penpunatn Iucruryry disuku koujgercoanux cucrem HAH Ykpainu
PO3IIOBCIO/ZKYIOThCS Cepel] HAyKOBUX Ta iHdopMmariiinnx ycranos. Boxnn
TaKOXK JIOCTYIIHI IO €JIEKTPOHHIN KoMmIT'toTepHiit Mmepexki Ha WWW-cep-
Bepi iHcTUTYTY 3a ajgpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Outer IlerpoBuu Marseen
Ixetime K. @pipike
Awnnpiit Muxaiiosuy [IBaiika

HEPIBHOBAXKHA TEOPIS JUHAMIYHOI'O CEPEJHBLOIO I1OJIS 1715
3APAJIOBOBIIOPAJIKOBAHOI ®A31 MOJEII DATIKOBA-KIMBAJIA

Pobory orpumano 25 rpymuasa 2014 p.

BarBepkeno 1o apyky Buenoro pamoro IOKC HAH Ykpaiuu
PexomenioBano 10 APYKY Bi/1iIOM KBAHTOBOI CTATUCTUKHU

Burorossieno npu IOKC HAH VYxkpaiuu
(© V¥ci npasa 3acrepexkeHi

HamnionanbHa akajiemMis HayK YKpainm

IHCTUTVYT
PISNKN
KOHAEHCOBAHUX
CUCTEM

N

~

ICMP-14-10E

O.P. Matveev, J.K. Freericks® A.M. Shvaika

NONEQUILIBRIUM DYNAMICAL MEAN-FIELD THEORY
FOR THE CHARGE-DENSITY-WAVE PHASE
OF THE FALICOV-KIMBALL MODEL

/

*Department of Physics, Georgetown University, Washington, DC 20057, USA

JIbBIB



VIK: 538.9; 538.94; 538.911
PACS: 71.10.Fd, 71.45.Lr, 72.20.Ht

HepiBHOBakHa Teopiss AMHAMIYHOrO cCepeaHBOTO IIOJIS JIsT 3a-
psaoBoBOOpsAAKOoBaHOl da3u moaesai Panikosa-Kimbasia

O.I1. Margees, /Ix.K. @pipike, A.M. IIIBaiika

Amnoranis. Po3Bumeno HepiBHOBaKHY TEOPii0 AUHAMITHOTO CEPEIHBOTO
TIOJIsI JIJTs1 ONIUACY BIOPSIIKOBAHOI HU3bKOTEMIIEPATyPHOI (ha3u 3 mepioqumd-
HOIO MOJIYJIALIEI0 I'yCTUHU 3apsay. Posrisnaerbcs GescrinoBa MOJEb
QPanikopa-Kimbasta, sika Mmoxke 6yTu po3s’sa3ana To4HO. /[0 TaKol CuIbHO-
CKOPEJILOBAHOI CUCTEMH ITPUKJIAIAETHCS IIPOCTOPOBO OJIHOPIJIHE ITOCTiliHE
efexTpraHe moJte. IlpeacTaBieno mociiore BuBeenns byHkiii [ pi-
Ha, 9Ki o3HadeHi Ha yacoBoMmy KoHTYpi Kemmmma-IlIBinrepa, B HepiBHO-
BaXKHi#l Teopil JUHAMIYHOTO CepeIHBOTO MOJIst. TaKoXK, 0OTOBOPIOIOTHCT
MEeTOJM PO3B’dI3aHHs CUCTEMHU II0B’SI3aHUX DIBHSIHb.

Nonequilibrium dynamical mean-field theory for the charge-
density-wave phase of the Falicov-Kimball model

O.P. Matveev, J.K. Freericks, A.M. Shvaika

Abstract. Nonequilibrium dynamical mean-field theory is developed for
the case of a low-temperature ordered phase with a periodic modulation
of the charge density. We consider the spinless Falicov-Kimball model
which can be solved exactly. This strongly correlated system is then
placed in an uniform external dc electric field. We present a complete
derivation for nonequilibrium dynamical mean-field theory Green’s func-
tions defined on the Keldysh-Schwinger time contour. We also discuss
techniques used to solve the coupled equations.
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1. Introduction

There are a number of strongly correlated materials that have charge-
density-wave (CDW) behavior. Static order occurs in the transition metal
di- and trichalchogenides, which display either quasi one dimensional
(NbSes) or quasi two dimensional (TaSey or TbTesz) structures [IH3].
Three-dimensional charge-density-wave order is observed in BaBiO3 and
Baj;_,K,;BiO3 compounds [4]. There is a longstanding question concern-
ing the nature of the CDW order, namely, whether the order is driven
electronically, with a lattice instability following the electronic instabil-
ity, or wvice versa. Indeed, in real materials the charge and lattice de-
grees of freedom are usually strongly coupled, but recent time-resolved
core-level photoemission spectroscopy experiments [5] for CDW mate-
rials indicate an electronically driven nature to ordering. This makes it
reasonable to study the CDW phase for the strongly correlated electronic
systems that do not include a coupling to the lattice.

While most theoretical interests in strongly correlated systems have
been concentrated on equilibrium behavior, recent experiments on pump-
probe spectroscopy [5HI0] has caused an increase of attention to nonequi-
librium dynamics. These experiments display a nonequilibrium melting
of the CDW state, which is manifested by a filling of the gap in the pho-
toemission spectrum, while the order parameter remains nonzero. This
phenomenon has been examined with an exactly solvable model [ITL12]
for an initial system starting at zero temperature; nonzero temperatures
have not been investigated yet.

We use the Falicov-Kimball model in our analysis because it is one
of the simplest models [I3] which possesses static charge-density-wave
ordering and has an exact solution within equilibrium dynamical mean-
field theory [14] (DMFT) (for a review see Ref. [I5]). The many-body
formalism for nonequilibrium dynamical mean-field theory is straightfor-
ward to develop within the Kadanoff-Baym-Keldysh formalism [I6[17].
Since the many-body perturbation theory diagrams are topologically
identical for both equilibrium and nonequilibrium perturbation theo-
ries [I8], the perturbative analysis of Metzner [I9] guarantees that the
nonequilibrium self-energy is also local in DMFT. Hence, the nonequi-
librium DMFT lattice problem can be mapped onto an impurity one in a
time-dependent field, just like the equilibrium problem, except now the
fields have two-time arguments. The basic structure of the iterative ap-
proach to solving the DMFT equations [20] continues to hold. Detailed
development of the nonequilibrium DMFT approach has been done for
the case of the uniform phase of the Falicov-Kimball model [21H23]. Here
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we generalize this method to the case of the charge-density-wave ordered
phase.

2. Static order and the Hamiltonian

In order to describe the CDW ordered state, one has to rewrite the
Hamiltonian assuming the existence of the charge modulation. This can
be done in two ways: by introducing two sublattices “A” and “B” in real
space or by the nesting of the Brillouin zone (BZ) at the modulation
vector Q = (m,m,...) in a reciprocal space. The modulation vector Q
defines the sublattices by

. 1 R, € 4,
¢QR: ) < (2.1)
-1, R; € B.

In the ordered phase, due to nesting of the Fermi surface, the BZ is
reduced and instead of the annihilation (creation) operators with mo-
mentum k defined in the initial BZ by

1 KR,
Ck = N ; elleci (22)

one has to introduce two fermionic operators in momentum space in the
reduced zone (k € rBZ):

élk = Ck and Egk = Ck+Q- (2.3)

Now, starting from Eq. (Z2) one can write down the relations be-
tween annihilation (creation) operators defined on the sublattices (A, B)
and in the reduced BZ (1,2)

i 1 KR 1 R 1
Clk = 77 Z e Ric; + — Z e Ric; = —=(cka + ckB),

N NiE V2
1 , 1 . 1

Gy — ik+QRi .. 4 i(k+QRi .. — _— _

Cox = Ze ¢+ Ze ¢i = —=(cxka — ckp). (2.4)
N NicE V2

This unitary transformation can be rewritten in a matrix form as follows:

N

1
2 (2.5)
V2

1
)
S
=
| IR
Il
-
1
S
e
ES
—_
=
=
@
=
o
S
|
S-Sl
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The annihilation and creation operators connected by such transforma-
tions satisfy the commutation relations

(i, &)t = OkereOmm, My =1,2 (2.6)

and
[Ck)a, CL,_ﬂ]_’_ = 5k,k’601,67 a,ﬁ = A, B (27)

We use both sublattice (A, B) and reduced BZ (1, 2) bases in our fur-
ther derivations. Any two-operator-product-type quantity, e.g. the one-
particle Green’s function, can be defined with the additional sublattice
indices A

O(k) = ||Oa7,3(k)”7 a,f=A,B,

or with the reduced BZ indices

OK) = O], m,n=1,2,

and these representations are connected by the aforementioned unitary
transformation .
Ok) =UOK)U. (2.8)
Next, we introduce the time-dependent Hamiltonian of our system.
We consider the case, when charged fermions interact with an external
uniform electric field. We assume that the field is spatially uniform and
ignore all magnetic field and relativistic effects. This allows us to describe
the electric field via a time-dependent vector potential in the Coulomb

gauge as follows:
1d
E(t) = ———A(t). 2.9
(1) = — = A() (29)
The time-dependent Hamiltonian of the spinless Falicov-Kimball model

on a bipartite lattice (o, 8 = A, B) has the form
H(t) = HE =Y 7P (1)l 58, (2.10)
1Y ijaf
where the local term is equal to
Hi = Unigngy — pgnig — pgngy, (2.11)

with the number operators of the itinerant and localized electrons given
by 7, = é;faém and ﬁf‘f = f;a fm, respectively. For computational con-
venience, we have introduced different chemical potentials uj? and ul]f
for different sublattices, which allows us to work with a fixed order pa-
rameter, rather than iterating the DMFT equations to determine the
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order parameter (which is subject to critical slowing down near T¢). The
system achieves its initial thermal equilibrium state when the chemical
potential is uniform throughout the lattice (MZ? = p and ,u? = ,u?).
These chemical potentials remain fixed when the external electric field
is turned on.

Interaction with the external field in Eq. (29]) results in a Peierls’
substitution to the kinetic term of the Hamiltonian. Hence, the time
dependence of the Hamiltonian depends solely on the time-dependent
vector potential as follows:

R; s

128 () = 1%Pexp <_% / A(t)dr) , (2.12)

R'L,oc

where t%ﬁ is the noninteracting hopping matrix.

In the sublattice representation (A, B), the local part of the Hamil-
tonian is diagonal and the non-local kinetic one is off-diagonal in the
case of the nearest-neighbor hopping. In the reduced BZ representation
(1,2) it is vice versa: the non-local kinetic part is diagonal and the local
interaction U-term is off-diagonal.

The Fourier transformation to the momentum space gives the time-
dependent kinetic term in the form

Hiin (t) = zk: [chea ] (k= cA(®)) {2:2]
= Z [g{k é;k} é(k -
k

with an extended band energy [23] whose matrix form in the (A4, B) basis
becomes

cA(D) Flk] , (2.13)

Cok

0 e(k) cos(eA(t))+e(k) sin(eA(t))

ek — eA(t)) =

e(k) cos(eA(t))+e(k) sin(eA(t)) 0

(2.14)
and performing the unitary transformation in Eq. (2.3]), we get the fol-
lowing expression in the reduced BZ representation (1,2):

é(k —eA(t) = Ué(k — eA(t)) U} (2.15)

e(k) cos(eA(t))+e(k) sin(eA(t)) 0

0 —e(k) cos(eA(t))—e(k) sin(eA(t))

ICMP-14-10E 5

tmin t max
) o

tmin' |B

Figure 1. Keldysh-Schwinger contour

Here, we introduced the band energies

d
— _
e(k) = dli)rgo 7 TE:1 cosk, and é&k)= Jim \/_ E sin k.

and we apply the same scaling of the hopping term as in the equilibrium
DMFT.

In the d — oo limit the self-energy becomes local and is represented
by a diagonal matrix in the sublattice representation. On the other hand,
the nonequilibrium noninteracting Green’s function is diagonal in the
reduced BZ representation and one has to combine these two represen-
tations in order to obtain a self-consistent set of DMFT equations in
nonequilibrium.

3. Real time Green’s function in CDW phase

The key object of our interest is the time-dependent Green’s function
that is defined on the Keldysh-Schwinger contour in Fig. [T}

Gi(1,) =~ {Te(t)e () (3.1)

We start from the Dyson’s equation for the lattice Green’s function,
which is a 2 x 2 matrix equation in the two-sublattice representation
(4, B)

(600 + pa)l = )Gt ) = [ A DG (EY) = 6ult. )
(3.2)
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with the lattice Green’s function given by

) Gt t)  Gett ()

G?,E(tv t/) = (33)
Gedint) Gl ()

and the local self-energy satisfying

$eA(t, 1) 0

Se(t, 1) = : (3.4)
0 e B (¢, ')

Here éx_ca () is defined in Eq. (2I4). A formal solution of (3.2]) for the
Green’s function yields

Ge (1) = [(GE,’?"”>‘1 - 2} T, (3.5)

where the noninteracting Green’s function G&Z"(t,t') is a solution of
the following equation:

[(10: + pa)] — ex—en(n)]GEZT" (1) = 6.(t, 1)1 (3.6)

In the two sublattice representation (A, B), the noninteracting Green’s
function G2 (t,t') defined by Eq. ([0) is non-diagonal because the
extended band energy éx_.a(¢) is non-diagonal [see Eq. (2I4)]. On the
other hand, in the reduced BZ representation (1,2) the non-interacting
Green’s function becomes diagonal:

R Goe™ (1) 0
GEmoMt,t') = . (3.7)
0 GO (t,t)

The analytical expression for G¢f”"(t,¢') is known from the uniform
solution [2TH23] and is equal to:

GEPM(t, ') = i[f (€ — pa) — Oe(t, )] ) (3.8)

¢
X exp{—i / df([o(_a +0(F) cos(eA())]e — 0(F) sm(eA@)e) }
b
Next, we go backward to find the solution for the lattice Green’s func-
tion from Eq. (33) but in the reduced BZ representation. Firstly, apply-
ing the unitary transformation in Eq. (23) to the self-energy ic(t, t') we

ICMP-14-10E 7

find
Se(t,7) = USe(t, DU (3.9)
[EC,A 4 EC’B](t, t/) [EC,A _ EC’B](t, t/)

N~

[EC,A _ EC’B](t, t') [EC,A + EC’B](t, t/)

Then, the solution for the lattice Green’s function in Eq. B3] of the
Dyson’s equation in Eq. ([B.2) becomes [in explicit matrix form on the
reduced BZ basis (1, 2)]

GV, GEP (¢, ¢)

Ge et 1) = (3.10)
| GV GP )
_ (G::gon)fl(t,tl)fw(t,t,) 7M(tvtl) -1
,ZC’A%C’B@J’) (GEZi"g)fl(tﬁt’)*W#(tt')

The Green’s functions and self-energies defined on the Keldysh-
Schwinger contour are the continuous matrix operators of two time vari-
ables. There is no way to handle such an object. Instead, we discretize
the contour with a several different grids and then find the continuous
matrix limit as an extrapolation onto the limit of zero time discretiza-
tion using Lagrange’s interpolation formula. To find the inverse matrix
in Eq. (3I0), where its components are matrices in time variables, we
need to apply the block matrix pseudo-inverse formula:

-1 Sp! —A7'BS,!
= : (3.11)

o
D-tosy! Syt

¢ D

with S4 =D — CA™'B and Sp = A — BD~!C. Using this formula, we
derive expressions for the components of the Green’s function matrix in
the reduced BZ basis égyg(t, t') as follows:

GEOV (1) =

EC,A EC,B EC,A _ EC,B
—{ Gyt - E

(1) - (1)

c,A c,B —1%y¢A _ y¢,B -1
<Jemy e - T wn] B )

—€,—€

Gc(2 2)(t t)
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EC,A EC,B EC,A _ EC,B
~{em e - F e - T )
ZC,A EC,B -1 EC,A _ ZC,B -1
e

Gorom) et —
(Gt ) > .

X
—

EC,A ZC,B -1 ZC,A _ EC,B N
- {(Gi?fﬁl)l(t,t’) e 0
(3.12)

We have performed a transition onto the reduced BZ basis in order to
find the lattice Green’s function in terms of the noninteracting Green’s
function (which is known in momentum representation). Further, we
construct the other DMFT equations to make the system of equations
self-consistent. In our case of a CDW phase, it is more convenient and
clear how to do this in the sublattice basis (A4, B). Hence, at this point
we apply an inverse transformation from Eq. (2.3) onto the sublattice
basis and write down an expressions for the components of the lattice
Green’s function in the (A, B) basis in terms of its components in the
reduced BZ basis (1,2)

et t’) = U71Ge (1,1)D, (3.13)

1
GeaN, —( GEOV (1) + G (8,

[\)

+ G ) + GV ),

—_

G2 = 5 (G ) + G2 )

[\)

— G - BV )),

(GED ) - G2,

ICMP-14-10E 9

+GP ) - GV ),

The next step in the DMFT approach is to find the local Green’s
function, which is further mapped onto a single impurity problem. Since
we are considering the two-sublattice system, we have two local Green’s
functions for the A and B sublattices, respectively.

To calculate the local Green’s functions, we need to sum over the
reduced BZ all (k — eA(t))-dependent functions. Because of presence of
the time-depended vector potential, this is not a straightforward proce-
dure. Instead, one has to replace the summation over the BZ by a double
integration over the energies € and €

Shltt) = 5 2 Gttt = [ de [ depte.eGe (e.0)
k

GEA(t, 1) 0

loc

, (3.14)
0 GoB(¢,¢)

loc

with a joint density of states which is a Gaussian in each variable for the
hypercubic lattice [23] and is given by

1
ple,€) = —exp(—¢” — ).
™

Substitution of the components from Eq. (313)) into Eq. (8:14) results
in an expression for the components of the local Green’s function for each
sublattice as follows:

Gloc (t,t")

{//dedepee )gl (t,t") //dedepee C(22)(tt)
//dedepee gl (t,t") //dedepee 21)(tt)

formal change € — —¢’,é — —€ in 2nd and 3rd terms

éc(?,Q) _ éc(l,l) éc} _ éc(%l)

= giVeS €e,& €,€ rE
dede = de'dé’, p(e, €) = p(€', &) (see (B.12)

= //dedgp(e, O +AX][I — KXAY] 'K, (3.15)
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Gloc (t,t") //dedep €, &) — AX][I — KLAX] !

where we introduced new quantities K, A, and ¥, which satisfy

EC,A EC,B -1
i ={ezmyen - Z 2w}
EC,A ZC,B -1
=y - =5 0]
EC,A _ ZC,B
3= #(t, t'). (3.16)
One can notice, that in the case where the CDW order vanishes, which
implies that Lo4(t,¢') = ZoB(t,t') = °(t,t'), the above formulas
are reduced to the known result for the uniform phase Glcof(t t') =
Giag (0:1') = G (t.1') = [ [ dedep(e, ) {(GE2™) ! (1.) — (1.1} .
Now, according to the nonequilibrium DMFT procedure [22], we need
to map the local lattice Green’s function onto the impurity Green’s func-
tion. Employing Dyson’s equation, we introduce an effective medium
G§(t,t") by:

ety 1) = 1G5, 1)) Mt 1) = E9(6, )] 7 = Gl (). (3.17)

The effective medium G§(t,¢') is diagonal in the sublattice representation
and its components are equal to

GoA(t,t) = [(GL) T (. t) + 22 (1)),
Gy P () = [(GR) M (b)) + 225 (¢, ¢)] . (3.18)

On the other hand, the effective medium G§(#,#') can be found from
the Dyson’s equation that defines an effective dynamical mean field
AC(t, t):

(10:° + pa)G§ (¢, ') — / dEN (8, D)GE (1)) = 0. (¢, )] (3.19)

Its components for each sublattice are as follows:

[(iatc + Md)éc(tv t/) - )‘aA(tv t/)]il

Gyt t)

GEP (1) = [(10,° + pa)de(t, ) — NP (t,4))] 7. (3.20)

ICMP-14-10E 11

We next extract the dynamical mean fields for each sublattice

AA( ) = (i0,° + pa)de(t,t) — (GEN) (¢, 1)
= (i0:° + pa)dc(t, 1) — (G 7Lt 1) — DA (1, 1),
AB (1) = (10, + pa)de(t, 1) — (GEPY 7L (t, 1)
= (10, + pa)de(t,t') — (G2) M (t, 1) = 25, '), (3.21)

which are the effective fields for the nonequilibrium single-impurity prob-
lems.

Now, we can close the system of DMFT equations with the solution
of the impurity problem. The Falicov-Kimball model has an exact result
and for the two sublattice system, we have two solutions for the impurity
Green’s functions:

Gimp(t,t) = (1= n )G (8,1) + nf GTA (¢, 1),
Goo () = (1—nP)GyP (. ¢) + nfGTP (8, 1), (3.22)
where
Gyt =1 - Gy, UG (t,t), a= A, B. (3.23)

The difference between the A and B sublattices is defined by the
order parameter Any¢, which is equal to the difference of the f-particle
occupations at different sublattices (An; = n4 §—ny B). In the CDW phase,

the total concentration of localized electrons is fixed n‘?—i—n 7 =const, and
the order parameter Any is defined from the equilibrium condition on the
sublattice chemical potentials: u}“ — MJ]? = 0. In nonequilibrium, the order
parameter remains the same as in equilibrium because the f-particles
of the Falicov-Kimball model do not interact with an external time-
dependent field and are the conserved quantities in the nonequilibrium
case too.

Hence, we may summarize the steps of the nonequilibrium DMFT
algorithm. First, we solve the equilibrium problem for the given values
of the interaction parameters and temperature. This then determines

the order parameter value Any = n? — n]fg . Then we choose equilibrium
results for EA and Ef; as the initial guess for the nonequilibrium self-
energy. Second we define G (t,t') and GZ7".(t,t'), and then calcu-

—€, —€

late the local Green’s functions G (¢, ') and G5 (¢, 1) as in Eq. (&I5).

loc loc

Third, we define the dynamical mean fields A4 (¢, ¢') and A>B (¢, ') from
Eq. (3:ZI). Then we calculate the effective mediums G5 (¢, '), G5 (¢, ')
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from Eq. 319) and G (t,t'), GSP(t,¢) from Eq. 3.23). Fourth, we

define the impurity Green’s functions Gf;fp(t,t’) and Gf;yi(t,t’) from
Eq. (322). Finally, we set G¢ (t,t') = éf;fp(t,t’) and extract a new

self-energy 3¢(¢,t') from Eq. (3:2I). We repeat iterations until we reach
the desired accuracy.

4. Summary

In this work, we have described the details of the nonequilibrium DMFT
procedure in the case of a CDW chess-board phase of the Falicov-Kimbal
model. We have derived analytical expressions for the time-dependent
lattice Green’s functions defined on the Keldysh-Schwinger time con-
tour. We employed the results obtained in paramagnetic phase [22]23]
and generalized them onto a two-sublattice case. Our goal was to present
a complete example of the solved problem in the nonequilibrium and
ordered phase cases. That is why we have chosen the Falicov-Kimball
model. But our results remain general for any other Hubbard-like model
if the associated impurity problems can also be solved. Also, we have
studied the simplest time dependence of the external field, but this does
not affect our derivation. There are other examples of an external field,
dictated mainly by the experiments (preparing of a steady state, pump
and probe laser pulses etc.), which can be also treated within this for-
malism.
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