which enters the Bethe-Salpeter equation
for the total charge vertex) is local and hence momentum independent,
so the second term in Fig. 5 vanishes, just like it did in the homogeneous
phase [17]. We thereby conclude that the optical conductivity is con-
structed only by the bare bubble in Fig. 5. Then, the full expression for
the generalized polarization Πm,m+l is depicted in Fig. 6 and simplifies
to

Πm,m+l =
1

N

∑

k

j2
k(GAA

kmGBB
km+l + GAB

kmGAB
km+l

+ GBA
kmGBA

km+l + GBB
km GAA

km+l), (2.31)

where jk = − limD→∞(t∗/
√

D)
∑D

r=1
sinkr and solid lines denote the

momentum-dependent lattice Green’s functions Gab
km [see Eqs. (2.11–

2.13)]. After substituting in the expressions for the Green’s functions,
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Πm,m+l =
∑

abcd

=

+

Figure 6. Individual terms for the bare polarization in the ordered phase.

the individual contributions to Πm,m+l become

1

N

∑

k

j2
kGAA

kmGBB
km+l =

1

2
(iωm + µB

d − ΣB
m)

×(iωm + iνl + µA
d − ΣA

m+l)

Fz(iωm+l)

Z̄(iωm+l)
− Fz(iωm)

Z̄(iωm)

Z̄2(iωm) − Z̄2(iωm+l)
,

1

N

∑

k

j2
k
GBB

km GAA
km+l =

1

2
(iωm + µA

d − ΣA
m)

×(iωm + iνl + µB
d − ΣB

m+l)

Fz(iωm+l)

Z̄(iωm+l)
− Fz(iωm)

Z̄(iωm)

Z̄2(iωm) − Z̄2(iωm+l)
,

1

N

∑

k

j2
k
GAB

kmGAB
km+l =

1

N

∑

k

j2
k
GBA

kmGBA
km+l

=
1

2

Z̄(iωm+l)Fz(iωm+l) − Z̄(iωm)Fz(iωm)

Z̄2(iωm) − Z̄2(iωm+l)
. (2.32)
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Hence, the full expression for Πm,m+l is

Πm,m+l =
1

2

{

Fz(iωm+l)

Z̄(iωm+l)
− Fz(iωm)

Z̄(iωm)

Z̄2(iωm) − Z̄2(iωm+l)

×
[

(iωm + µB
d − ΣB

m)(iωm + iνl + µA
d − ΣA

m+l)

+ (iωm + µA
d − ΣA

m)(iωm + iνl + µB
d − ΣB

m+l)

]

+ 2
Z̄(iωm+l)Fz(iωm+l) − Z̄(iωm)Fz(iωm)

Z̄2(iωm) − Z̄2(iωm+l)

}

. (2.33)

Then, the expression for the current-current Green’s function is obtained
by substituting Eq. (2.33) into Eq. (2.30) and analytically continuing the
summation over Matsubara frequencies into contour integrations

Πjj(iνl) =
1

2πi

+∞
∫

−∞

dω̃f(ω̃)

×
[

Π(ω̃ − i0+, ω̃ + iνl) − Π(ω̃ + i0+, ω̃ + iνl)

+ Π(ω̃ − iνl, ω̃ − i0+) − Π(ω̃ − iνl, ω̃ + i0+)
]

. (2.34)

Here we have f(ω̃) = 1/[1+ exp(βω̃)] is the Fermi distribution function.
The final step is to analytically continue from the bosonic Matsubara
frequencies to the real axis (iν → ω ± i0+). This produces our final
result

Πjj(ω) =
2

(2πi)2

+∞
∫

−∞

dω̃ [f(ω̃) − f(ω̃ + ω)] (2.35)

× Re{Π(ω̃ − i0+, ω̃ + ω + i0+) − Π(ω̃ − i0+, ω̃ + ω − i0+)}.

To make Eq. (2.35) concrete, we substitute in the analytic continuation
of Eq. (2.33) to find the final expression for the optical conductivity (we
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set e2 = 1):

σ(ω) =
1

4π2

+∞
∫

−∞

dω̃
[f(ω̃) − f(ω̃ + ω)]

ω
Re

{

F ∗
z (ω̃ + ω)

Z̄∗(ω̃ + ω)
− Fz(ω̃)

Z̄(ω̃)

Z̄2(ω̃) − [Z̄∗(ω̃ + ω)]2

×
(

[ω̃ + µB
d − ΣB(ω̃)][ω̃ + ω + µA

d − ΣA∗(ω̃ + ω)]

+[ω̃ + µA
d − ΣA(ω̃)][ω̃ + ω + µB

d − ΣB∗(ω̃ + ω)]
)

+ 2
Z̄∗(ω̃ + ω)F ∗

z (ω̃ + ω) − Z̄(ω̃)Fz(ω̃)

Z̄2(ω̃) − [Z̄∗(ω̃ + ω)]2
−

Fz(ω̃ + ω)

Z̄(ω̃ + ω)
− Fz(ω̃)

Z̄(ω̃)

Z̄2(ω̃) − Z̄2(ω̃ + ω)

×
(

[ω̃ + µB
d − ΣB(ω̃)][ω̃ + ω + µA

d − ΣA(ω̃ + ω)]

+[ω̃ + µA
d − ΣA(ω̃)][ω̃ + ω + µB

d − ΣB(ω̃ + ω)]
)

− 2
Z̄(ω̃ + ω)Fz(ω̃ + ω) − Z̄(ω̃)Fz(ω̃)

Z̄2(ω̃) − Z̄2(ω̃ + ω)

}

. (2.36)

The final formalism we need to develop is for the dc transport
properties. Starting from the expression for the optical conductivity in
Eq. (2.36) we can calculate the dc conductivity by taking the zero fre-
quency limit:

σdc = lim
ω→0

σ(ω). (2.37)

The algebra is completely straightforward, but requires a careful use of
l’Hôpital’s rule for determining some of the limits. After some lengthy
algebra, we find that the final expression of the dc conductivity becomes

σdc = 2

+∞
∫

−∞

dω

[

−df(ω)

dω

]

τ(ω) (2.38)

with the exact many-body relaxation time τ(ω) equal to

τ(ω) =
1

4π2

{

1

2

[

Re
{

[ω + µA
d − ΣA(ω)][ω + µB

d − ΣB∗(ω)]
}

|Z̄(ω)|2

×
{

Re Fz(ω)

Re Z̄(ω)
− Im Fz(ω)

Im Z̄(ω)

}

−
{

Re Fz(ω)

Re Z̄(ω)
+

Im Fz(ω)

Im Z̄(ω)

}]

− 2 Re[Z̄(ω)Fz(ω) − 1]

}

. (2.39)
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Figure 7. Exact many-body relaxation time at various T values for the
CDW-ordered phase on a hypercubic lattice with (a) U = 0.5, (b) U = 1,
(c) U = 1.5, and (d) U = 2.5. At high T in the Mott-insulator, the
relaxation time goes to zero as ω4 [this is hard to see in panel (d) because
the quartic region occurs only for small frequencies and cannot be easily
seen on this linear scale plot].

For large frequencies the relaxation time approaches the asymptotic val-
ue

τ∞ =
1

4π2

2

U2[nA
f (1 − nA

f ) + nB
f (1 − nB

f )]
; (2.40)

this is a well-known anomaly on the infinite-dimensional hypercubic lat-
tice [18] due to the fact that the DOS never vanishes and at large frequen-
cies the imaginary part of the self-energy is exponentially small, implying
very long lifetimes for the excitations. Note that the high-frequency limit
of τ(ω) actually diverges as T → 0 at half filling. This trend can be seen
to develop in Fig. 7, although we do not push the calculations too low in
temperature due to accuracy issues with determining the subgap states.

Starting from Eq. (2.38) we can also calculate the thermal trans-
port. Since the system is at half-filling, the thermopower vanishes due to
particle-hole symmetry: the relaxation time in Eq. (2.39) is symmetric
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with respect to sublattice indices and is an even function of frequency
at half-filling (Fig. 7). The electronic contribution to the thermal con-
ductivity κe is nonzero, and can be found in the standard fashion. It is
expressed in terms of three different transport coefficients L11, L12 = L21

and L22 as follows: [19]

κe =
1

T

[

L22 −
L12L21

L11

]

. (2.41)

In this notation, the dc conductivity satisfies

σdc = L11. (2.42)

The other transport coefficients can be calculated from the Jonson-
Mahan theorem [20,21] which says that there is a simple relation be-
tween these different transport coefficients, namely that they reproduce
the so-called Mott-Thellung noninteracting form [22],

Lij =

+∞
∫

−∞

dω

[

−df(ω)

dω

]

τ(ω)ωi+j−2, (2.43)

where τ(ω) is the exact many-body relaxation time defined in Eq. (2.39)
and plotted in Fig. 7.

3. Numerical Results

We begin our discussion on transport properties in the ordered CDW
phase by examining the optical conductivity. In Fig. 8 we plot the tem-
perature dependence of the optical conductivity for a dirty metal with
U = 0.5. At high temperatures we see the expected behavior for a dirty
metal—namely, there is a peak at low energy and a spread on the order of
the metallic bandwidth. The system does not have a low energy Fermi
liquid peak, because it is not a Fermi liquid. Below the critical tem-
perature for CDW order, the shape of the optical conductivity changes
significantly. Note how the spectral weight is shifted upward in frequen-
cy because the system is becoming an insulator at low T . In particular,
a sharp peak develops at ω = U which corresponds to the interband
transitions from the lower band at ω̃ < −U/2 to the upper band at
ω̃ > U/2. We also see two additional peaks at lower frequencies. The
higher of those peaks corresponds to transitions from the lower band
to the subgap states above the chemical potential and from the subgap
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Figure 8. Optical conductivity for U = 0.5 and various temperatures.
Panel (a) is a linear scale and panel (b) is a logarithmic scale.

states below the chemical potential to the upper band and the lower
one corresponds to the transitions between the subgap states below and
above the chemical potential. Both of these lower energy peaks must van-
ish as T → 0 because the subgap states disappear continuously at T = 0.
Note that the frequency ω = U divides the spectra into two parts: to the
right of this point the intensity of spectra increases as T decreases and
to the left of this point the intensity decreases as T decreases which is
similar to the isosbestic behavior of Mott insulators in the homogeneous
phase, although we don’t see the same kind of isosbestic behavior in the
ordered-phase optical conductivity here.

Results for U = 1 have a similar structure to those for U = 0.5, so
we do not show them here.

We next plot the optical conductivity for a near critical Mott insu-
lator (U = 1.5) in Fig. 9. Here we see similar structure, with the peaks
shifting to higher energy as T decreases, but the overall effect is not as
large as in the metal, because this system would be an insulator even if
there was no CDW order. Nevertheless, we still see the large peak devel-
op with an edge at ω = U , and we see two low-energy peaks that have
strong temperature dependence due to the types of transitions involving
subgap states described above.

Finally, we plot results for a moderate gap Mott insulator (U =
2.5) in Fig. 10. The behavior here is essentially identical to what we
saw at smaller values of U , except the effects are smaller, because the
subgap states are very small for frequencies below where the Mott gap
region extends, so the overall effects are somewhat reduced. But all of
the qualitative behavior remains.

In order to complete our discussion of the dynamical response, we
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Figure 9. Optical conductivity for U = 1.5 and various temperatures.
Panel (a) is a linear scale and panel (b) is a logarithmic scale.
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Figure 10. Optical conductivity for U = 2.5 and various temperatures.
Panel (a) is a linear scale and panel (b) is a logarithmic scale.

now describe the optical sum rule. In general, the sum rule for the optical
conductivity is

∫ ∞

0

dωσ(ω) = −πK, (3.1)

where K is the average kinetic energy (which is always nonpositive). In
the CDW-ordered phase the average kinetic energy is equal to

K = T
∑

m

1

2N

∑

k

ǫk

[

GAB
mk

+ GBA
mk

]

= T
∑

m

[Z̄mFzm − 1] = T
∑

m

λA
mGA

m = T
∑

m

λB
mGB

m

= − 1

π

∫

dωf(ω) Im λa(ω)Ga(ω), a = A, B, (3.2)
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and at T = 0, when ΣA = U and ΣB = 0, we immediately find

K = −1

2

∫

dǫρ(ǫ)
ǫ2

√

U2

4
+ ǫ2

. (3.3)

In Fig. 11, we plot the average kinetic energy both for the CDW and ho-
mogeneous solutions for different values of U at T = 0. For small values
of U (U < 0.648), we observe the anticipated behavior that the average
kinetic energy increases faster in the ordered phase than in the homo-
geneous phase. This is anticipated because the homogeneous phase has,
on average, some neighboring sites with no localized electrons, implying
hopping is easier than in the ordered phase, where every hop involves a
change in energy by U at T = 0 because the order parameter is uniform
on each sublattice. Since it is more difficult to hop in the ordered phase,
the kinetic energy increases relative to the homogeneous phase. For large
values of U we find anomalous behavior, where the average kinetic en-
ergy is more negative in the ordered phase. There is no simple picture
to explain how this occurs. In the homogeneous phase, as U increases,
it becomes more difficult to hop because the doubly occupied states are
being projected out of the system. This implies the average kinetic en-
ergy increases in the homogeneous phase, but it does so faster than in
the ordered phase. The subtle details of how the average kinetic energy
evolves with temperature are shown in Fig. 12. The anomalous behavior
for the temperature dependence of the average kinetic energy occurs for
a finite range of T when U > 0.52. This is the “critical” U value where
the DOS in the normal state changes its curvature from being nega-
tive at the chemical potential, as expected for a conventional metal, to
positive in what is sometimes called an anomalous metal. In the region
0.52 < U < 0.648, the normal state DOS starts to develop a dip at the
chemical potential, and for a finite temperature range, the anomalous
behavior in the average kinetic energy occurs only for low temperatures.
As U is increased further, we see the anomalous behavior occur for all
T . These results show that the spectral weight in the CDW phase shows
a modest decrease for small U and a dramatic increase for large U at
T = 0! This is somewhat unexpected, since the behavior is different than
what is seen in say a BCS superconductor, where the gap formation re-
duces spectral weight at high frequencies, but the lost weight is restored
in a zero frequency Drude peak. For the CDW ordered phase, no zero
frequency delta function appears. The spectral weight loss is small for
small U , but the gain can become significant for large U .

Next we examine the dc transport. The temperature dependence of
the dc and thermal conductivity are plotted in Figs. 13 and 14, respec-
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Figure 11. The average kinetic energy K for different values of U at
T = 0. The solid line corresponds to the CDW phase and the dotted line
corresponds to the homogeneous solution.

tively, where we plot both the CDW solution and the homogeneous so-
lution extrapolated into the CDW region. At low temperatures, due to
the factor −df(ω)/dω, the main contributions to the dc transport come
from the narrow region of width 4T around the chemical potential (the
so-called Fermi window). For the Falicov-Kimball model at half filling in
the homogeneous phase (T > Tc) the DOS, Green’s functions and self-
energies do not depend on temperature and, as a result, the temperature
dependence of the dc transport is determined solely by the shape of the
relaxation time in Eq. (2.39) close to the chemical potential. For small U
values the relaxation time τ(ω) is flat [Fig. 7 (a)] and, as a result, the dc
conductivity for the homogeneous phase is essentially a constant for low
T . At U =

√
2 the Mott insulator forms. For larger U values, one might

expect to see exponentially activated transport, but that does not occur
on the hypercubic lattice, because the system only possesses a pseudo-
gap. Even though the DOS exponentially decreases in the gap region, the
lifetime of the excitations is exponentially long, and τ(ω) behaves like
ω4 for low energies [18]. This produces a quartic dependence of the dc
conductivity on T , and a higher power law for the thermal conductivity.

In the CDW phase (T < Tc), the CDW gap is filled by subgap states
at finite T , which lead to a less severe modification of the exponentially
activated transport at low T . But it is only the subgap states within the
Fermi window that affect the transport, so the modification is not quite
as severe as one might have naively guessed. Note the small wiggles in
the solid lines at low T . These occur due to the evolution of the subgap
states. The T dependence of the dc transport always shows a marked
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Figure 12. Temperature dependence of the average kinetic energy for
different values of U : (a) U = 0.5; (b) U = 0.52; (c) U = 0.645; (d)
U = 1. The solid line corresponds to the CDW phase and the dotted line
corresponds to the homogeneous solution.

kink at Tc with the conductivities sharply suppressed as the CDW gap
forms. In the Mott insulator, the transport changes from power law in T
to exponential activation (suitably modified by the subgap states). The
thermal conductivity displays similar features, as shown in Fig. 14.

4. Conclusions

In this work we have developed the formalism to calculate transport
properties of CDW-ordered phases within DMFT. Since the dc charge
and heat transport and the optical conductivity continue to have no
vertex corrections, even in the ordered phase, the calculations reduce
to a careful evaluation of the bare Feynman diagrams with a sublattice
index introduced by the order.

As the system orders into a CDW state, the DOS develops a gap with
a sharp singularity in the DOS at the band edge when T = 0. The gap at
T = 0 is always equal to U . As the temperature increases, but still below
Tc, we see a significant development and evolution of subgap states within
the gap region. This gap region where subgap states develop, appears to
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Figure 13. dc conductivity for (a) U = 0.5 (Tc ≈ 0.034), (b) U = 1
(Tc ≈ 0.0615), (c) U = 1.5 (Tc ≈ 0.075) and (d) U = 2.5 (Tc ≈ 0.072)
as a function of temperature. The solid line denotes the CDW ordered
phase and the dashed line denotes the homogeneous one. Results are
presented on a linear scale (left) and logarithm of dc conductivity vs
inverse temperature (right).
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Figure 14. Electronic contribution to the thermal conductivity for (a)
U = 0.5 (Tc ≈ 0.034), and (b) U = 2.5 (Tc ≈ 0.072) as a function of
temperature. The solid line denotes the CDW ordered phase and the
dashed line denotes the homogeneous one. Results are presented on a
linear scale (left) and logarithm of thermal conductivity vs inverse tem-
perature (right).

lie within the extent of the normal-state DOS—in other words, in the
Mott insulator, we do not see subgap states develop within the region
that corresponds to the Mott gap in the normal state. We verify the
accuracy of the DOS calculations by calculating the zeroth, first, and
second moment of the local DOS on each sublattice and we find they
agree with exact results to essentially machine accuracy.

The optical conductivity has a significant rearrangement of states
within the ordered phase, which can be understood by examining the
different kinds of processes that take place within an optical transition—
namely that we move from an occupied to an unoccupied state. Because
there are many different bands that are present at finite T , this leads to
significant structure in the optical conductivity. In particular, the singu-
larity in the DOS leads to a large asymmetric peak centered around U
in the response function. The total spectral weight is governed by the
average kinetic energy due to the optical sum rule. While a naive expec-
tation would say the average kinetic energy increases when the ordering
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is turned on (i. e., it becomes less negative with a smaller magnitude)
because the ordering blocks hopping between the sublattices, we find
that is true only for small U . For small U the kinetic energy shows a
modest increase, so some spectral weight is lost due to the ordering. For
larger U the kinetic energy shows a significant reduction (i. e., the mag-
nitude increases as the average kinetic energy becomes more negative)
so the spectral weight increases when the ordered phase is entered, and
that increase can become quite substantial as U becomes large.

Finally, we also examined the dc transport. Since we are at half filling,
one can show the thermopower vanishes due to particle-hole symmetry
even in the presence of CDW order. Hence we can only examine the
charge and heat conductivities. We find that the CDW order suppresses
both of these, but because of the subgap states and their complicated
evolution with temperature, the dc response does not obey any simple
functional form at low T . Instead, we often see significant wiggles in the
conductivities. In the Mott-insulating phase, the conductivity should go
from a power-law-like behavior to exponential activation. We see such a
trend start to develop, but we cannot accurately quantify this because
we cannot go down far enough in temperature in the CDW phase before
we run into issues with accuracy of the calculations.

This work shows that there is rich and interesting behavior that oc-
curs in the transport as CDW order sets in. In future work, we will ex-
amine Raman scattering, where vertex correction effects are present and
inelastic X-ray scattering, where interesting phenomena is likely to occur
when the photon transfers momentum equal to the ordering wavevector.
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10. J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003).
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