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До розрахунку великої статистичної суми моделi плину

М.П. Козловський, О.А. Добуш, Р.В. Романiк

Анотацiя. Запропоновано спосiб розрахунку великої статистичної
суми моделi простого плину в рамках узагальненої граткової мо-
делi, в кожному з вузлiв якої може перебувати довiльна кiлькiсть
частинок. В якостi потенцiалу взаємодiї мiж частинками використа-
но потенцiал Морзе. У процесi розрахунку виконано пiдсумовування
за числом чатинок та iнтегрування за їхнiми координатами. У най-
простiшому наближеннi отримано рiвняння стану, яке справедливе
для широкого дiапазону температур. Для температур нижчих, нiж
критична, встановлено наявнiсть горизонтальних дiлянок на кривiй
залежностi тиску вiд густини.

Concerning a calculation of the grand partition function of a
fluid model

M.P. Kozlovskii, O.A. Dobush, R.V. Romanik

Abstract. The calculation method of the grand partition function of
a simple fluid model in frames of generalized lattice model, where each
cell may contain random number of particles, was proposed. As an in-
teraction potential between particles the Morse potential was chosen. In
course of calculations summation over number of particles and integra-
tion over it’s coordinates were performed. Using a simplest approxima-
tion the state equation valid in wide temperature ranges was obtained.
At temperatures lower than critical one, the presence of horizontal plots
at curve of the pressure dependence on the density was established.
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1. Introduction

The behavior of many-particle system in both gaseous and liquid phases
has been attracting attention of scientists for over a century. The task
of microscopic description of such a behavior remains vital even today.
Especially urgent is the problem of describing fluid in the vicinity of and
below the critical temperature Tc. Below Tc two phases, – gas at small
density and liquid at large density, – can coexist. The phenomenon of
the system transiting from the state in one phase to that in another is
called the phase transition of the first order.

One of the most successful and extensively used, and undoubtedly the
most known, is the Van der Waals (VdW) theory of phase transitions.
Two phenomenological parameters of the theory along with the Maxwell
rule, allows one to build the equation of state for fluid that elucidates the
main properties of phase transitions. At the same time, the simplicity of
the VdW theory is worth being stressed as it is nothing but a reasonable
modification of the ideal-gas equation of state. It is obvious that this
fact greatly contributed to the popularity of the theory and allowed us
to obtain further insight into the physics of phase transitions. However,
the VdW theory is of mean-field type and, therefore, does not account
for fluctuations which heavily effect the behavior of a system near the
critical point. Nonetheless, some authors made try to take into account
the fluctuations within the VdW theory, see for instance [1].

Nowadays, most approaches to description of phase transitions and
critical phenomena in fluids are based on scaling ideas, universality
hypothesis, renormalization group methods. The following theories are
worth mentioning: field-theoretical approach, which appeared to be very
powerful in describing magnetic systems; complete scaling approach [2,3],
which is essentially phenomenological theory; methods of integral equa-
tions, and in particular self-consistent Ornstein-Zernike approximation
(SCOZA) [4, 5]; perturbation series expansion, for example hierarchi-
cal reference theory [6, 7]; non-perturbative renormalization group ap-
proach [8]; collective variables method [9]; numerical methods and com-
puter simulations.

The investigation of simple fluids is frequently carried out using the
concept of a reference system. The system of hard spheres is often taken
as a reference system. The full pair-interaction potential is usually cho-
sen in the form of a function that does not possess the Fourier transform.
The hard-spheres potential is itself such a function, as well as widely con-
sidered Lenard-Jones potential, or more general Mie potentials. However,
in literature the results can be found for systems of many particles inter-
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acting via pair potential possessing the Fourier transform. For instance,
the Morse fluid has already been studied: within the integral equation
approach [10], by Monte Carlo simulations using both NpT plus test par-
ticle method [11] and the grand-canonical transition matrix method [12].
Usage of such potentials may be sufficient for some purposes, for exam-
ple, to describe the liquid-vapor coexistence in liquid metals [10,12]. The
description of such systems does not need the hard-spheres reference sys-
tem and, consequently, all the interaction – short- and long-ranged – can
be accounted in the framework of a unified approach within the collective
variables method.

The objective of this paper is to propose a new method for calculating
the grand partition function with interacting potential possessing the
Fourier transform.

2. Problem statement

Consider a classical system of identical particles interacting via a pairwise
additive potential U(|~R|), where ~R is the distance in three-dimensional
space. It is assumed that, first, the interaction can be decomposed into
two parts

U(R) = Ψ(R) − U1(R) (2.1)

where U1(R) is the attractive part, and Ψ(R) is the repulsive one, and
second, the full potential possesses a well-behaved Fourier transform.

A physical observable dependent on the particle coordinates, is in
general a functional of the microscopic particle density defined as

n̂(~R) =
N
∑

j=1

δ(~R− ~Rj), (2.2)

where ~Rj is the coordinate of the j-th particle, N the number of particles
in the system. Imposing boundary periodic conditions, one can represent
n̂(~R) in the form of Fourier series

n̂(~R) =
1

V

∑

~k

ρ̂~kei
~k ~R, (2.3)

where
∑

~k =
∑

kx

∑

ky

∑

kz
, ki = 2π

L ni, i = x, y, z; ni is an integer, V =

L3 is the periodicity volume of all system’s properties, and
∫

V n̂(~R)d~R =
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N . The Fourier transform ρ̂~k has the form

ρ̂~k =

N
∑

j=1

exp(−i~k ~Rj), and ρ̂~k=0 = N. (2.4)

Let the system be open. The probability that an open system contains
exactly N particles is defined by [13]

PN =
z′N

∫

exp (−βvN (~R1, ..., ~RN ))(d~R)

N !Ξ
,

where Ξ is the grand partition function (GPF) of the system:

Ξ =
∞
∑

N=0

z′N

N !

∫

exp(−βvN (~R1, ..., ~RN ))(d~R). (2.5)

Here (d~R) = d~R1...d~RN , z′ = exp(βµ + ln[(2πmβ−1)3/2/h3]), β is the
inverse temperature, µ the chemical potential, m the mass of a particle,
h the Planck constant. The potential energy vN has the following form

vN (~R1, ..., ~RN ) =
∑

1≤i<j≤N

U(~Ri,j) (2.6)

and can be represented in terms of ρ̂~k as follows

vN (~R1, ..., ~RN ) =
1

2V

∑

~k

Ũkρ̂~kρ̂−~k −
1

2
NU(0), (2.7)

where Ũk =
∫

U(R)ei
~k~Rd~R is the Fourier transform of the interaction

potential U(R).
Hence, the grand partition function with the interaction potential Ũk

has the form

Ξ =

∞
∑

N≥0

zN

N !

∫

(d~R) exp



− β

2V

∑

~k

Ũkρ̂~kρ̂−~k



 . (2.8)

Here z = exp(βµ′) is the activity, β is the inverse temperature, µ′ =
µ+β−1 ln[(2πmβ−1)3/2/h3]+ 1

2V

∑

~k Ũk where we have used the equality

U(0) =
∑

~k Ũk/V.
Performing further calculations let as consider volume V to be con-

ditionally split into NB cells of volume v = V/NB, moreover v = c3,
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where c is a linear size of an elementary cell. Note that in contrast to
the lattice gas model (where it is assumed that a cell can contain one
particle or doesn’t contain any particle) within this approach a cell can
contain random number of particles. The problem of description of con-
tinuous systems (unlike lattice systems) consist in the fact that values
of the wave vector are not bounded above, although they change dis-
cretely. The latter fact is connected with system restriction to the space
of coordinates of volume V . In much the same way as in lattice systems
(where the wave vector is discrete and bounded) in the majority of works
on description of fluid systems behavior at certain stage of calculations
some restrictions to values of the wave vector k < B are introduced [16].
Herewith the procedure of selecting B is ambiguous and different authors
use to choose B in different ways [17].

The behavior of a system near the point of the phase transition (PT)
is determined by the interaction potential. When the latter turns into
zero one has a non-interactive gas where the PT is absent. The Fourier
transform of the potential (2.1) have to decrease with increase of the wave
vector as k−n, where n ≥ 4. That is why the value Ũ(k) = Ψ̃(k)−Ũ1(k) is
small enough for sufficiently large values of k. So let us consider behavior
of a system containing N - particles for some model potential ŨB(k),
which coincides with Ũ(k) for values k ∈ [0, B) and equal to zero for
each k ≥ B. The value B will be defined subsequently. At this stage of
calculations let us assume, that B takes on finite value.

The grand partition function with the interaction potential ŨB(k)
has the form

Ξ =
∞
∑

N≥0

zN

N !

∫

(d~R) exp



− β

2V

∑

~k∈BΛ

ŨB(k)ρ̂~kρ̂−~k



 . (2.9)

The wave vector ~k takes on values

BΛ =

{

~k = (kx, ky, kz)
∣

∣

∣ ki = −π

c
+

2π

c

ni

NBi

,

ni = 1, 2, . . . , NBi , ; i = x, y, z; NB = NBxNByNBz

}

. (2.10)

In the collective variables (CV) representation [14] (2.9) is written as

Ξ =

∞
∑

N≥0

zN

N !

∫

(d~R)(dρ)NB exp



− β

2V

∑

~k∈BΛ

ŨB(k)ρ~kρ−~k



 J(ρ− ρ̂),

(2.11)
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where the function of transition to the CV ρ~k is essentially a product of
delta-functions

J(ρ− ρ̂) =
∏

k∈BΛ

δ(ρ~k − ρ̂~k) =

∫

(dν)NBe
2πi

∑

k∈BΛ

ν~k(ρ~k−ρ̂~k)

. (2.12)

The GPF in the form of Eq. (2.11) was originally proposed in [15]
for a many-particle system with Coulomb interaction, but has not got
enough attention since then.

Before proceeding calculation of (2.11) let us perform two identity
transformations. The former is

eβµ
′N = eβcµ

⋆N exp [β(µ′ − µ⋆(1 + τ))ρ̂0] . (2.13)

Here µ⋆ is a random fixed value of the chemical potential, βc = (kBTc)
−1

is some inverse temperature, for which the identity βc = β(1+τ) is valid,
where

τ =
T − Tc

Tc
. (2.14)

In further calculations the quantity ρ̂0 in (2.13) will be substituted for
ρ0, since expression (2.11) contains the function J(ρ − ρ̂), which allows
one to perform this procedure.

The latter identity transformation consists in selecting some part
from the repulsive component of the interaction potential by means of
introducing some parameter f ∈ [0, 1]

ŨB(k) = −Ũ1(k) + fΨ̃(k) + (1 − f)Ψ̃(k). (2.15)

Let us consider the summand

− β

2V

∑

k∈BΛ

ŨB(k)ρ~kρ−~k =
β

2V

∑

k∈BΛ

(

Ũ1(k) − fΨ̃(k)
)

ρ~kρ−~k

− β(1 − f)

2V

∑

k∈BΛ

Ψ̃(k)ρ~kρ−~k (2.16)

and represent the latter in the form

−βc(1 − f)

2V

∑

k∈BΛ

Ψ̃(k)ρ~kρ−~k +
βc − β

2V
(1 − f)

∑

k∈BΛ

Ψ̃(k)ρ~kρ−~k.
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As a result one obtains for (2.16)

− β

2V

∑

k∈BΛ

ŨB(k)ρ~kρ−~k =
β

2V

∑

k∈BΛ

ṼB(k)ρ~kρ−~k

− βc

2V
(1 − f)

∑

k∈BΛ

Ψ̃(k)ρ~kρ−~k, (2.17)

where the effective potential Ṽ (k) takes the form

Ṽ (k) = Ũ1(k) − fΨ̃(k) + τ(1 − f)Ψ̃(k), (2.18)

and the value Ψ̃(k) > 0. As in the case of the former transformation let
us replace value ρ~k by ρ̂~k in the last term of (2.17) and use a certain
transformation

exp



− βc

2V

∑

~k∈BΛ

(1 − f)Ψ̃(k)ρ̂~k ρ̂−~k



 =

= g̃Ψ

∫

(dϕ)NB exp



− V

2βc

∑

~k∈BΛ

ϕ~kϕ−~k

(1 − f)Ψ̃(k)
+ i

∑

~k∈BΛ

ϕ~kρ̂~k



 . (2.19)

Here

g̃Ψ =
∏

~k∈BΛ

(

2π
βc

V
(1 − f)Ψ̃(k)

)− 1
2

. (2.20)

As a result of identity transformations appliance described above, the
grand partition function (2.11) takes on the form

Ξ = g̃Ψ

∫ ∞
∑

N=0

eβcµ
∗N

N !

∫

(dρ)NBe

β
2V

∑

~k∈BΛ

Ṽ (k)ρ~kρ−~k

×
∫

(dϕ)NBe
− V

2βc

∑

~k∈BΛ

ϕ~k
ϕ
−~k

(1−f)Ψ̃(k)

×
∫

(d~R)e
i

∑

k∈BΛ

ϕ~k
ρ̂~k

×
∫

(dν)NBe
2πi

∑

~k∈BΛ

ν~k(ρ~k−ρ̂
−~k

)

eβ(µ
′−µ∗(1+τ))ρ0 . (2.21)

To perform further calculations it is convenient to change variables

ρ~k =
√

NBρ
′
~k
; ν~k = ν′~k/

√

NB; ϕ~k = ϕ′
~k
/
√

NB.
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As a result the representation of the grand partition function in space of
collective variables is obtained

Ξ = gΨ

∫

(dρ)NB exp







β[µ′ − µ∗(1 + τ)]ρ0 +
β

2

∑

~k∈BΛ

V (k)ρ~kρ−~k







×

×
∫

(dν)NB (dϕ)NB exp



− 1

2βc(1−f)

∑

~k∈BΛ

ϕ~kϕ−~k

Ψ(k)
+2πi

∑

~k∈BΛ

ν~k1
ρ~k



G(ν̄),

(2.22)

where such notions are introduced

V (k) = Ṽ (k)/v, Ψ(k) = Ψ̃(k)/v. (2.23)

the value gΨ has the form

gΨ = g̃Ψ/
√

NB =
∏

k∈BΛ

(

2π
βc

v
(1 − f)Ψ(k)

)−1/2

. (2.24)

The value G(ν̄) is a result of integration over the coordinates and sum-
mation over the number of particles of the expression

G(ν̄) =

∞
∑

N=0

(z∗)N

N !

∫

(d~R) exp

[

−2πi
∑

k∈BΛ

ν̄~kρ̂~k

]

, (2.25)

where the operator ρ̂~k is given in (2.4), and for ν̄~k one has

ν̄~k = ν~k − ϕ~k/2π. (2.26)

It is possible to perform precise calculation of the expression (2.25), as
we have already presented in [16]. For this purpose one should use an
evident form of the operator ρ̂~k expressed by (2.4)

G(ν̄) =

∞
∑

N=0

(z∗)N

N !

∫

. . .

∫

d~R1 . . . d ~RN exp



−2πi
∑

k∈BΛ

ν̄~k

N
∑

j=1

e−i~k ~Rj



 .

Summation over number of particles in the exponent can be written as
a product of exponents, thus N typical integrals over the coordinate ~R
can be received

G(ν̄) =

∞
∑

N=0

(z∗)N

N !

(

∫

d~R exp

[

−2πi
∑

k∈BΛ

ν̄~ke
−i~k ~R

])N

.
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The latter expression can be summed using series expansion representa-
tion of an exponent

G(ν̄) = exp

[

z∗
∫

d~R exp

[

−2πi
∑

k∈BΛ

ν̄~ke
−i~k ~R

]]

.

The same representation can be used to perform series expansion in the
integrand

G(ν̄) = exp

[ ∞
∑

n=0

(−2πi)n

n!
z∗

∑

k1...kn

ν̄~k1
. . . ν̄~kn

∫

e−i(~k1+...+~kn)~Rd~R

]

.

It is easy to see, that integral over the coordinate ~R correspond to the
integral representation of the δ - function, so,

G(ν̄) = exp

[ ∞
∑

n=0

(−2πi)n

n!
z∗V

∑

k1...kn

ν̄~k1
. . . ν̄~kn

δ~k1+...+~kn

]

.

this result can be rewritten using the nodal representation in the form

G(ν̄) = exp

( ∞
∑

n=0

(2πi)n

n!
α∗
∑

l

ν̄nl

)

= exp

[

α∗
∑

l

e2πiν̄l

]

, (2.27)

where
α∗ = veβcµ

∗

= vz∗. (2.28)

For the value ν̄l one has

ν̄l = νl − ϕl/2π, (2.29)

where

νl =
1√
NB

∑

~k∈BΛ

ν~ke
−i~k~l, ϕl =

1√
NB

∑

~k∈BΛ

ϕ~ke
−i~k~l. (2.30)

Taking into account (2.27), one obtains from (2.22)

Ξ = gΨ

∫

(dρ)NBeβ[µ′−µ∗(1+τ)]ρ0 exp





β

2

∑

~k∈BΛ

V (k)ρ~kρ−~k



J(ρ), (2.31)

where the expression for the Jacobian of transition J(ρ) is

J(ρ) =

∫

(dν)NBe
2πi

∑

~k∈BΛ

ν~kρ~k

F (ν) (2.32)
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where

F (ν) =

∫

(dϕ)NBe
− 1

2βc

∑

~k∈BΛ

ϕ~k
ϕ
−~k

(1−f)Ψ(k)

e
α∗

∑

l

e−2πi(νl−ϕl/2π)

. (2.33)

The notation of the expression (2.33) is symbolic, since ϕ~k and ν~k must
be understood as the functions of variables ϕ~l and ν~l according to the
equalities (2.30).

It is worth to say, that expressions given below are precise, since inte-
gration over the particle coordinates Ri and summation over the number
of particles N are performed without using any interaction potentials and
don’t need any approximations.

3. The calculation of the Jacobian of transition

To perform further calculations interaction potential is to be specificated.
Let us choose (2.1) in the form of the Morse potential, where U1(r) is
the attractive part

U1(r) = 2ǫe−(r−R0)/α, (3.1)

and Ψ(r) is the repulsive component.

Ψ(r) = ǫe−2(r−R0)/α. (3.2)

Here the value ǫ determines interaction on the distance R0 between par-
ticles, where minimal value of Φ(r) can be reached, the parameter α
describes an effective radius of attraction. Widespread use, and large
number of results from numerical calculations [10–12] became the rea-
son stipulated for the choice of exactly such U(r) . The Fourier transform
of this potential has the form

U1(k) = U1(0)(1 + α2k2)−2, Ψ(k) = Ψ(0)(1 + α2k2/4)−2, (3.3)

where

U1(0) = 16πǫ
(α

c

)3

eR0/α, Ψ(0) = ǫπ
(α

c

)3

e2R0/α. (3.4)

It should be noted that sign of the value U(0) = Ψ(0)−U1(0) depends
on the parameter R0/α. For each ln 2 < R0/α < 4 ln 2 one has U(0) < 0,
and for larger R0/α the value U(0) > 0.

One can find the Jacobian of transition to the collective variables J(ρ)
from (2.32) after calculating F (ν). It can be performed approximately
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by means of substituting the value Ψ(k) in (2.33) by its average value
Ψ̄(k), for example, by the integral average

Ψ(k) → Ψ̄ ≡ 〈Ψ(k)〉 =

B
∫

0

dkk2Ψ(k)

B
∫

0

dkk2
. (3.5)

In principle another averaging can be used. After this operation expres-
sion for F (ν) becomes factorized

F (ν) =
∏

l

Fl(ν), (3.6)

where

Fl(ν) =

∫ ∞

−∞
dϕ exp

[

− ϕ2
l

2βc(1 − f)Ψ̄

]

exp
[

α∗e−2πi(νl−ϕl/2π)
]

. (3.7)

Expression (3.7) can be represented in the form

Fl(ν) =

∫ ∞

−∞
dϕl exp

[

− ϕ2
l

2βc(1 − f)Ψ̄

] ∞
∑

m=0

(α∗)m

m!
e−2πim(νl−ϕl/2π),

(3.8)

where representation ex =
∞
∑

m=0

xm

m! is used. Obviously, integration over

ϕl in (3.8) can be performed

∫ ∞

−∞
dϕle

−aϕ2
l eimϕl = (π/a)1/2 exp

(

−pm2
)

, (3.9)

where the value p
p = βcΨ̄(1 − f)/2, (3.10)

and for a one has
a =

(

2βc(1 − f)Ψ̄
)−1

.

As a result

Fl(ν) =

∞
∑

m=0

(α∗)m

m!
e−pm2

e−2πimνl (4πp)
1/2

, (3.11)

where relation (π/a)1/2 = (4πp)1/2 is used.
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Expression (3.11) can be represented in the form of the cumulant
expansion

F̄l(ν) = exp

[ ∞
∑

n=0

(−2πi)n

n!
Mnν

n
~l

]

(3.12)

and values of the cumulants Mn can be found as a functions dependent
on α∗ and the parameter p. This calculation is to be performed for each
Mn according to equalities

∂nFl(ν)

∂νnl

∣

∣

∣

∣

∣

νl=0

=
∂nF̄l(ν)

∂νnl

∣

∣

∣

∣

∣

νl=0

. (3.13)

As a result one obtains

eM0 = (4πp)1/2T0(α∗, p);

M0 =
1

2
ln(4πp) + lnT0(α

∗, p),

M1 = T1/T0,

M2 = T2/T0 −M2
1,

M3 = T3/T0 −M3
1 − 3M1M2,

M4 = T4/T0 −M4
1 − 6M2

1M2 − 4M1M3 − 3M2
2,

M5 = T5/T0 −M5
1 − 10M2

1M3 − 10M3
1M2 − 15M1M2

2 − 5M1M4

− 10M2M3,

M6 = T6/T0 −M6
1 − 15M4

1M2 − 20M3
1M3 − 15M2

1M4 − 45M2
1M2

2

− 60M1M2M3 − 6M1M5 − 15M3
2 − 15M2M4 − 10M2

3.
(3.14)

Here such special functions are used

Tn(α∗, p) =

∞
∑

m=0

(α∗)m

m!
mne−pm2

. (3.15)

The latter have a form of rapidly convergent series, since the parameter
p from (3.10) takes on only positive values, and α∗ = v exp(βcµ

∗).
Note that this special functions Tn(α∗, p) can be expressed by means

of another special functions

Wn(α∗, p) = (α∗)n
∞
∑

m=0

(α∗)m

m!
e−p(n+m)2 . (3.16)
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Herewith

T0(α
∗, p) = W0(α∗, p),

T1(α
∗, p) = W1(α∗, p),

T2(α
∗, p) = W1(α∗, p) + W2(α∗, p),

T3(α
∗, p) = W3(α∗, p) + 3W2(α∗, p) + W1(α∗, p),

T4(α
∗, p) = W4(α∗, p) + 6W3(α∗, p) + 7W2(α∗, p) + W1(α∗, p),

T5(α
∗, p) = W5(α∗, p) + 10W4(α∗, p) + 25W3(α

∗, p) + 15W2(α
∗, p)

+ W1(α∗, p),

T6(α
∗, p) = W6(α∗, p) + 15W5(α∗, p) + 65W4(α

∗, p) + 90W3(α
∗, p)

+ 31W2(α
∗, p) + W1(α∗, p). (3.17)

Taking into account (3.12), one can obtain the following expression
for the Jacobian of transition J(ρ)

J(ρ) =
∏

l

Jl(ρl), (3.18)

where

Jl(ρl) =

∫ ∞

−∞
dνle

2πiνlρl exp

[

n0
∑

n=0

(−2πi)n

n!
Mnν

n
l

]

. (3.19)

There is a polynomial of degrees of a real variable νl in the index
of the exponent. The convergency of the integral over this variable is
provided by even powers. It is easy to see if represent (3.19) in the form

Jl(ρl) =

∫ ∞

−∞
dνle

2πiνlρlef(x)(cos f1(x) − i sin f1(x)), (3.20)

where

f(x) = − (2π)2

2
M2x

2 +
(2π)4

4!
M4x

4 − (2π)6

6!
M6x

6,

f1(x) = 2πM1x− (2π)3

3!
M3x

3 +
(2π)5

5!
M5x

5. (3.21)

Here n0 = 6 is assigned to provide definiteness, so to say the approxi-
mation used in [18] is applied.

The expression (3.20) can be represented in a form

J̄l(ρl) = exp

[

−
n0
∑

n=0

an
n!

ρnl

]

(3.22)
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as a result of integration over variables νl. Herewith, coefficients an are
real values and have a form

a0 = ln(2π) − ln I0, a1 = −J1/I0, a2 = I2/I0 + a21,

a3 = J3/I0 − a31 + 3a1a2, (3.23)

a4 = −I4/I0 + a41 − 6a21a2 + 4a1a3 + 3a22.

Here such notification are used

In =

∫ ∞

−∞
dxxn cos(f1(x))ef(x),

Jn =

∫ ∞

−∞
dxxn sin(f1(x))ef(x). (3.24)

As it was said above, convergency of the integrals expressed in (3.24)
occurs for all values of

M2 > 0, M4 < 0, M6 > 0. (3.25)

The condition M6 > 0 is sufficient for existence of quantities In(α⋆, p)
and Jn(α⋆, p). The results of the calculations show that the value of
M2 > 0 for any values of α⋆ and p. Note that α⋆ = veβcµ

⋆

and p from
expression (3.10) take on real positive values.

The cumulants M4 and M6 are real, but they may take on both
positive and negative values. The dependence of these cumulants on the
values of α⋆ and p is presented in Figure 1. It is easy to see, that there
exists the region of values of the parameters 0 < α⋆ < 25 and 0,1 < p <
3, which satisfy the condition (3.25). Here M4 < 0 both with M6 > 0,
that allows one to find corresponding values of an.

An example of values of the cumulants Mn and corresponding coef-
ficients an for the case of R0/α = 3, 7ln 2, α⋆ = 11 and p = 0,11 is given
below. The choice of such values of the parameters is associated with the
procedure of self-consistency, described in Appendix.

M0 = 6, 1362, M1 = 4, 1588, M2 = 2, 2040, M3 = 0, 6023,

M4 = −0, 1498, M5 = −0, 0529, M6 = 0, 1523;

a0 = −0, 1640, a1 = −2, 9664, a2 = 1, 8402, a3 = −2, 3378,

a4 = 6, 2845. (3.26)

It should be noted, that obtained values of the coefficients (3.26)
correspond to a pair of (in principle, random) parameters. One of them
namely parameter p is defined by expression (3.10) and the value f , that
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Figure 1. Regions of the cumulant values M6 > 0 (signed by 1) depend-
ing on the values α⋆ and p.

determines the reference system, and also by the value of the critical
temperature βc = 1/kTc. So if some value of f (f = 0,1488) is set and
Tc is determined, one can obtain only one fixed value of p (Appendix).

Summing up the calculations performed above, functional represen-
tation of the grand partition function of a fluid model can be written.
Substitution of (2.25) in the expression (3.22) leads to

Ξ = gΨe
NBM0

∫

(dρ)NBeβ[µ
′−µ∗(1+τ)]ρ0

√
NB

× exp

[

β

2

∑

k

V (k)ρ~kρ−~k

]

∏

l

(

e−
∑n0

n=0
an
n! ρ

n
l

)

. (3.27)

Since ρl = 1√
NB

∑

k ρ~ke
i~k~l is the nodal representation of the collective
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variable ρ~k one has

Ξ = gΨe
(M0−a0)NB

∫

(dρ)NB exp

[

√

NBβ[µ′ − µ∗(1 + τ)]ρ0

− a1
√

NBρ0 −
1

2

∑

k

d(k)ρ~kρ−~k − 1

3!

a3√
NB

∑

k1,...,k3

ρk1,...,k3δk1+...+k3

− 1

4!

a4
NB

∑

k1,...,k4

ρk1,...,k4δk1+...+k4

]

. (3.28)

Here the following notation is used

d(k) = a2 − βV (k), (3.29)

where V (k), expressed by (2.20), is the Fourier transform of some effec-
tive interaction potential.

Further calculation of (3.28) can be performed, using the method of
calculation of the grand partition function of the Ising model in external
field proposed in [19]. Herewith the role of external field plays the value

h = βµ′ − βµ∗(1 + τ) − a1 (3.30)

or

h =
βc

1 + τ
µ′ − βcµ

∗ − a1. (3.31)

4. The grand partition function and the thermody-

namic characteristics

The expression (3.28) allows one to calculate the dependence of pressure
P on temperature T and chemical potential µ′ applying a certain relation

PV = kT ln Ξ. (4.1)

The average number of particles N̄ can be found if the grand partition
function is known

N̄ =
∂ ln Ξ

∂βµ
. (4.2)

The latter expression allows one to express the chemical potential in
terms of number of particles or relative density

n̄ =
N̄

NB
=

(

N̄

V

)

v, (4.3)
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where v is a volume of an elementary cell and a parameter of the model
in use.

Uniting equalities (4.1) and (4.2), one can find pressure dependence
on temperature T and relative density n̄, that is to be the state equation
of investigated model.

One of the methods of calculating Ξ consist in substitution of vari-
ables in (3.28)

ρ~k = η~k + nc

√

NBδ~k. (4.4)

As a result one obtains

Ξ = gΨe
NB(M0−a0)+NBE0(µ)

×
∫

(dη)NB exp

[

M
√

NBη0 −
1

2

∑

k

d̃(k)η~kη−~k

− a4
4!

1√
NB

∑

k1,...,k4

ηk1 ...ηk4δk1+...+k4

]

. (4.5)

Here such notations are introduced

M = βµ′ − βµ∗(1 + τ) − ã1,

ã1 = a1 + ncd(0) − n3
c

a4
3
,

d̃(k) = ã′2 − βV (k), (4.6)

ã′2 = a2 − n2
c

a4
2
.

The value of shift nc

nc = −a3/a4, (4.7)

and for E0(µ) one obtains the expression

E0(µ) = βµ′nc − βµ∗(1 + τ)nc − a1nc −
1

2
d2(0)n2

c +
a4
8
n4
c . (4.8)

Note that the value d̃(0) is expressed in terms of d(0)

d̃(0) = d(0) − a4
2
n2
c . (4.9)

Taking this into account one can find for E0(µ)

E0(µ) = β[µ′ − µ∗(1 + τ)]nc − a1nc −
1

2
d̃(0)n2

c −
a4
8
n4
c
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or considering that

β
(

µ′ − µ∗(1 + τ)
)

= M + ã1.

one has

E0(µ) = Mnc +
1

2
d̃(0)n2

c +
a4
24

n4
c . (4.10)

In common with the former expression

ã1 = a1 + d̃(0)nc +
a4
6
n3
c . (4.11)

The following expression can be written for the value M

M = βµ− βµc,

where
βµc = βµ∗(1 + τ) + ã1 = βcµ

∗ + ã1.

Let us consider the simplest approximation in calculation of Ξ ex-
pressed by (3.28), the so called zero mode approximation (ρk = 0 for
k 6= 0; ρ0 6= 0):

ln Ξ0 = ln gΨ + NB (M0 − a0 + E0(µ)) + NBE(ρ̄0), (4.12)

where Ξ0 denotes the grand partition function (4.5) in the approximation
mentioned above

E(ρ̄0) = Mρ̄0 −
1

2
d̃(0)ρ̄20 −

a4
24

ρ̄40, (4.13)

herewith ρ̄0 is a solution of the equation

M − d̃(0)ρ̄0 −
a4
6
ρ̄30 = 0. (4.14)

If several solutions ρ̄0 exist the one leading to maximal value of E(ρ̄0)
in (4.13) should be chosen.

The method of steepest descent is used for calculation of (4.12), that
is why the second derivative of E(ρ̄0) has to be negative, and, conse-
quently, every solution ρ̄0 has to satisfy the condition

ρ̄0 > ρ00, ρ00 =

(

−2d̃(0)

a4

)1/2

. (4.15)

Such situation takes place barely if T < Tc, where ρ00 is a real value.
For all T > Tc the equation (4.14) has only one solution.
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5. The thermodynamic potential of a simple fluid in

frames of the simplest approximation

All further calculations concern a case, in which fluctuation effects are
not considered, so to say the approximation of zero model is in use.
Taking into account the equality (4.14), it should be noted, that in case
of M = 0 the critical temperature Tc is determined from the condition

d̃(0)
∣

∣

∣

T=Tc

= 0. (5.1)

Using (4.6) one can find

βc =
ã′2

V (0, Tc)
, kTc =

V (0, Tc)

ã′2
. (5.2)

For T 6= Tc one obtains

d̃(0) = ã2
τ

1 + τ
, where ã2 = ã′2

16e−R0/α − 1

16e−R0/α − f
. (5.3)

5.1. The case T = Tc

It should be noted at once, that correct investigation of the behavior
of a simple fluid at τ = 0 should be carried out considering fluctuation
effects, which cause emergence of the renormalization group symmetry.
But even in frames of simplified consideration the value Tc should be
fixed (at least approximately) and then, only, the behavior of a system
at temperature nonequal to Tc should be examined.

Assigning d̃(0) = 0, using (4.1) one obtains

PV = kTc ln Ξc, (5.4)

where

ln Ξc = ln g
(c)
Ψ + NB (M0 − a0 + E0c(µ) + Ec(ρ̄0c)) . (5.5)

Here
E0c(µ) = Mcnc +

a4
24

n4
c ; Ec(ρ̄0) = Mcρ̄0c −

a4
24

ρ̄40c.

The value ρ̄0c is determined using (4.14). In case of τ = 0 one can find

ρ̄0c =

(

6Mc

a4

)1/3

. (5.6)
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The average number of particles in case of τ = 0 can be found using
(4.2), (4.3), where the expression (5.5) is used as Ξc. One has

n̄ = nc + ρ̄0c. (5.7)

So one can find an evident dependence of the chemical potential Mc on
the density at T = Tc from the equalities (5.6) and (5.7)

Mc =
a4
6

(n̄− nc)
3. (5.8)

Let us find the grand thermodynamic potential Ω(T0, µ) of a fluid

Ω = −kT ln Ξ. (5.9)

In case of T = Tc one has the expression

Ω = −kTNB

[

fc + n̄Mc −
a4
24

(n̄− nc)
4
]

, (5.10)

where

fc =
1

NB
ln gΨ + M0 − a0 +

a4
4!
n4
c . (5.11)

The chemical potential Mc can be excluded from the expression (5.10),
by means of using the equality (5.8). In this case

Ω = −kTNB

[

fc +
a4
6
n̄(n̄− nc)

3 − a4
24

(n̄− nc)
4
]

. (5.12)

The state equation at T = Tc can be found using (5.4)

Pv

kTc
= fc + n̄Mc −

a4
24

(n̄ + nc)
4, (5.13)

or excluding the chemical potential Mc, one obtains

Pv

kTc
= fc +

a4
24

n̄(n̄ + nc)
3 − a4

24
(n̄ + nc)

4. (5.14)

Let us find the free energy F = Ω + µN̄ of a fluid. The grand thermo-
dynamic potential is a function of temperature, volume and chemical
potential

dΩ = −SdT − PdV −Ndµ, (5.15)

and the pressure calculated in frames of this representation has the form

P = −
(

∂Ω

∂V

)

T,µ

. (5.16)
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The free energy is a function of temperature, volume and average number
of particles

dF = −Sdτ − PdV + µdN̄, (5.17)

that is why the pressure is given by the expression

P = −
(

∂F

∂V

)

T,N̄

. (5.18)

According to (4.6) one has

βµ′ = M + βµ⋆(1 + τ) − ã1, (5.19)

and so, at T = Tc one can find F = Ω + NBn̄µ, or

F = −kTc (V/v)
[

fc + f2cn̄− a4
24

(n̄− nc)
4
]

, (5.20)

where
f2c = ã1 − βcµ

⋆. (5.21)

Calculation of the pressure P using (5.18) and taking into account (5.20),
results in (5.14). Just as it should be expected, calculation of the state
equation at T = Tc is not dependent on the way it was received (the
formulas (5.16) and (5.18)) and has the form (5.14).

Critical value of the pressure can be found using (5.14) and binding
n̄ = nc. So one has

Pc =
kTcfc
v

, (5.22)

where the value fc is expressed in (4.11).

5.2. The case T > Tc

According to (4.16) expression for the simplest approximation of the
grand partition function at T > Tc has the form

ln Ξ0 = ln gΨ + NB (M0 − a0 + E0(µ) + E(ρ̄0)) , (5.23)

where

E(ρ̄0) = Mρ̄0 −
1

2
d̃(0)ρ̄20 −

a4
24

ρ̄40, (5.24)

E0(µ) = Mnc +
1

2
d̃(0)n2

c +
a4
24

n4
c , (5.25)
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and ρ̄0 is the solution of the equation

M − d̃(0)ρ̄0 −
a4
6
ρ̄30 = 0. (5.26)

Solution unicity of this equation, which is written in reduced form as

ρ̄30 + pρ̄0 + q = 0, (5.27)

where

p =
6d̃(0)

a4
, q = −6M

a4
, (5.28)

is provided with the positive discriminant (here d̃(0) > 0)

Q =

(

2d̃(0)

a4

)3

+

(

3M

a4

)2

. (5.29)

It should be noted, that sign of Q doesn’t depend on the sign of the
chemical potential. Within all the solutions only one is real

ρ̄0 =

(

3M

a4
+
√

Q

)1/3

+

(

3M

a4
−
√

Q

)1/3

. (5.30)

This equation defines (with respect to (5.7)) dependence of the chemical
potential M on the density and the temperature.

The diagram of ρ̄0 dependence on M is presented in Figure 2 at
T > Tc.

Note that region M > 0 refers to positive values of ρ̄0 = n̄− nc and
at n̄ < nc one obtains M < 0. Conversion of the chemical potential M
into zero takes place at n̄ = nc.

Dependence of the chemical potential M on the density at T > Tc

can be defined directly from (5.26), taking into account that ρ̄0 = n̄−nc.
Then

M = d̃(0)(n̄− nc) +
a4
6

(n̄− nc)
3. (5.31)

In contrast to (5.8) the linear term by the density is present here, and
it becomes a main one in high temperature region. In case of T → Tc

cubic dependence of M on the density is obtained (Figure 3).
The grand thermodynamic potential of a fluid at T > Tc has the

form

Ω = −kTNB

[

fc +
1

2
d̃(0)n2

c + Mn̄− 1

2
d̃(0)(n̄− nc)

2 − a4
24

(n̄− nc)
4

]

,

(5.32)
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Figure 2. Dependence of the solution ρ̄0 on the chemical potential M at
T > Tc in case of R0/α = 3, 7ln 2, α⋆ = 11 and p = 0,11.

where

fc =
1

NB
ln gΨ + M0 − a0 +

a4
24

n4
c +

1

2
d̃(0)n2

c . (5.33)

Corresponding to (5.32) the free energy doesn’t contain chemical po-
tential and has the form

F = −kT (V/v)

[

fc + f2n̄− 1

2
d̃(0)n2

c −
1

2
d̃(0)(n̄− nc)

2 − a4
24

(n̄− nc)
4

]

.

(5.34)
where

f2 = ã1 − βµ∗(1 + τ). (5.35)
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2

3

1

Figure 3. Dependence of the M on the density n̄ at T > Tc for temper-
atures τ1 = 0.01 (curve 1), τ2 = 0.1 (curve 2), τ3 = 1 (curve 3).

The state equation at T > Tc has the form

Pv

kT
= fc +

ã2
2

τ

1 + τ
n2
c + n̄M − ã2

2

τ

1 + τ
(n̄−nc)

2 − a4
24

(n̄−nc)
4. (5.36)

Substitution of the value M expressed by (5.31), leads to

Pv

kT
= fc +

ã2
2

τ

1 + τ
n̄2 +

a4
6

(n̄− nc)
3 − a4

24
(n̄− nc)

4. (5.37)

Dependence of the pressure on the density n̄ at temperatures T ≥ Tc

is presented in Figure 4.
The expression (5.37) allows one to depict 3-dimensional diagram of

pressure dependence on the average density and reduced temperature τ
in the region T ≥ Tc (Figure 5).

The state equation expressed by (5.37) can be represented in reduced
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2

3

1

4

Figure 4. Dependence of the pressure P on the density n̄ at τ = 0 (curve
1), τ = 0.01 (curve 2), τ = 0.1 (curve 3) and τ = 1.5 (curve 4).

form. For this purpose the following values are introduced

P̃ =
P

Pc
, t =

T

Tc
, η =

n̄

nc
. (5.38)

Then (5.37) takes on the form

P̃ = 1 + P1(t− 1)η2 + P2(1 + 3η)(η − 1)3, (5.39)

where such notifications are used

P1 =
ã2n

2
c

2fc
, P2 =

ã2n
4
c

24fc
. (5.40)
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Figure 5. Dependence of the pressure P on the average density n̄ and
the reduced temperature τ in the region T > Tc.

The curve of pressure dependence (5.39) on the density η has an inflexion
point at η = 1 and T = Tc and reaches minimum at η = 0, that follows
from the relations

∂P̃

∂η
= 2η

(

P1(t− 1) + 6P2(η − 1)2
)

(5.41)

∂2P̃

∂η2
= 2P1(t− 1) + 12P2(1 − 4η + 3η2). (5.42)

It is easy to see, that for all t > 1 the first derivative turns into zero at
η = 0 only. In case of t = 1 there is additional inflexion point η = 1,
since at t = 1 and η = 1 the second derivative also turns into zero.

6. The state equation at T < Tc

As it was shown above, at temperature region T > Tc, where Tc is
defined by (5.2), in a system consisting of N non-interactive particles
the phase transition is absent. The pressure P̃ expressed in (5.39) is
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gradually increasing function of density η. It is expected to observe the
first order phase transition at temperatures T < Tc, that must show to
turn susceptibility into infinity for certain values of density.

Let us calculate the grand partition function (4.5) in the simplest
approximation at T < Tc. The following expression is just here

Ξ0 = ln g′ΨNB (M0 − a0 + E0(µ)) + NBE(ρ̄0i), (6.1)

where

E0(ρ̄0i) = Mρ̄0i −
ã2
2

τ

τ + 1
ρ̄20i −

a4
24

ρ̄40i, (6.2)

herewith ρ̄0i are solutions of the equation

M − ã2
τ

1 + τ
ρ̄0i −

a4
6
ρ̄30i = 0. (6.3)

Unlike case of T > Tc the equation (6.3) can posses more than one real
root. In this case for E(ρ̄0i) in expression (6.2) one should chose ρ̄0i
corresponding to the maximal value of E(ρ̄0i), since calculation of (6.1)
is performed using the method of steepest descent, which foresees such
a condition.

The equation (6.3) can be written in reduced form

ρ̄30i + pρ̄0i + q = 0, (6.4)

where the coefficients p and q are defined in (4.28).
Let us find the marginal value of the chemical potential |Mq|, at

which the equality Q = 0 is fulfilled. According to (5.29) one has

Mq =
a4
3

(

−2d̃(0)

a4

)
3
2

. (6.5)

for all values of |M | > Mq discriminant Q > 0, and so, the equation
(6.4) has single real root. In case of |M | < Mq (Q < 0) there are three
real solutions.

Let us consider in detail case of Q ≥ 0 at T < Tc, where single root
exists. Using (5.30) at |M | = Mq one can find

ρ̄0r =

(

24

a4
Mq

)
1
3

. (6.6)

Since ρ̄0i = n̄ − nc, the value of the density nc, which realizes at the
value of the chemical potential |M | = Mq, can be found

n2 = nc + ng, (6.7)
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where

ng =

(

−8ã2
a4

τ

τ + 1

)
1
2

. (6.8)

In course of further increase in the chemical potential M (|M | > Mq) at
T < Tc the density can be defined from the relation

n̄ = nc +

(

3M

a4
+ Q

1
2

)
1
3

+

(

3M

a4
−Q

1
2

)
1
3

. (6.9)

The state equation of a fluid at T < Tc for all M > Mq has the form
(5.37), where the value τ < 0. Under such conditions fluid exists in a
liquid state (at T < Tc), where the following dependence of the chemical
potential M = M2 on the density (n̄ ≥ n2) occurs (see Figure 6, solid
line 2)

M2 =
ã2τ

1 + τ
(n̄− nc) +

a4
6

(n̄− nc)
3. (6.10)

In case of large negative values of the chemical potential M (M ≤
−Mq) the average density n1, expressed below, corresponds to the value
M = −Mq

n1 = nc − ng. (6.11)

For all n̄ < n1 gaseous phase of a fluid occurs and realizes for all M <
−Mq (Figure 6, solid line 1).

Density region n1 < n̄ < n2 corresponds to the chemical potential
|M | < Mq, where Q < 0. The equation (5.27) has three real roots in this
case

ρ̄01 = 2ρ0r cos
α

3
, (6.12)

ρ̄02 = −2ρ0r cos
(α

3
+

π

3

)

,

ρ̄03 = −2ρ0r cos
(α

3
− π

3

)

,

where

ρ0r =

(

−2d̃(0)

a4

)
1
2

, (6.13)

and the angle α is defined from the condition cosα =
M

Mq
and is equal

to

α = arccos
M

Mq
≡ π

2
− arcsin

M

Mq
. (6.14)
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1

2

Figure 6. Accordance between the density of a fluid and values of the
chemical potential M ; solid line 1 – gaseous phase; 2 – liquid phase.

In case of M = Mq one has α = 0, so,

lim
M→−Mq

ρ̄01 = ρ
(+)
1 =

(

− 8ã2τ

a4(1 + τ)

)
1
2

≡ ng, (6.15)

lim
M→−Mq

ρ̄02 = lim
M→−Mq

ρ̄03 = ρ
(+)
2 = −

(

− 6ã2τ

a4(1 + τ)

)
1
2

.

Comparing (6.15) with (6.8), one can find, that solution ρ
(+)
1 coincides

with ng and corresponds to the density of a liquid phase n2.
Case M = −Mq gives α = π. Herewith

ρ
(−)
1 = ρ

(−)
2 = ρ̄s =

(

− 2ã2τ

a4(1 + τ)

)
1
2

, (6.16)

ρ
(−)
3 = lim

M→−Mq

ρ̄03 = −ρ
(+)
1 = −ng.
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1

2

2

3

Figure 7. Dependence of the roots (5.12) on the chemical potential values
|M | < Mq, curve 1 corresponds to the solution ρ̄01, curve 2 – ρ̄02, curve
3 – ρ̄03

The solution ρ̄03 results at M = −Mq to the density

n1 = nc − ng. (6.17)

In general case the dependence of roots ρ̄0i from (6.12) on the values
of the chemical potential in the region |M | < Mq is depicted on Fig-
ure 7. Herewith the solutions ρ̄01 and ρ̄03 have both positive and negative
branches and coincide at M = 0. The root ρ̄02 takes on negative values
only.

These dependencies ρ̄0i = ρ̄oi(M) can be used to presented in Fig-
ure 8. It is easy to see, that root ρ̄01 correspond to the maximum of
E(ρ̄0i) as far as the chemical potential decreases from Mq to zero and,
when M changes from zero to −Mq, maximal value of E(ρ̄0i) occurs at
ρ̄03.
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3

2

1

Figure 8. Dependence of the function E(ρ̄0i) exponent on the chemical
potential M .

So the state equation at temperature ranges T < Tc has to be written
in the form

n̄ = nc + ρ̄01Θ(M) + ρ̄03Θ(−M), (6.18)

where Θ(M) is the Heaviside function, which is equal to one at M > 0,
turns into zero at M < 0 and equal to 1/2 at M = 0. It should be noted
that the equality (6.12) foresees existence of two marginal values of the
roots ρ̄0i when the chemical potential M approaches to zero.

n(+) = lim
M→0

n̄ = nc + lim
M→0

ρ̄01 = nc + nt, (6.19)

where

nt =

(

− 6ã2τ

a4(1 + τ)

)1/2

. (6.20)
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When the chemical potential approaches to zero from below one has

n(−) = lim
M→−0

n̄ = nc + lim
M→−0

ρ̄03 = nc − nt. (6.21)

So the change of sign of the chemical potential M at temperature ranges
T < Tc tends to the fluid density leap which has a size

∆n̄ = n(+) − n(−) = 2nt. (6.22)

It should be noted, that at temperature ranges T > Tc such leap is
absent, since there exists only single root ρ̄0 at which the value E(ρ̄0)
reaches its maximum, and the change of sign of the chemical potential
M converts the value ρ̄0 into itself.

The expression for the grand thermodynamic potential at tempera-
ture ranges T < Tc, where the first order phase transition occurs, has
the form

Ω = −kTNB

[

fc +
n2
c

2

ã2τ

1 − τ
+ ncM + D13(M)

]

, (6.23)

here the chemical potential |M | < Mq, and the following expression
corresponds to the value D13(M)

D13(M) =

(

− ã2
2

τ

1 + τ
ρ̄201 −

a4
24

ρ̄401

)

Θ(M)

−
(

− ã2
2

τ

1 + τ
ρ̄203 −

a4
24

ρ̄403

)

Θ(−M). (6.24)

Using the Laplace transformation F = Ω + µN̄ , it is possible to find
the free energy of a fluid in the region of the first order phase transition,
that corresponds to (6.8).

F = −kT (V/v)

[

fc +
n2
c

2

ã2τ

1 + τ
+ n̄

(

f2 − nc
ã2τ

1 + τ

)

+ D13(n̄)

]

, (6.25)

where
f2 = ã1 − βcµ

∗(1 + τ). (6.26)

For D13(n̄) one has

D13(n̄) = −
(

ã2
2

τ

1 + τ
(n̄− nc)

2 +
a4
24

(n̄− nc)
4

)

Θ(n(−) − n̄)

−
(

ã2
2

τ

1 + τ
(n̄− nc)

2 +
a4
24

(n̄− nc)
4

)

Θ(n̄− n(+)). (6.27)
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Figure 9. Relation between density ranges of a simple fluid at T < Tc

and the chemical potential values M = βµ− βµc.

In such a way, a simple fluid system stays in gaseous or liquid state, as
far as the chemical potential increases. It depend on value of the latter.
As it was shown above, at T < Tc and negative values of M < −Mq

only single root of the equation (6.4) occurs. This situation corresponds
to the densities n̄ < n1 (n1 = nc − ng, and ng is expressed by (6.8)).
This range of densities meets pure gaseous phase (Figure 9). As far as
the chemical potential increases −Mq < M ≤ 0 the equation (6.4) has
three real solutions, however only one of them ρ̄03 realizes. It can be seen
from the following non-equalities

E(ρ̄03) > E(ρ̄02), ρ̄03 > ρ̄02. (6.28)

This situation is just for all n1 < n̄ < n(−).
The density n(−) is the largest value for a fluid at M < 0 and tem-

peratures T < Tc.
The transition of value M from −0 to +0 causes the density leap

from n(−) to n(+) and for all n(+) ≤ n̄ < n2 the chemical potential takes
on values 0 ≤ M < Mq. There are three real roots of the equation (6.4)
for these values of M , with realization of ρ̄01 expressed in (6.12).

E(ρ̄01) > E(ρ̄02); E(ρ̄01) > E(ρ̄03). (6.29)
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This situation takes place for all n(+) < n̄ < n2. The stable liquid phase
with densities n̄ > n2 corresponds to case of M > Mq.

The generalized state equation of a fluid has the form

Pv

kT
=

[

fc +
ã2
2

τ

1 + τ
n2
c +

a4
6
n̄(n̄− nc)

3 − a4
24

(n̄− nc)
4

]

×
[

Θ(n(−) − n̄) + Θ(n̄− n(+))
]

, (6.30)

where
n(−) = nc − nt, n(+) = nc + nt. (6.31)

the value nt = 0 at T > Tc, and at T < Tc one has

nt =

(

− 6ã2τ

a4(1 + τ)

)1/2

. (6.32)

It should be noted that in case of nt = 0 the sum of theta-functions in
(6.15) turns into unity

Θ(nc − n̄) + Θ(n̄− nt) = 1. (6.33)

The transition occurs between gaseous and liquid phases character-
ized by densities, that maximize the expression (6.30). Their values can
be found from the following condition

∂(Pv/kT )

∂n̄

∣

∣

∣

∣

∣

M=0,T

= 0, (6.34)

which leads to equation

ã2τ

1 + τ
(n̄− nc) +

a4
6

(n̄− nc)
3 = 0. (6.35)

The solutions

n̄ = nc ±
(

− 6ã2τ

a4(1 + τ)

)1/2

(6.36)

satisfy the condition of maximum of the expression (6.30). Solving the
equation (6.36) with respect to temperature, allows one to obtain the
expression

T

Tc
=

6ã2
6ã2 + a4n2

c(n̄/nc − 1)2
, (6.37)

which can serve as the base for the binodal construction (the coexis-
tence curve) in temperature-density coordinates which is presented in
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Figure 10. Dependence of the pressure P on the density n̄ at τ = 0
(curve 1), τ = −0.01 (curve2), τ = −0.05 (curve 3), τ = −0.1 (curve 4),
τ = −0.15 (curve 5), τ = −0.2 (curve 6).

Figure 11. The equation for the spinodal, so as to say the curve of
marginal states of a system, defining the boundaries of instability region,
can be found from extremum condition for the state equation (6.30):

∂(Pv/kT )

∂n̄

∣

∣

∣

∣

∣

T

= 0, (6.38)

which leads to the following equation

n̄ = nc ±
(

− 2ã2τ

a4(1 + τ)

)1/2

, (6.39)
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12

Figure 11. Binodal (1) and spinodal (2) in reduced temperature-density
coordinates.

or
T

Tc
=

2ã2
2ã2 + a4nc(n̄/nc − 1)2

, (6.40)

whence the spinodal curve can be obtained. It is also presented in Fig-
ure 11.

7. Appendix

Determination of the value B, that characterize the model potential

U(k) =

{

UB(k) = Ψ(k) − U1(k) at |k| ≤ B
0 at |k| > B

(7.1)

Here
Ψ(r) = ǫe−2(r−R0)/α U1(r) = 2ǫe−(r−R0)/α.
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Let us perform transition to reduced form. Let it be r′ = r/R0, then

Ψ(r′) = ǫe−2(r′−1)/αR , U1(r′) = 2ǫe−(r′−1)/αR , (7.2)

where
αR = α/R0. (7.3)

So, there are two parameters of the interaction potential ǫ (as a dimen-
sion unit) and αR. The Fourier transforms

Ψ(k) = Ψ(0)
(

1 + α2
Rk

2/4
)−2

, Ψ(0) = ǫπα3
Re

2/αR ,

U1(k) = U1(0)
(

1 + α2
Rk

2
)−2

, U1(0) = 16ǫπα3
Re

1/αR . (7.4)

Herewith the following condition is satisfied

U1(0) = Ψ(0)16e−1/αR . (7.5)

The condition to determine the value B has the form
∫ ∞

B

V (k)k2dk = 0, (7.6)

where

V (k) = U1(k) − fΨ(k) + τ(1 − f)Ψ(0)

(

1 +
α2
Rk

2

4

)−2

. (7.7)

Let us assign τ = 0.
The evident form of the integral (7.5) can be calculated. So the fol-

lowing expression is obtained

f = 16e−1/αR

∫ ∞

B

k2dk

(1 + α2
Rk

2)2
/

∫ ∞

B

k2dk
(

1 +
α2

Rk2

4

)2 . (7.8)

That is why

f =
16

8
e−1/αR

[

π

2
+

BαR

1 + B2α2
R

− arctg(BαR)

]

×
[

π

2
+

BαR/2

1 + B2α2
R/4

− arctg(BαR/2)

]−1

. (7.9)

The parameter p expressed by (3.10) has the form

p = βcΨ̄(1 − f)/2 (7.10)

ICMP–14–12E 37

Figure 12. Change of the parameter p depending on the value B at
R0/α = 3, 7ln 2.

and is dependent on the average value of the repulsive potential Ψ̄ =
〈Ψ(k)〉 at ranges [0, B], where B = B(αR, f). At fixed value of αR (the
characteristic of a substance) the latter is determined only by the pa-
rameter f (see Figure 12).

Ψ̄ can be found as an average value of Ψ(k) at k ∈ [0, B]

Ψ̄ =
3

2
Ψ(0)

(

2

αRB

)3(

arctg
αRB

2
− 1

2

BαR

1 + aα2
RB

2/4

)

= Ψ(0)χR,

(7.11)
where

χR =
3

2

(

2

αRB

)3(

arctg
αRB

2
− 1

2

BαR

1 + aα2
RB

2/4

)

. (7.12)
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It is easy to see, that the value χR is a function of B (or f) at fixed αR.
In case of fixed f = 0.1488, at which B = 1, 258 one has χR = 0, 932,

that correspond to the value PR

PR = 0.11, (7.13)

which is calculated using (6.9) in the simplest approximation, where βc

is expressed by (5.2)
βc = ã2/V (0, Tc).

So

PR =
a2Ψ(0)χR

2V (0, Tc)
(1 − f) (7.14)

since
V (0, Tc) = U1(0) − fΨ(0) = Ψ(0)

(

16e−1/αR − f
)

,

that is why

PR =
ã2
2

1 − f

16e1/αR − f
χR. (7.15)

So parameter p, which defines the special functions (3.15) depends on
the value f and the parameter α∗ = v exp(βµ∗). The latter (α∗) defines
values of ã2.

Conclusion. One should chose a substance to be observed, that means
to fix the parameter αR (for example αR = 0, 3899 referring to R0/α =
3, 7ln 2). The range of possible values of parameter f defining the ref-
erence system changes within the limits 0 < f < 0.154 (see. Figure 13).
In this range V (0) > 0, that is necessary condition for appliance of ana-
lytical calculation methods, specifically the method of CV. In this case
reference system includes main part of repulsive potential.

ΨRS = (1 − f)Ψ(k),

where 0.846 < (1 − f) < 1.
To co-ordinate the “primeval” parameter p which has the value (7.9),

one has to chose the value

f = 0, 1488, (7.16)

corresponding to p = 0, 11. The latter has to coincide with the value of p
expressed by (7.10) at α∗ = 11. If the initial value p 6= 0, 11, any α∗ exist
for (7.15) to coincide with the result of calculating p using the formula
(7.10).
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Figure 13. Change of the parameter f depending on the value B at
R0/α = 3, 7ln 2.

8. Conclusions

Using the general principles of statistical mechanics in frames of the
grand canonical ensemble the calculation method of the grand partition
function of a simple fluid model was proposed. A system of N− particles
in volume V with periodic boundary conditions was concerned. As an
interaction potential between particles the Morse potential was chosen.

In course of calculating the grand partition function the reference sys-
tem, formed from a part of repulsive component of interaction potential,
was used. It was established that due to selection of the reference system
one can perform summation over number of particles N and integration
over their coordinates. As a result the evident form of the Jacobian of
transition from a set of variables, characterizing individual particles, to
collective variables, which average values are connected with the order
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parameter of the first order phase transition, was obtained. Coefficients
of the Jacobian of transition, that is a polynomial over a series of col-
lective variables in the exponent argument, expressed via the special
functions Tn(α∗, p) were introduced. The latter are represented in the
form of rapidly convergent series. The special functions arguments α∗

and p are real positive values. The former α∗ is related to some fixed
value of the chemical potential µ∗, the latter argument p is proportional
to the reference system potential.

We received representation of the grand partition function corre-
sponding to some lattice model, but in contrast to the lattice gas model it
foresees that a cell can contain random number of particles. It is general
and valid both far from the critical point and directly in its vicinity.

We considered simplest approximation which is valid out of a vicinity
of the critical point. The equation of state received in this work describes
a behavior of a simple fluid system in wide temperature ranges below
and above the critical one Tc. In temperature ranges T < Tc the presence
of rectilinear plots at the curve of pressure dependence on density is
established. It describes a density loop at the first order phase transition.
A curve that circumflex these rectilinear plots allowed us to obtain the
binodal line. Also the spinodal curve as the instability region of a system
at temperatures lower than the critical one was found.

The usage of higher order approximations for calculation of the state
equation is the subject of a separate research.
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