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Фазовi переходи в неперервнiй системi Кюрi-Вейса: кiлькiс-
ний аналiз
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Анотацiя. Чисельно дослiджено фазовий перехiд у неперервнiй си-
стемi частинок iз взаємодiєю Кюрi-Вейса. Взаємодiя визначена подi-
лом простору R

d на однаковi кубiчнi комiрки. Для фiксованих зна-
чень температури сили J1, J2 та хiмiчного потенцiалу, термодинамi-
чна фаза визначається як ймовiрнiсна мiра на просторi чисел запов-
нення комiрок. Показано, що пiвплощина J1×хiмiчний потенцiал

мiстить точки фазового спiвiснування, а тому можуть iснувати мно-
жиннi термодинамiчнi фази системи при тих самих значеннях тем-
ператури та хiмiчного потенцiалу. Здiйснено числовий розрахунок,
що описує таке явище.

Phase transitions in a continuum Curie-Weiss system: a quan-
titative analysis

Yu.V. Kozitsky, M.P. Kozlovskii, O.A. Dobush

Abstract. Phase transitions in a continuum Curie-Weiss system of in-
teracting particles are studied numerically. The interaction is determined
by a division of the underlying space R

d into congruent cubic cells. For
a region V ⊂ R

d consisting of N ∈ N cells, each two particles contained
in V attract each other with intensity J1/N . The particles contained in
the same cell are subject to binary repulsion with intensity J2 > J1. For
fixed values of the temperature, the intensities J1, J2 and the chemical
potential, the thermodynamic phase is defined as a probability measure
on the space of occupation numbers of cells. There is shown that the
half-plane J1×chemical potential contains phase coexistence points, and
thus multiple thermodynamic phases of the system may exist at the
same values of the temperature and chemical potential. The numerical
calculations describing such phenomena are presented.
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1. Introduction

The rigorous theory of phase transitions in continuum particle systems
has much more modest account of the results than its counterpart dealing
with lattices, graphs, etc. It is then quite natural to employ here mean
field models. In [1], the mean field approach was mathematically realized
by using a Kac-like infinite range attraction combined with a two-body
repulsion. By means of rigorous upper and lower bounds obtained in that
paper for the canonical partition function, the authors derived the equa-
tion of state indicating the possibility of a first-order phase transition.
Later on, this result was employed in [2], see also [3], to go beyond the
mean field frames. Another mean-field approach is based on the use of
Curie-Weiss interactions and appropriate methods of calculating asymp-
totics of integrals. Recently it was turned into a mathematical theory in
the framework of which the thermodynamic phases are constructed as
probability measures on an appropriate phase space, see [4, Section 2].
In this context, in [4] there was introduced a simple Curie-Weiss type
model of a continuum particle system, for which it was proved in [5]
that multiple thermodynamic phases may exist at the same values of
the temperature and chemical potential. In the present work, we numer-
ically investigate this model in more detail.

In the model which we study, the interaction is determined by a divi-
sion of the underlying space R

d into congruent cubic cells. For a region
V ⊂ R

d consisting of N such cells, the attraction between each two parti-
cles in V is set to be J1/N , regardless their positions. If such two particles
lie in the same cell, they repel each other with intensity J2 > J1. Unlike
to [1], we work in the grand canonical ensemble, and thus the initial
thermodynamic variables are the inverse temperature β = 1/kBT and
the physical chemical potential. However, for the sake of convenience we
employ the variables p = βJ1 and µ = β×physical chemical potential

and define single-phase domains of the half-plane {(p, µ) : p > 0, µ ∈ R},
see Definition 2.1 below, by a condition that determines a unique prob-
ability measure Qp,µ, given in (2.16) and (2.15). In the grand canonical
formalism and the approach of [4], this measure is set to be the ther-
modynamic phase of the system. The points (p, µ) where the mentioned
single-phase condition fails to hold due to the existence of multiple ȳ
correspond to the coexistence of multiple thermodynamic phases.

Section 3 is dedicated to numerical results related to description of
the phase transition in the system with Curie-Weiss interaction. An anal-
ysis of the chemical potential behavior µ̄(y) which meet the condition
of maximum of E(y, p, µ) is provided. To make quantitative analysis we
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considered fixed values of the parameters υ = 12, p = 6. The former
parameter determine the volume of a cell, the latter is connected to at-
tractive part of the interaction potential. We found the critical value
of p = pc(a) dividing the monotonic and non-monotonic dependence of
µ̄(y). The explicit form of the state equation of the model is obtained
in the region of p < pc(a) (matching to T > Tc, Tc is defined in (3.2))
describing a single-phase domain. The pressure as a function of density
and temperature is represented. In the region of p > pc(a) we found
values of the chemical potential µc at which the first order phase tran-
sition occurs for different temperatures. In Section 3.3 the equation of
state of the model in the region of low densities and temperatures below
the critical one is represented. The second and third cascades of phase
transitions are considered in Section 3.4. In this case the pressure as a
function of density at T < Tc is obtained. Section 3.5 represents numer-
ical results stated above for the case of another ratio of repulsive and
attractive parameters.

2. The Model: a Theoretical Study

By N, R we denote the sets of natural and real numbers, respectively.
We also put N0 = N ∪ {0}. For d ∈ N, by R

d we denote the Euclidean
space of vectors x = (x1, . . . , xd), xi ∈ R. In the sequel, its dimension d
will be fixed. By dx we mean the Lebesgue measure on R

d.

2.1. The grand canonical partition function

For some c > 0, we let ∆ = (−c/2, c/2]d ⊂ R
d be a cubic cell of volume

υ = cd centered at the origin. Let also V ⊂ R
d be the union of N ∈ N

disjoint translates ∆ℓ of ∆, i.e.,

V =

N
⋃

ℓ=1

∆ℓ.

As is usual for Curie-Weiss theories, cf. [4], the form of the interaction
energy of the system of particles placed in V depends on V . In our model,
the energy of a configuration γ = {x1, . . . , xn} ⊂ V , n ∈ N, is

WN (γ) =
1

2

∑

x,y∈γ

ΦN (x, y),

where

ΦN (x, y) = −J1/N + J2

N
∑

ℓ=1

I∆ℓ
(x)I∆ℓ

(y). (2.1)
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Here I∆ℓ
is the indicator of ∆ℓ, that is, I∆ℓ

(x) = 1 if x ∈ ∆ℓ and
I∆ℓ

(x) = 0 otherwise. For convenience, in WN above we have included
the self-interaction term ΦN (x, x), which does not affect the physics of
the model. We also write WN and ΦN instead of writing WV and ΦV

since these quantities depend only on the number of cells in V but not
on its particular location. The first term in ΦN with J1 > 0 describes
attraction. By virtue of the Curie-Weiss approach, it is taken equal for all
particles. The second term with J2 > 0 describes repulsion between two
particles contained in one and the same cell. That is, in our model every
two particles in V attract each other independently of their location, and
repel if they are in the same cell. The intensities J1 and J2 in (2.1) are
assumed to satisfy the following condition

J2 > J1. (2.2)

The latter is to secure the stability of the interaction, see [6], that is to
satisfy

∫

V

ΦN (x, y)dy > 0, for all x ∈ V.

Let β = 1/kBT be the inverse temperature. To optimize the thermody-
namic variables we introduce the following

p = βJ1, a = J2/J1, (2.3)

and the dimensionless chemical potential µ = β×(physical chemical po-
tential). Then (p, µ) ∈ R+ ×R is considered as the basic set of thermo-
dynamic variables, whereas a and υ are model parameters.

The grand canonical partition function in region V is

ΞN (p, µ) = 1+

∞
∑

n=1

1

n!

∫

V n

exp

(

µn−
β

2

n
∑

i,n=1

ΦN (xi, xj)

)

dx1 · · · dxn.(2.4)

In [5], the representation in (2.4) was transformed into the following one

ΞN (p, µ) =
∑

̺∈NN
0

exp

(

p

2N

(

N
∑

ℓ=1

̺ℓ

)2
) N
∏

ℓ=1

π(̺ℓ, µ), (2.5)

where p is as in (2.3) and

π(n, µ) =
υn

n!
exp

(

µn−
1

2
apn2

)

, n ∈ N0. (2.6)



4 Препринт

Note that, for p = 0, π turns into the (non-normalized) Poisson distri-
bution with parameter υeµ. Hence, alternating the cell size amounts to
shifting µ.

We write ΞN instead of ΞV for the reasons mentioned above. Such
type of distribution was used in [7].

2.2. Single-phase domains and phase transitions

For the reader’s convenience, we repeat here some definitions and facts
from [5]. By a standard identity involving Gaussian integrals one gets

exp

(

p

2N

(

N
∑

ℓ=1

̺ℓ

)2
)

=

√

N

2πp

∫

R

exp

(

−N
y2

2p
+ y

N
∑

ℓ=1

̺ℓ

)

dy.

Applying this in (2.5) one arrives at

ΞN (p, µ) = cN

∫

R

exp

(

NE(y, p, µ)

)

dy, cN =

√

N

2πp
, (2.7)

where

E(y, p, µ) = −
y2

2p
+ lnK(y, p, µ), (2.8)

and, cf. (2.3) and (2.6),

K(y, p, µ) =

∞
∑

n=0

υn

n!
exp

(

(y + µ)n−
ap

2
n2

)

. (2.9)

Note that E is an infinitely differentiable function of all its arguments.
Set

PN (p, µ) =
1

υN
ln ΞN (p, µ). (2.10)

By the following evident inequality

(y + µ)n−
ap

2
n2 ≤

(y + µ)2

2ap
, n ∈ N0,

we obtain from (2.9) and (2.8) that

E(y, p, µ) ≤ −
a− 1

2ap
y2 +

µ

2ap
(2y + µ) + υ. (2.11)

As is usual for Laplace’s method, see [8], the calculation of the large
N limit in (2.10) is based on finding global maxima of E(y, p, µ) as a
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function of y ∈ R (i.e., for fixed values of p > 0 and µ ∈ R). By (2.11)
we have that lim|y|→+∞E(y, p, µ) = − ∞; hence, each point ȳ of global
maximum belongs to a certain interval (ȳ − ε, ȳ + ε), where it is also a
maximum point. Since E is everywhere differentiable in y, then ȳ is the
point of global maximum only if it solves the following equation

E1(y, p, µ) :=
∂

∂y
E(y, p, µ) = 0. (2.12)

By (2.8) and (2.9) this equation can be rewritten in the form

−
y

p
+

K1(y, p, µ)

K(y, p, µ)
= 0, (2.13)

[.2cm]K1(y, p, µ) :=
∞
∑

n=1

nυn

n!
exp

(

(y + µ)n−
ap

2
n2

)

.

The equation in (2.13) has at least one solution for all p > 0 and µ ∈ R.
Since both K1 and K take only strictly positive values, these solutions
are also strictly positive.

Definition 2.1 We say that (p, µ) belongs to a single-phase domain if

E(y, p, µ) has a unique global maximum ȳ ∈ R such that

E2(ȳ, p, µ) :=
∂2

∂y2
E(y, p, µ)|y=ȳ < 0. (2.14)

Note that ȳ can be a point of maximum if E1(ȳ, p, µ) = E2(ȳ, p, µ) = 0.
That is, not every point of global maximum corresponds to a point in a
single-phase domain.

The condition in (2.13) determines the unique probability measure
Qp,µ on N0 such that

Qp,µ(n) =
1

K(ȳ, p, µ)n!
υn exp

(

(ȳ + µ)n−
ap

2
n2

)

, n ∈ N0, (2.15)

which yields the probability law of the occupation number of a single
cell. Then the unique thermodynamic phase of the model corresponding
to (p, µ) ∈ R is the product

Qp,µ =

∞
⊗

ℓ=1

Q(ℓ)
p,µ (2.16)

of the copies of the measure defined in (2.15). It is a probability mea-
sure on the space of all vectors n = (nℓ)

∞
ℓ=1, in which nℓ ∈ N0 is the

occupation number of ℓ-th cell.
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The role of the condition in (2.14) is to yield the possibility to apply
Laplace’s method for asymptotic calculating the integral in (2.7). By
direct calculations it follows that

E2(y, p, µ) = −
1

p
+

1

2 [K(y, p, µ)]
2 (2.17)

×
∞
∑

n1,n2=0

υn1+n2

n1!n2!
(n1 − n2)2 exp

(

(y + µ)(n1 + n2) −
ap

2
(n2

1 + n2
2)

)

.

In dealing with the equation in (2.13) we will fix p > 0 and consider
E1 as a function of y ∈ R and µ ∈ R. Then, for a given µ, we solve
(2.12) to find ȳ and then check whether it is the unique point of global
maximum and (2.14) is satisfied, i.e., whether (p, µ) belongs to a single-
phase domain. As it was shown in [5] each single-phase domain, R, has
the following properties: (a) it is an open subset of R+ ×R; (b) for each
(p0, µ0) ∈ R, the function Ip0

:= {µ ∈ R : (p0, µ) ∈ R} ∋ µ 7→ ȳ(µ) is
continuously differentiable on Ip0

. Moreover,

dȳ(µ)

dµ
> 0, for all µ ∈ Ip0

. (2.18)

By (2.15) and (2.13) we get the Qp,µ-mean value n̄ = n̄(p, µ) of the
occupation number of a given cell in the form

n̄(p, µ) =

∞
∑

n=0

nQp,µ(n) =
K1(ȳ(p, µ), p, µ)

K(ȳ(p, µ), p, µ)
=

ȳ(p, µ)

p
. (2.19)

Note that, up to the factor υ−1, n̄(p, µ) is the particle density in phase
Qp,µ. For a fixed p, n̄(p, ·) in an increasing function on Ip, which thus
can be inverted to give µ̄(p, n̄). By Laplace’s method we get that for
each (p, µ) ∈ R, the limiting pressure P (p, µ) = limN→+∞ PN (p, µ), see
(2.10), exists and is continuously differentiable on R. Moreover, it is
given by the following formula

P (p, µ) = υ−1E(ȳ(p, µ), p, µ). (2.20)

Let Np be the image of Ip under the map µ 7→ n̄(p, µ). Then the inverse
map n̄ 7→ µ̄(p, n̄) is continuously differential and increasing on Np. By
means of this map, for a fixed p, the pressure given in (2.20) can be
written as a function of n̄

P = P̄ (n̄) = υ−1E(pn̄, p, µ̄(p, n̄)), n̄ ∈ Np, (2.21)
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which is the equation of state.
By virtue of Definition 2.1 each single-phase domain is an open sub-

set of the open right half-plane {(p, µ) : p > 0, µ ∈ R}, see (2.18). In
the context of this work, a phase transition is understood as the pos-
sibility to have different phases at the same value of the pair (p, µ). If
this is the case, (p, µ) is called a phase coexistence point. Clearly, such a
point should belong to the common topological boundary of at least two
distinct single-phase domains. In [5], we demonstrated the existence of
phase transitions in this sense. Namely, we proved the following state-
ments.

Theorem 2.2 There exists p0 = p0(a) > 0 such that the set R(p0) :=
{(p, µ) : p ∈ (0, p0]} is a single-phase domain.

Theorem 2.3 For each a > 1, there exists p1 = p1(a) > 0 such that,

for each p ≥ p1, the line lp = {(p, µ) : µ ∈ R} contains at least one

phase-coexistence point.

3. The Quantitative Analysis

In the remaining part of the work, we provide our numerical results
related to the facts just stated. Let us fix the following values of the
parameters

a = J2/J1 = 1.2, υ = 12. (3.1)

Below we return to the question how the results depend on the values of
a and υ.

As follows from Theorems 2.2 and 2.3, for small p0 > 0 the stripe
{(p, µ) : µ ∈ R, p ∈ (0, p0]} is a single-phase domain, whereas the lines
lp = {(p, µ) : µ ∈ R} contain phase coexistence points if p ≥ p1 for
sufficiently big p1 > p0. Thus, there should be some critical pc ∈ (p0, p1)
which separates these two regimes. Our aim now is to find its numerical
value for the parameters fixed in (3.1).

Figure 1 below shows the plot of µ̄(y) which is the function inverse
to that in (2.18). That is, given y > 0, µ̄(y) is the value of µ for which
y solves (2.13), see [5] for more detail. In view of (2.18), a monotone
dependence of µ̄(y) on y corresponds to a single-phase domain. Case а)
of figure 1 corresponds to p = 3.5, case b) to p = pc = 3.928236, and
case c) to p = 4.5. Easily seen that pc = 3.928236 is indeed the critical
value. Recall that it corresponds to a = 1.2. By means of pc(a) one may
define the corresponding value of the critical temperature, cf. (2.3),

Tc(a) = J1/pc(a). (3.2)
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Figure 1: Plot of the chemical potential µ̄(y) as a function of y for values
of the attraction parameter p = 3.5 (curve а), p = pc(1.2) (curve b),
p = 4.5 (curve c).

At p < pc(a) the equation (2.13) gives the line of extremes of the
function E(ȳ, p, µ). Using this equation the chemical potential µ̄(y) is a
monotonic increasing function of y (see Figure 1a).

According to Theorem 2.3 for all p > pc(a) multiple solutions ȳ
correspond to the same value of µ̄(y), as it is shown on Figure 1c. In
this case some part of the curve represented on Figure 1c expresses the
maxE(ȳ, p, µ), and the other part of it meets the condition of
minE(ȳ, p, µ) at equal values of µ. As a consequence of inequality (2.14)
the parts of the curve for (2.13) meets the condition of maxE0(ȳ, µ) if
µ̄(y) behaves as an increasing function of y. The condition minE(ȳ, p, µ)
is implemented on the areas where µ̄(y) is a decreasing function of
y, which means that this condition is not applicable since we use the
Laplace method for calculating (2.7).

It is easy to make sure about the latter fact directly from calculations.
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a)

μ

y

E(y,p,μ)=0

b)

μ

y

E(y,p,μ)=0
E2(y,p,μ)>0

Figure 2: а – division boundary of two surfaces which give the line of ex-
tremes (2.12) of the function E(ȳ, p, µ). Figure 2b – the imposed (white)
part meet the condition of minimum of E(ȳ, p, µ) (p = 6 a = 1.2, υ = 12).

Figure 2a shows the intersection of the surface E1(y, p, µ) (2.12) with
the plane of zeroth level corresponding to the line of extremes µ̄(y). On
Figure 2b the image of the surface E2(y, p, µ) > 0 projection (white part)
is imposed on the projection from Figure 2a. Positive part of the second
derivative of the function E0(ȳ, y) coincide with the area where µ̄(y) as
a function of ȳ decrease. The condition E2(y, p, µ) < 0 is held only on
the areas where µ̄(y), is an increasing function of its argument.

3.1. The equation of state in a single-phase domain

In a single-phase domain, the function in (2.8) has a unique global max-
imum ȳ(p, µ), and hence the Laplace method yields in (2.7) that

ΞN ≃ cN exp [NE(ȳ(p, µ)p, µ)] ,

where the asymptotic equality is understood in the large N limit.
Let us write the equation of state of the model in case of p < pc(a)

in the region of temperature T > Tc. At this range of parameter p
the chemical potential µ̄(y) behaves as a monotonic increasing function
of ȳ (Figure 1a). The explicit form of the pressure is given in (2.20)
This equation expresses the pressure P as a function of temperature and
chemical potential since ȳ is a monotonic increasing function of µ as it
is seen from (2.13). This equation can be rewritten in terms of the mean
density n̄ as the mean value of the occupation number n over probability
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measure Qp,µ(n) from (2.15). Taking into account (2.19) we have

n̄ =

∞
∑

m=0

υm

m!
m exp

(

−
ap

2
m2
)

exp (pn̄m + βµ(p, n̄)m) /

∞
∑

m=0

υm

m!
exp

(

−
ap

2
m2
)

exp (pn̄m + βµ(p, n̄)m) . (3.3)

The equation (3.3) holds a central place in the grand canonical ensem-
ble formalism. It gives a possibility to find the chemical potential as
a function of density and express the pressure in terms of density and
temperature. In range of values of the parameter p < pc(a) for (2.21) we
obtain the explicit form of the equation of state

Pυ = −
1

2
pn̄2+ln

∞
∑

m=0

υm

m!
exp

(

−
ap

2
m2
)

exp (pn̄m + βµ(p, n̄)m) , (3.4)

here µ(p, n̄) is a function of temperature and average density as it can
be seen in (3.3).

Figure 3 shows pressure as a function of average density n̄ and the
parameter p, which is inversely proportional to temperature. Easy to
see that pressure is a monotonic increasing function of temperature and
density.

3.2. The case of T < Tc

Consider calculation of the grand partition function in the region of
p > pc(a), that correspond to temperatures T < Tc. Here the chemical
potential µ̄(y) is a monotonic function of ȳ. Let as explore the behavior
of µ̄(y) in this range of values of the parameter p. It is represented
on Figure 4 at p = 6. For example, here we have chosen a large (in
comparison to the critical one) value of this parameter so the maximum
coordinates µ̄(y) are not too close to each other.

The points of extremes of µ̄(y) can be found from the equation (2.13).
This equation allows us to determine the local maximums y1, y11, y12
and local minimums y2, y21, y22 of the function µ̄(y)(ȳ). Taking into
account the equality (2.17) we obtain the following equation

K2(ȳ, p, µ)/K0(ȳ, p, µ) − (K1(ȳ, p, µ)/K0(ȳ, p, µ)) = 1/p (3.5)

for the extremum points of the function µ̄(y). Comparing the latter ex-
pression to the condition (2.14) easy to see that the solutions ȳ of this
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Figure 3: Plot of pressure as a function of density and parameter of
attraction p (see equation (3.4)) at temperature higher then critical one
(a = 1.2, υ = 12).

equation do not meet the condition maxE(ȳ, p, µ). However this solu-
tions determine specific points, which divide the region of values ȳ into
intervals. In particular, in the interval (Figure 4)

ȳ ∈ (0, y1) (3.6)

where y1 = 1.267510, the function E0(ȳ, µ) has its maximum
(E2(ȳ, p, µ) < 0), while at

ȳ ∈ (y1, y2) (3.7)

where y2 = 4.755127, this function meet the condition of minimum
(E2(ȳ, p, µ) > 0). The following range of values (see also Figure 7)

ȳ ∈ (y2, y11); ȳ ∈ (y21, y12) (3.8)

correspond to the maximum of E(ȳ, p, µ) etc. This function has its min-
imum at

ȳ ∈ (y1, y2); ȳ ∈ (y11, y21)

therefore there is no need to consider them anymore. Here y11 = 7.244287,
y21 = 10.763368. For the purpose of calculating the integral (2.7) we are
interested in maxE(ȳ, p, µ) and intervals of values of ȳ in (3.6), (3.8).
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Figure 4: Plot of the chemical potential as a function of ȳ at p = 6 in he
region of monotonic dependence.

In the region of values ȳ ∈ (0, y′2) the function µ(ȳ) is monotonic
increasing. Here each value of ȳ has specific corresponding value of µ̄(y) <
µ2. So the form of the equation of state for ȳ in this interval coincides
with (2.20).

Consider in more details the region of the first maximum of the func-
tion µ̄(y) (Figure 4). There are multiple solutions ȳ in the interval

µ̄(y) ∈ (µ2, µ1) (3.9)

where µ2 = −2.308041, µ1 = −1.470040. It is necessary to find out which
one leads to maxE(ȳ, p, µ).

Let us introduce the function

EG(ȳ, p, µ̄(y)) = E(ȳ, p, µ̄(y))Θ(y1 − ȳ), (3.10)

corresponding to the values ȳ ∈ (0, y1), and the function

EL(ȳ1, p, µ̄(y)) = E(ȳ, p, µ̄(y))Θ(ȳ − y2)Θ(y11 − ȳ), (3.11)

defined in the interval ȳ ∈ (y2, y11), y11 is the coordinate of the second
local maximum of µ̄(y) (Figure 4). Each of this functions is a function of
chemical potential. The interval of values (3.7) is not taken into account
since E(ȳ, p, µ) fails to meet the condition of maximum there.

The function E(ȳ, p, µ) at p = 6 is monotonic for all

µ̄(y) ∈ (−∞, µ2), (3.12)
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and also for
µ̄(y) ∈ (µ1, µ21). (3.13)

where µ21 = −0.4173780. The value µ21 of the chemical potential cor-
respond to the solution of the equation (3.8) at ȳ = y21. Appliance of
the Laplace method for calculation of the integral (2.7) in regions of the
chemical potential (3.12) and (3.13) is obvious, since for each ȳ one has
a single extremum (maximum) value of E(ȳ, p, µ). One should pay addi-
tional attention to values of the chemical potential (3.9). It is necessary
to find which function either (3.10) or (3.11) has larger value. Easy to
make sure that at µ̄(y) = µ2 we have

EG(ȳ, p, µ2) > E0L(ȳ, µ2),

and at µ̄(y) = µ1

EG(ȳ, p, µ1) < EL(ȳ, p, µ1).

Therefore in range of values (3.9) for all p > pc(a) there exist such µc

that
EG(yG, p, µc) = EL(yL, p, µc), (3.14)

moreover yG ≤ yL. Here the sign of equality refer to case of T = Tc.
Easy to see that for all µ < µc we have EG > EL, and for µ > µc the
maximal one will be EL > EG.

Figure 5 represent the plot of E(ȳ, p, µ) at two fixed values of µ̄(y)
(at p = 6, υ = 12, a = 1.2). The critical value of the chemical potential
in case of mentioned above values of the parameters is µc = −1.890291.
Case а) correspond to µa < µc, case b) to µb > µc. Note that µa is close
to µ2 (µa ≥ µ2), and µb is close to µ1 (µb ≤ µ1). At smaller value of the
chemical potential µa the maximum on the left-hand side is larger then
the one on the right-hand side. At larger one µb we have the opposite
situation. In other words, at small values of the chemical potential µ ∈
(−∞, µc) the function EG > EL, and at larger ones µ ∈ (µc, µ21) we have
EL > EG. Same situation occurs in the region of values µ ∈ (µ21, µ11).
In the next section we consider this in more details.

Quantitative calculation of µc is the following. Firstly we consider
the coordinates of extremes point of the curve µ(ȳ) in the interval

ȳ ∈ (0, y11), (3.15)

where y11 is the coordinate of the second larger maximum of this function
(Figure 4). Applying the equation (3.5) for this purpose allows us to find
the extremum points y1, y2; y11, y21 and so on. Using this values in (2.13)
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Figure 5: Plot of the function E(ȳ, p, µ) at two fixed values of the chem-
ical potential а) µa = −1.950,b) µb = −1.800 (µc = −1.890291, p = 6,
a = 1.2, υ = 12).

we obtain corresponding values of the chemical potential µ1, µ2, µ11, µ21

(Figure 4).
The following scheme serves to calculate the chemical potential µc,

see (3.14). The value of µ(1) matching the coordinate ys = (y1 + y2)/2 is
obtained from the equation (2.13)

µ(1) = µ̄(ys).

In the interval (3.15) there are two more values of ȳ, namely y
(1)
G < ys

and y
(1)
L > ys, corresponding to µ(1)

y
(1)
G = ȳ(µ(1)), y

(1)
G ∈ (0, y1),

y
(1)
L = ȳ(µ(1)), y

(1)
L ∈ (y2, y11)

Then EG(y
(1)
G , p, µ(1)) should be compared with EL(y

(1)
L , p, µ(1)). In case

they are not equal one has to find µ(2) from the condition

EG(y
(2)
G , p, µ(2)) = EL(y

(2)
L , p, µ(2)).

and to repeat the applied for µ(1) procedure of calculation for the value
µ(2). This is the way to find µc which meet the condition (3.14) with pre-
set accuracy. The value µc = limn→∞ µ(n) = −1.890291 allows to set the
mechanism of the first order phase transition. The chemical potential is
the control parameter since we consider the grand canonical partition.
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In the limit µ → −∞ we have ȳ = 0, as follows from (2.13). The increase
of µ cause the increase of ȳ. In the range of values

µ ∈ (−∞, µc)

the value ȳ increase starting from ȳ = 0 to ȳ = yG (yG = limn→∞ y
(n)
G =

0.420875). The further increase of µ cause changing the function E(ȳ, p, µ)
from EG(ȳ, p, µ) at µ = µc− 0, to the function EG(ȳ, p, µ) at µ = µc + 0.
This situation is accompanied by jump of ȳ starting from yG to yL (yL =

limn→∞ y
(n)
L =5.621854). Moreover at T = Tc we have yL(Tc) = yG(Tc).

With decrease of temperature (T < Tc) the value

∆y(T ) = yL(T ) − yG(T )

increases.

3.3. Equation of state in the region of low densities and tem-
peratures T < Tc

Taking into account previous results we can write the equation of state
in the region of low densities n̄ at p > pc(a). Let us denote

Pn̄υ = −
p

2
n̄ + ln

∞
∑

m=0

υm

m!
e−

ap

2
m2

epn̄meβµ(p,n̄)m, (3.16)

where µ(p, n̄) is the solution of the equation (3.3). There are some fixed
values of the density n̄ = ȳ/p at T < Tc. The first one appear in the
region of the first maximum of µ̄(y) (Figure 4)

nG = yG/p (3.17)

It correspond to the value ȳ in the interval ȳ ∈ (0, y1) for the chemical
potential µc (3.14). At p = 6 we have nG = 0.070146.

The second fixed value is

nL = yL/p (3.18)

(nL = 0.936975 at p = 6). This one correspond to the value ȳ on the
interval ȳ ∈ (y2, y11) at µ = µc. Moreover nL ≥ nG for all T ≤ Tc.

There is a fixed value of the chemical potential in the region of the
second maximum

n′
21 = ȳ′21/p, (3.19)
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(for p = 6 we have ȳ′21 = 6.163534, n′
21 = 1.027256), corresponding to the

coordinate y′21 which is calculated at µ21 (Figure 4). The values (3.17),
(3.18) and (3.19) can be obtained from the equation (3.3) in different
intervals of the variable ȳ.

The equation of state of the system in the region of densities

n ∈ (0, n′
21) (3.20)

including the values of ȳ starting from zero to y′21 has the following form

Pυ = Pn̄υΘ(nG − n̄) + PnG
υΘ(n̄− nG)Θ(nL − n̄) +

+Pn̄υΘ(n̄− nL)Θ(n′
21 − n̄). (3.21)

0

0.05

0 
 �

0 
 � �

0 
 


0 
 
 �

0 � � � 0.4 � � � � � �

P

_
n

1
2
3
4

5
6
7
8

9

Figure 6: Isotherms of pressure as a function of density at p > pc(1.2)
in the region of low densities (3.20). Curve 1 corresponds to p = 3.8 <
pc(1.2). The curves 2–9 correspond to p ≥ pc: p = pc(1.2) (curve 2),
p = 4 (curve 3), p = 4.135 (curve 4), p = 4.3647 (curve 5), p = 4.5824
(curve 6), p = 4.8 (curve 7), p = 5 (curve 8), p = 6 (curve 9).

Moreover the first term in (3.21) describes the behavior of the phase
I with the lowest density, the third term – the phase II, which has larger
density than the phase I at all T < Tc. At T = Tc both phases has equal
densities and at T > Tc there exist only one density which is a monotonic
increasing function of pressure (Figure 3).

The second term in (3.21) indicate that pressure remains constant
and equal to

PnG
υ = −

p

2
n̄G + ln

∞
∑

m=0

υm

m!
e−

ap

2
m2

epn̄Gmeβµcm.

in the interval
n̄ ∈ (nG, nL) (3.22)
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Note that the condition (3.14) gives PnG
= PnL

, where PnL
is as follows

PnL
υ = −

p

2
n̄L + ln

∞
∑

m=0

υm

m!
e−

ap

2
m2

epn̄Lmeβµcm.

In case of p > pc(a) there are unattainable densities in the interval (3.22)
from the point of varying the chemical potential µ̄(y). When µ̄(y) tends
to µc from the left-hand side we have the density region

n̄ ∈ (0, nG). (3.23)

When µ̄(y) tends to µc from the right-hand side

n̄ ∈ (nL, n
′
21). (3.24)

The density region (3.22) in between does not exist. The solutions of the
phase I, where the density varies in the interval (3.23), transit by jump
into the solutions of the phase II, with (3.24). This is connected with
change of derivative value of the chemical potential in the point µc.

Figure 6 shows the isotherms of pressure in the interval (3.20) at
different values of the parameter p.

3.4. Transition between the phase II and the phase III

The previous section was dedicated to description of behavior of the
model in the region of low densities (3.20). It can be conditionally linked
to the gas-liquid phase transition, since density in this case vary starting
from zero up to some fixed value. Let us describe the behavior of the
system for larger values of density n̄ > n′

21 (Figure 7) and show that
transition from the phase II to the phase III (with larger density than
in the phase II) is possible here. Behavior of µ̄(y) is of most importance
here.

Figure 7 shows the characteristic points of the function µ̄(y) in the
region of the second and the third maximums of the value µ̄(y) from
(2.13).

In the interval of the chemical potential values

µ̄(y) ∈ (µ21, µ11) (3.25)

(µ21 = −0.417380, µ11 = 0.431080) we have a non-monotonic behavior
of µ̄(y). Let us define the function

ES(ȳ, p, µ) = E(ȳ, p, µ)Θ(y12 − ȳ)Θ(y21 − ȳ), (3.26)
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Figure 7: Plot of µ̄(y) in the region of the second maximum at p = 6,
a = 1.2, υ = 12.

which is nonzero in the interval

ȳ ∈ (y21, y12).

where y12 = 13.236413. The function µ̄(y) is monotonic in the interval

ȳ ∈ (yL, y
′
21)

so the function E(ȳ, p, µ) is characterized by one value ȳ determining the
integral (2.7), therefore it determines the expression of pressure (3.16).
The phase II exists here in "pure" form.

The interval of values

ȳ ∈ (y′21, y
′
11)

(y′21 = 6.163534, y′11 = 11.862089) correspond to non-monotonic depen-
dence of E(ȳ, p, µ) on ȳ. Therefore it is worthily to compare the functions
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EL(ȳ, p, µ) from (3.11) and ES(ȳ, p, µ) from (3.26) at all values of the
chemical potential from the interval (3.25). As well as in case of transi-
tion from the phase I to the phase II, there exist the chemical potential
µc1 , such that

EL(yL1, p, µc1) = ES(yL2, p, µc1),

where
yL1 ∈ (y′21, y11) and yL2 ∈ (y21, y12).

The way of calculating µc1 is the same as represented in Section 4 for the
case of µc. Figure 8 shows the pressure as a function of ȳ at p = 4, p =
5, p = 6 and p = 8 including the region of the first and the second local
maximums of the curve µ̄(y). Evidently, except the transition from the
phase I to the phase II (at y ∈ (yG, yL)) there exist the transition from
phase II to phase III, where the jump of the order parameter occurs in
the interval of values

ȳ ∈ (yL1, yL2),

where yL1 = 6.373312, yL2 = 11.641773, moreover yL1 characterizes the
maximal density of the phase II, and yL2 – the minimal density of the
phase III at correspondent values of p.

The further growth of the chemical potential yield the cascade of
phase transitions from the phase f to the phase (f +1). Each subsequent
cascade correspond to larger densities. Note that this model has more
than a single critical point. Each of them is characterized by its critical
temperature, critical density, and exist in appropriate cascade.

Sufficient growth of the attraction parameter p causes the possibility
of transition of the system from the phase I to the phase III omitting the
phase II. As we can see from the numerical results there exist some value
of the parameter pT , that at p > pT there occurs a competition between
EG(ȳ, p, µ), EL(ȳ, p, µ) and Es(ȳ, p, µ) aimed to find out which one of
this functions is maximal at the same value of the chemical potential
(see Figure 9). According to the definition (3.10) the variable ȳ of the
function EG(ȳ, p, µ) takes small values ȳ ∈ (0, y1), in EL(ȳ, p, µ) this
variable changes in the interval ȳ ∈ (y2, y11), where y2 > y1, and in
Es(ȳ, p, µ) – ȳ ∈ (y21, y12), moreover y21 > y11. Note that in the region
of values pc(1.2) < p < pT correspondent to the temperature interval

TT < T < Tc (3.27)

there occur only the sequence of phase transitions phase I – phase II,
phase II – phase III etc. This is because each µ̄(y) has not more than
three extremum points (two of them correspond to maxE(ȳ, p, µ)).
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At p > pT there is a situation where five extremum points of the
function E(ȳ, p, µ) (three of them are maximums of E(ȳ, p, µ)) corre-
spond to single value of µ̄(y) (see Figure 10). In this case it is worthily
to find out which one of them is the largest. To do this we have to com-
pare the functions EG(ȳ, p, µ), EL(ȳ, p, µ) and Es(ȳ, p, µ) at some values
of µ. There are two possible cases. In the former EG(ȳ, p, µ) transits to
EL(ȳ, p, µ) at µ = µc, and EL(ȳ, p, µ) transits to Es(ȳ, p, µ) at µ = µ1c.
Moreover µ1c > µc. This situation occurs in the region of temperatures
(3.27). In the latter case EG(ȳ, p, µ) transits to Es(ȳ, p, µ) at once at
µ = µs, namely there occur the transition of the phase I to the phase
III, omitting the phase II. This situation can happen only in the region
of p > pT which match the temperature region T < TT < Tc. There are
important quantitative results which show that first of all for (3.1) we
have at a = 1.2

pT = 8.440525.

and secondly the direct transition between the phases I and III is im-
possible. Therefore we have the sequence of phase transitions between
neighboring phases.

3.5. Investigation of dependence on the parameter a

This parameter characterizes the relation between repulsive J1 and at-
tractive J2 components of the interaction potential. The represented
above calculations were executed at a = 1.2 and υ = 12 from (3.1).
Let us see how the results change when the parameter a vary in the in-
terval 1 < a < 10. In accordance to the condition of stability (2.2) a > 1.
The parameter υ will be the same as previously υ = 12.

The quantitative results show that changing the value of a has no
influence on existence of the phase transition in the model. It only lead
to slightly different absolute value of the critical temperature which is
defined in (3.2). The latter fact is natural, since Tc depends on the pa-
rameter p which is the repulsive component of the interaction potential
and on the value pc(a) separating monotonic behavior of the extremum
value of the chemical potential from non-monotonic one.

However note that the critical value of the chemical potential in-
creases sufficiently when a grows (υ = 12):

a = 0.0001 µ1
c1

= −2.516, pc(1) = 3.8255,

a = 1.2 µ1.2
c1

= −2.105, pc(1.2) = 3.9282,

a = 2 µ2
c1

= −0.4866, pc(2) = 3.9973,

a = 10 µ10
c1

= 15.5196, pc(10) = 4.0000.
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It means that with growth of repulsive part of the interaction potential
(with respect to the attractive one) the phase transition occur at more
larger value of the chemical potential.

Numerical way of calculating pc(a) is the following. The function
µ̄(y) has an inflection point in the critical point. Namely the following
equalities are held

∂µ̄(y)(y)

∂ȳ
= 0.

∂2µ̄(y)(y)

∂ȳ2
= 0,

If these equalities are held simultaneously we obtain ȳ = ȳc and p =
pc(a).

Figure 11a represent the isotherms of the equation of state at υ =
12, a = 1.0001, and different p. Easy to see that curves of isotherms have
no intersection at any p

The case of a = 1.0001 is shown on Figure 11b. At low p this curves
also don’t intersect but the isotherms where p = 6 and p = 8 cross in
the phase transition in the third cascade. The same situation occur at
a = 1.02 (Figure 11c). Here we have a crossing in the third cascade of
the phase transition (particularly in case of p = 5, p = 6 and p = 8).
Besides the values of pressure coincide in cases of p = 6 and p = 8 in the
phase transition point of the second phase transition cascade.

In case of a = 1.2 and different p isotherms in the first cascade has
no crossing, but there are numerous intersections in the second and the
third cascades.

4. Conclusions

We made the accurate calculation of the grand partition function of
single-sort cell model with Curie-Weiss potential. Consequently it is
found that this model has a sequence of first order phase transitions at
temperatures below the critical one Tc. The critical temperature value
depends on two parameters: attractive component of the interaction po-
tential J1 and the parameter a. We proved the existence of multiple
thermodynamic phases at the same values of the extensive model param-
eters – temperature and chemical potential. In contrast to the approach
of [1], we deal directly with thermodynamic phases in the grand canon-
ical setting. We provided detailed quantitative analysis at fixed values
of parameters of the model in wide region of densities and temperature.
Behavior of the pressure as a function of density is explored for first
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Figure 11: Isotherms of pressure as a function of density at υ = 12, a)
correspond to a = 1.0001, b) – a = 1.01 and c) – a = 1.02. Curve 1 is
for p = 4, curve 2 – p = 5, curve 3 – p = 6 and curve 4 – p = 8.

three cascades of first-order phase transitions at temperatures below the
critical one Tc. To the best of our knowledge, this is the first result of
this kind.
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