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CuekrpaJjbHi ryCTUHE Ta JjiarpaMy CTaHIB OJHOBUMIPHOIO i0H-
Horo mmpoBiganka ITaysti

[.B.Craciok, O.Bopobitos, P.4.Crenis

Amnoranis. Pobora nmpucBsideHa BUBYEHHIO €HEPIETUIHOTO CIEKTPY Ta,
JiarpaM CTaHIB, OTPUMAHUX METOJOM TOYHOI JiaroHaJi3arlii jjsi CKiH-
YEHHOI'0 1I0HHOI'O JIAHIIFOIOBOI'O IPOBIJIHUKA B IEPIOJUYHUX I'DAHUYHUX
ymoBax. OnHoBuMipHUiT I0HHWIT POBIHUK OIKCYETHCS [PATKOBOIO MO-
JIeJUTIO, 7€ 1I0HM PO3IVISIAIOThCA K dacTuHKE [layni, mpu npboMy Bpaxo-
BY€THCs iIOHHUI MEPEHOC i IBOYACTUHKOBA B3AEMO/Iist MiXK HANOIMKIH-
Mu cycizamu. Bysio po3paxoBaHO Ta MpOAHATI30BAHO CIIEKTPAIbHI TyCTH-
HU Ta JliarpaMyu CTaHy TAKOl CUCTEMU JJIs PI3HUX TEeMIEpPaTyp Ta Beju-
gnH B3aeMozil. IIpoaHai30BaHO yMOBH IT€PEX0OLy CHCTEMH 3 OHOPIIHO-
ro (crany 1.3B. MOTTIBCHKOIO Ji€JIEKTPUKA) Y MOAYJIbOBAHUIL CTaH Yepe3
cran tuny ¢ba3u 3 603e-KoHAeHCATOM (MOMIOHOT 10 HaAIMHHOL a3y B
MO/JIEJIAX KOPCTKIX OO30HIB).

Spectral densities and diagrams of states of one-dimensional
ionic Pauli conductor.

L.V.Stasyuk, O.Vorobyov, R.Ya.Stetsiv

Abstract. We focus on the features of spectra and diagrams of states
obtained via exact diagonalization technique for finite ionic conductor
chain in periodic boundary conditions. One dimensional ionic conductor
is described with the lattice model where ions are treated in frames of
‘mixed’ Pauli statistics. The ion transfer and nearest-neighbour inter-
action between ions are taken into account. The spectral densities and
diagrams of states for various temperatures and values of interaction are
obtained. The conditions of transition from uniform (Mott insulator) to
the modulated (charge density wave state) through the superfluid-like
state (similar to state with the Bose-Einstein condensation observed in
hard-core boson models) are analyzed.
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1. Introduction

Tonic conductors are a wide class of physical and biological objects rangi-
ng from ice to DNA membranes. One of the most interesting subclass of
all are superionic conductors that exhibit high temperature phase with
high conductivity that arises due to the motion of ions [1] or protons [2].

Theoretical description of systems with ionic conductivity is most
frequently based on the lattice models. Some of them treat ions as Fermi-
particles focusing on different aspects of the ionic subsystem like long-
range interactions [3-5] or interaction with phonons [6,7]. Some recent
attempts have also paid some attention to short-range interaction be-
tween particles [8-12].

However more correct consideration of ions should be based on the
mixed statistics of Pauli [13] since these particles are bosons by nature
but they also obey the Fermi rule. Because of the special commutation
rules the utilization of Pauli operators generates additional mathemati-
cal complexities. But from the other hand this approach might be very
effective. For instance it has been shown that the lattice model of Pauli
particles is capable to describe the appearance of superfluid-like state
(that correspond to superionic phase) in the system even in the absence
of interaction between particles [14-16]. From the other hand the lat-
tice model of Pauli particles is similar to hardcore Bose-Hubbard model
widely used for the description of ionic conductivity phenomena as well
as for the modeling of energy spectrum of absorbtied ions on crystal
surface and intercalation in crystals [17]. Bose-Hubbard model also ex-
hibits the transition from Mott insulator state to superfluid-like state
[18-24]. Some of the authors also observe the possibility of formation of
intermediate ”supersolid” phase that may appear on the phase diagrams
alongside the transition from dielectric (CDW) to superfluid phase.

In this work we focus on the diagrams of state for one-dimensional
ionic conductor described by the system of Pauli particles. Our lattice
model include ion transfer as well as the interaction between nearest-
neighbouring ions. We calculate the single-particle spectral densities of
the finite system in periodic boundary conditions and obtain the dia-
grams of state analyzing the features of this spectra. The conditions of
transition from Mott insulator (MI) like state to the modulated charge
density wave (CDW) one through the superfluid(SF)-like state (similar
to state with the Bose-Einstein (BE)condensation observed in hard-core
boson models) are discussed.
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Figure 1. The model for one-dimensional ionic conductor. Large circles

denote heavy ionic groups while the small one denote light movable ions.

2. The model for ionic conductor

Let us consider the chain of heavy immobile ionic groups (large circles
on Fig. 1) and light ions that move along this chain occupying positi-
ons denoted with small circles on Fig. 1. The subsystem of light ions is
described with the following Hamiltonian

= tZ(c;Lci_H + c;LHcZ-) + VanHl — uZni. (1)

This model takes into account the nearest-neighbour ion transfer
(with hopping parameter t) and interaction between ions that occupy
nearest-neighbouring positions (with corresponding parameter V).

If this Hamiltonian is considered in frames of Fermi statistics the
corresponding model is known as spinless-fermion model. This model is
widely used in the theory of strongly correlated electron systems [25] as
well as for the description of ionic conductors [26]. More complex two-
sublattice case of this model can be applied to proton conductor [27].

More correct consideration of ions should be based on ”mixed” Pauli
statistics and this approach is used onwards. In this case the model (1)
is equivalent to the extended hard-core boson model, i.e. boson Hubbard
model with repulsive interaction between nearest neighbours and infinite
on-site repulsion [28]. The latter is often applied to the investigation of
the problems of BE-condensation and superfluidity.

3. Exact diagonalization technique

We calculate the spectral densities of one-dimensional ionic Pauli con-
ductor using exact diagonalization technique. For the chain of IV sites we
introduce the many-particle states | n1,4n1,5 - .. a7 N p). The Hamilto-
nian matrix on the basis of these states is the matrix of the order 2% x 2V
and is constructed according to the following way

Hon =3 [t (00 + 1) +7HG, —unh] . @

i=1
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where
HY = (... |cfeia|n)...) = d(ni—n;—1)8(niy1 —nj 1 +1)
X H §(n —ny),
I£izi+1
H2 = (ny... el cln)..) = 8(ni—nj+1)8(nip —nl 1 —1)
X H 5(n—ny),
l#4;i+1
HS) = <n1 |nmi+1|”11 )= 5(ni—1)5(n§—1)6(ni+1—1)
z+1 H 6
l;éz 1+1
HY = (ny.. . |ngn}...) = 8(ni—1)8(nf—1) H&(m—nf).
1#i
This matrix is diagonalized numerically
UT'HU = H =Y A X"P, (3)

p

where )\, are eigenvalues of the Hamiltonian, XPP are Hubbard-operators.
The same transformation is applied to the creation and annihilation op-
erators

UlaU =) Apg X
pq

UlefU =) A X" (4)

which are required to construct one-particle Green’s function < ¢; q |ci‘a >
that contains information about one-particle energy spectrum of the sys-
tem. For Pauli creation and annihilation operators this Green’s function
can be constructed in two ways, i.e. commutator Green’s function

< ci(t)|ef (t') >= —i0(t —t'){[ci(t), ¢ (")) (5)
and anticommutator Green’s function
< ci(t)]ef (t') >= =0t — ") {{ci(t), ¢ (t')}). (6)

Imaginary part of these Greens’ functions are one-particle spectral den-
sities (also referred to as densities of states or DOS)

N

1
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p(w) —~ ;:1 m < ¢ qlcf, >
N
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Figure 2. Commutator spectral densities of non-interacting (Vey = wey =
V' = 0) ionic Pauli conductor for different values of chemical potential
(right figure) compared to exact results obtained in [14] via fermioniza-
tion procedure (left figure). t = 1,7 = 0.2, A = 0.4. Spectral density on
the left figure is scaled to 2 m, while on the right figure it is scaled to
unity.

where Z = 3" e#*». Spectral densities in (7), obtained from commutator

P
1 =1 (5) and anticommutator n = —1 (6) Greens’ functions respectively,
exhibit discrete structure, i.e. consist of several d-peaks due to the finite
size of a cluster. Therefore we apply the periodic boundary conditions
to the cluster and introduce small parameter A to broaden the J-peaks
according to Lorentz distribution

1 A

5(w) =~ 57 (8)

4. Results and discussion

We perform calculations of one-particle spectral densities of one-dimensional

ionic Pauli conductor (1) for the chain of ten sites (N = 10) in periodic
boundary conditions. To test the results we compare them with the ex-
act solution obtained by means of fermionization procedure [14] in the
absence of nearest neighbour interaction (V' = 0) for different values of
chemical potential (Fig. 2). The redistribution of statistical weight with
the change of chemical potential level can be observed and the good level
of agreement is achieved.

The analysis of the spectral densities is the way to distinguish the dif-
ferent states of ionic subsystem and the corresponding conditions. In the
case of half-filling, as we turn on the interaction starting from spectral
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Figure 3. Commutator spectral density of ionic Pauli conductor for dif-
ferent values of nearest-neighbour interaction (Vey = wey = V) at half
filling (1 =0). t=1,T=0.2,A =0.4.

density which shape corresponds to SF state, we observe the develop-
ment of the gap in the spectra (Fig. 3). The similar effect was found
for ionic and proton conductors described by the analogous models in
frames of Fermi statistics. It was connected with the splitting of spec-
tra due to charge ordering with doubling of lattice period [11,12]. The
detailed analysis of spectral densities of Fermi and Pauli models of ionic
conductor can be found in [29]. So, we have here a transition from SF
to CDW state (at T' # 0 this transition manifests itself as a crossover),
described analytically in [30,31].

The existence of the gap in the spectra which separates the bottom
of energy band from the chemical potential level is also the sign of the
presence of homogenous MI state. The other specific feature of the spec-
tra is the appearance of negative branch that points to the transition
to SF-like state (see, for example, [32]). According to these criteria we
analyze the spectral densities at different temperatures and values of in-
teraction and build the corresponding diagrams of state (Fig. 4). The
system is in MI homogenous state at high temperatures and far away
from half-filling (at large ¢). As the temperature decreases or one comes
closer to half-filled case the system undergoes transition to SF-like state
that corresponds to the appearance of the negative branch on the spec-
tral density. At farther temperature decrease and closer to half filling
we observe transition to the state with the gap on the spectral density
that corresponds to the CDW-ordering. As the interaction strength V
increases such a region becomes broader while the region of SF-like state
becomes smaller. From the other hand, with the decrease of V' the CDW
state diminishes and disappears at V = t. It should be mentioned that
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Figure 5. The curves that separate SF- and MI- states at different tem-
peratures and values of interaction. SF-state is on the left side of the
curves and below them. ¢ = 1,A = 0.25. § =< n > —1/2 denotes the
deviation from half-filling.

sequence of states, the system is going through at the increase of mean
occupancy d, corresponds to phase diagram obtained in [33].

We have also performed the detailed analysis of the transition to SF-
like state at different temperatures and values of interaction (Fig. 5). It is
interesting that at weak interactions (V' < 1) the increase of interaction
strength facilitates the formation of SF-like state while farther increase
of V suppresses this transition.

L€ o

SF
T=0.5, V=4, u=9

5. Conclusions

We have performed analysis of diagrams of states of one-dimensional
Pauli ionic conductor with exact diagonalization technique. We have
shown that the system undergoes transition from conducting to superfluid-
like state and then to insulating sate. At weak interaction the latter
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transition may vanish.
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