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Amnoraniss. Yucensno mociimkeno da3oBuil mepexis y HellepepBHiil cu-
cTeMi YacTUHOK i3 B3aemoyriero Kropi-Beiica. Bzaemoiss Bu3nadena moi-
som pocTopy R? ma ommakosi Ky6iuni komipku. st dikcoBanux 3ma-
9eHb TeMIIepaTypu cuiau Ji, Jo Ta XiMi9HOrO MOTEHIHALY, TEPMOTUHAMI-
qHa (ha3a BUZHATAETHCS IK WMOBIpHiCHA Mipa Ha MIPOCTOPi YUCEST 3aI10B-
HenHs Komipok. Ilokazano, mo miBmaommaa Ji X TiMivkut nomenyian
MiCTUTDH TOYKHM (PA30BOTO CIIBICHYBaHHS, a TOMY MOXKYTb iCHyBaTH MHO-
JKUAHHI TepMoJuHaMivHi a3y cucreMu Npu TUX CAMUX 3HAYEHHSIX TEM-
[epaTypu Ta XiMiYHOIO MOTEHIHaJy. 3AiACHEHO YMCJIOBUAN PO3PAXyHOK,
[0 OIIMCY€E TaKe SBUIIIE.

Phase transitions in a continuum Curie-Weiss system: a quan-
titative analysis

Yu.V. Kozitsky, M.P. Kozlovskii, O.A. Dobush

Abstract. Phase transitions in a continuum Curie-Weiss system of in-
teracting particles are studied numerically. The interaction is determined
by a division of the underlying space R¢ into congruent cubic cells. For
a region V C R? consisting of N € IN cells, each two particles contained
in V attract each other with intensity J1/N. The particles contained in
the same cell are subject to binary repulsion with intensity Jo > J;. For
fixed values of the temperature, the intensities Jp, J2 and the chemical
potential, the thermodynamic phase is defined as a probability measure
on the space of occupation numbers of cells. There is shown that the
half-plane J; X chemical potential contains phase coexistence points, and
thus multiple thermodynamic phases of the system may exist at the
same values of the temperature and chemical potential. The numerical
calculations describing such phenomena are presented.
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1. Introduction

The rigorous theory of phase transitions in continuum particle systems
has much more modest account of the results than its counterpart dealing
with lattices, graphs, etc. It is then quite natural to employ here mean
field models. In [I]], the mean field approach was mathematically realized
by using a Kac-like infinite range attraction combined with a two-body
repulsion. By means of rigorous upper and lower bounds obtained in that
paper for the canonical partition function, the authors derived the equa-
tion of state indicating the possibility of a first-order phase transition.
Later on, this result was employed in [2], see also [3], to go beyond the
mean field frames. Another mean-field approach is based on the use of
Curie-Weiss interactions and appropriate methods of calculating asymp-
totics of integrals. Recently it was turned into a mathematical theory in
the framework of which the thermodynamic phases are constructed as
probability measures on an appropriate phase space, see [4, Section 2].
In this context, in [4] there was introduced a simple Curie-Weiss type
model of a continuum particle system, for which it was proved in [5]
that multiple thermodynamic phases may exist at the same values of
the temperature and chemical potential. In the present work, we numer-
ically investigate this model in more detail.

In the model which we study, the interaction is determined by a divi-
sion of the underlying space R? into congruent cubic cells. For a region
V C R? consisting of N such cells, the attraction between each two parti-
clesin V is set to be J; /N, regardless their positions. If such two particles
lie in the same cell, they repel each other with intensity J, > J;. Unlike
to [I], we work in the grand canonical ensemble, and thus the initial
thermodynamic variables are the inverse temperature § = 1/kgT and
the physical chemical potential. However, for the sake of convenience we
employ the variables p = BJ; and pu = BXxphysical chemical potential
and define single-phase domains of the half-plane {(p, 1) : p > 0, u € R},
see Definition 2] below, by a condition that determines a unique prob-
ability measure Q, ,, given in (ZI6) and (ZI5]). In the grand canonical
formalism and the approach of [], this measure is set to be the ther-
modynamic phase of the system. The points (p, ) where the mentioned
single-phase condition fails to hold due to the existence of multiple g
correspond to the coexistence of multiple thermodynamic phases.

Section 3 is dedicated to numerical results related to description of
the phase transition in the system with Curie-Weiss interaction. An anal-
ysis of the chemical potential behavior fi(y) which meet the condition
of maximum of E(y,p, ) is provided. To make quantitative analysis we
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considered fixed values of the parameters v = 12, p = 6. The former
parameter determine the volume of a cell, the latter is connected to at-
tractive part of the interaction potential. We found the critical value
of p = p.(a) dividing the monotonic and non-monotonic dependence of
f(y). The explicit form of the state equation of the model is obtained
in the region of p < p.(a) (matching to T > T, T, is defined in (B2))
describing a single-phase domain. The pressure as a function of density
and temperature is represented. In the region of p > p.(a) we found
values of the chemical potential p. at which the first order phase tran-
sition occurs for different temperatures. In Section 3.3 the equation of
state of the model in the region of low densities and temperatures below
the critical one is represented. The second and third cascades of phase
transitions are considered in Section 3.4. In this case the pressure as a
function of density at T' < T, is obtained. Section 3.5 represents numer-
ical results stated above for the case of another ratio of repulsive and
attractive parameters.

2. The Model: a Theoretical Study

By IN, R we denote the sets of natural and real numbers, respectively.
We also put INg = N U {0}. For d € IN, by R? we denote the Euclidean
space of vectors x = (z',...,2%), ' € R. In the sequel, its dimension d

will be fixed. By dz we mean the Lebesgue measure on RY.

2.1. The grand canonical partition function

For some ¢ > 0, we let A = (—¢/2,¢/2]¢ C R? be a cubic cell of volume
v = ¢ centered at the origin. Let also V' C R? be the union of N € IN
disjoint translates A, of A, i.e.,

N
V= U Ay.
=1

As is usual for Curie-Weiss theories, cf. [4], the form of the interaction
energy of the system of particles placed in V' depends on V. In our model,
the energy of a configuration v = {z1,...,2,} CV,n €N, is

1
WN(’Y) = 5 Z (I)N('rvy)a
x,yey

where
N

On(z,y) = —I/N+ 12 Y Ia,(@)a,(y). (2.1)
=1
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Here Ia, is the indicator of Ay, that is, Ia,(z) = 1 if x € A, and
Ia,(z) = 0 otherwise. For convenience, in Wy above we have included
the self-interaction term ® y(z,z), which does not affect the physics of
the model. We also write Wy and ®p instead of writing Wy and ®y
since these quantities depend only on the number of cells in V' but not
on its particular location. The first term in ® with J; > 0 describes
attraction. By virtue of the Curie-Weiss approach, it is taken equal for all
particles. The second term with Jy > 0 describes repulsion between two
particles contained in one and the same cell. That is, in our model every
two particles in V' attract each other independently of their location, and
repel if they are in the same cell. The intensities J; and Jy in 21) are
assumed to satisfy the following condition

Jo > J1. (22)

The latter is to secure the stability of the interaction, see [6], that is to
satisty

/ Oy (z,y)dy > 0, forall z e V.
v

Let 8 = 1/kgT be the inverse temperature. To optimize the thermody-
namic variables we introduce the following

p =B, a=JyfJs, (2.3)

and the dimensionless chemical potential y = §x (physical chemical po-
tential). Then (p, u) € R4 x R is considered as the basic set of thermo-
dynamic variables, whereas a and v are model parameters.

The grand canonical partition function in region V is

_ o0 1 n
Env(p,p) =1+ Z — /V exp <;m—§ Z @N(xi,xj)> dxy -+ dr,.(2.4)
n=1 " " i,n=1

In [5], the representation in (2.4 was transformed into the following one

N 20N
Ev(pp)= ) exp <% (; Qe) )eﬂlﬁ(ge,u), (2:5)

0N}

where p is as in (23] and

n

1
m(n, p) = 7 exp (un - §apn2>, n € INo. (2.6)
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Note that, for p = 0, 7 turns into the (non-normalized) Poisson distri-
bution with parameter ve*. Hence, alternating the cell size amounts to
shifting p.

We write 2y instead of =y for the reasons mentioned above. Such
type of distribution was used in [7].

2.2. Single-phase domains and phase transitions

For the reader’s convenience, we repeat here some definitions and facts
from [5]. By a standard identity involving Gaussian integrals one gets

exp<%<iw> \/;/ep N +y294)dy

Applying this in (Z3]) one arrives at

N

:‘N(pa ,U) = CN/ exp (NE(yvpa ,U)) dy7 CN = 2—7 (27)
R p
where )
Y
E(y,p,p) = % +In K (y, p, i), (2.8)

and, cf. (23) and (2.0,
K(y,p, 1) Z

Note that F is an infinitely differentiable function of all its arguments.
Set

o™
|

< y+pn a2pn2>- (2.9)

1 -
Pn(p, p) = oN InEn(p, p). (2.10)

By the following evident inequality
ap o _ W+m?®

(y+u)n—?n SW’ n € Ny,

we obtain from (2.9) and ([2.8) that

—1
A2 By ) o (2.11)

E <
(y7p7/'l‘)— 2ap 2ap

As is usual for Laplace’s method, see [8], the calculation of the large
N limit in (ZI0) is based on finding global maxima of E(y,p,u) as a
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function of y € R (i.e., for fixed values of p > 0 and p € R). By (2I1)
we have that lim,| 4o E(y,p, 1) = — oo; hence, each point g of global
maximum belongs to a certain interval (§ — ¢,y + €), where it is also a
maximum point. Since F is everywhere differentiable in y, then g is the
point of global maximum only if it solves the following equation

5}
Er(y,p, ) = 5o By p 1) = 0. (2.12)
By ([2.8) and (2Z.9)) this equation can be rewritten in the form
p K(y,pn
[2em] Ky (y,p,p) ==Y nni, exp <(y + pn — %TLQ)-

n=1

The equation in ([2.I3)) has at least one solution for all p > 0 and u € R.
Since both K7 and K take only strictly positive values, these solutions
are also strictly positive.

Definition 2.1 We say that (p, ) belongs to a single-phase domain if
E(y,p, 1) has a unique global mazimum gy € R such that
82
EQ(gvpa,u) = a_ygE(yapv ,UJ)|YJ:§ <0. (214)

Note that § can be a point of maximum if E1(g,p, ) = Ea(g, p, p) = 0.
That is, not every point of global maximum corresponds to a point in a
single-phase domain.

The condition in ([ZI3) determines the unique probability measure
Qp,. on Ny such that
1 n ( ap o
—v"exp | (T+pu)n——n n € Ny, (2.15)
K(g,p, pn! 2
which yields the probability law of the occupation number of a single
cell. Then the unique thermodynamic phase of the model corresponding
o (p,p) € R is the product

pru(”) =

Qpu = ®Q§;€L (2.16)
{=1

of the copies of the measure defined in (ZI5). It is a probability mea-
sure on the space of all vectors n = (n)72,, in which ny € INg is the
occupation number of ¢-th cell.
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The role of the condition in ([Z14) is to yield the possibility to apply
Laplace’s method for asymptotic calculating the integral in (27). By
direct calculations it follows that

1 1
BEs(y,pp) = —— + ——— 2.17
P =t K Gl G40
3 = e (-t s ) — Lk 4
1yl 1 2 plyT+—p 1 2 D) 1 2) |-

ni,n2= 0

In dealing with the equation in ([ZI3) we will fix p > 0 and consider
FE; as a function of y € R and g € R. Then, for a given u, we solve
[2I2) to find § and then check whether it is the unique point of global
maximum and (214) is satisfied, i.e., whether (p, 1) belongs to a single-
phase domain. As it was shown in [5] each single-phase domain, R, has
the following properties: (a) it is an open subset of R4 x R; (b) for each
(po, o) € R, the function Z,,) := {n € R : (po, ) € R} > pp — g(p) is
continuously differentiable on Z,,. Moreover,

dy(p)
dp
By (ZI3) and ([2I3) we get the @, ,-mean value n = n(p, ) of the

occupation number of a given cell in the form

> 0, for all p € I,,. (2.18)

Ki(y(p, ), p, ) 9(p, )
Zn@p’ T K@) p (2.19)

Note that, up to the factor v=1, fi(p, 1) is the particle density in phase
Qp,.. For a fixed p, a(p,-) in an increasing function on Z,, which thus
can be inverted to give fi(p,n). By Laplace’s method we get that for
each (p, u) € R, the limiting pressure P(p, 1) = limpy—, oo Py (p, 1), see
2I0), exists and is continuously differentiable on R. Moreover, it is
given by the following formula

P(p, i) = v "E(y(p, ), p, 11). (2.20)

Let N, be the image of Z, under the map p — 7(p, ). Then the inverse
map 7 — fi(p,7n) is continuously differential and increasing on N,. By
means of this map, for a fixed p, the pressure given in (Z20) can be
written as a function of #

P = P(n) = v 'E(pn,p, i(p,n)), n e Np, (2.21)
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which is the equation of state.

By virtue of Definition 2.1] each single-phase domain is an open sub-
set of the open right half-plane {(p, ) : p > 0, u € R}, see 2I7)). In
the context of this work, a phase transition is understood as the pos-
sibility to have different phases at the same value of the pair (p, u). If
this is the case, (p, 1) is called a phase coexistence point. Clearly, such a
point should belong to the common topological boundary of at least two
distinct single-phase domains. In [5], we demonstrated the existence of
phase transitions in this sense. Namely, we proved the following state-
ments.

Theorem 2.2 There exists po = po(a) > 0 such that the set R(po) :=
{(p,p) : p € (0,po]} is a single-phase domain.

Theorem 2.3 For each a > 1, there exists p1 = p1(a) > 0 such that,
for each p > p1, the line I, = {(p,p) : p € R} contains at least one
phase-coexistence point.

3. The Quantitative Analysis

In the remaining part of the work, we provide our numerical results
related to the facts just stated. Let us fix the following values of the
parameters

a=Jy/J1 =12, wv=12. (3.1)

Below we return to the question how the results depend on the values of
a and v.

As follows from Theorems and 23] for small py > 0 the stripe
{(p,n) : p € R, p € (0,pp]} is a single-phase domain, whereas the lines
l, = {(p,p) : p € R} contain phase coexistence points if p > p; for
sufficiently big p1 > po. Thus, there should be some critical p. € (po, p1)
which separates these two regimes. Our aim now is to find its numerical
value for the parameters fixed in (B1]).

Figure [Ml below shows the plot of fi(y) which is the function inverse
to that in (2I])). That is, given y > 0, fi(y) is the value of u for which
y solves (ZI3), see [5] for more detail. In view of (2.I8), a monotone
dependence of [i(y) on y corresponds to a single-phase domain. Case a)
of figure [I] corresponds to p = 3.5, case b) to p = p. = 3.928236, and
case ¢) to p = 4.5. Easily seen that p. = 3.928236 is indeed the critical
value. Recall that it corresponds to a = 1.2. By means of p.(a) one may
define the corresponding value of the critical temperature, cf. (23],

Te(a) = Ji/pe(a). (3.2)
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Figure 1: Plot of the chemical potential i(y) as a function of y for values
of the attraction parameter p = 3.5 (curve a), p = p.(1.2) (curve b),
p = 4.5 (curve c).

At p < pc(a) the equation (ZI3) gives the line of extremes of the
function E(g, p, ). Using this equation the chemical potential fi(y) is a
monotonic increasing function of y (see Figure [Ih).

According to Theorem for all p > p.(a) multiple solutions g
correspond to the same value of fi(y), as it is shown on Figure [Ik. In
this case some part of the curve represented on Figure [[k expresses the
max E(g,p,u), and the other part of it meets the condition of
min E(g, p, 1) at equal values of . As a consequence of inequality (214)
the parts of the curve for [ZI3) meets the condition of max Ey(g, ) if
f(y) behaves as an increasing function of y. The condition min E(g, p, 1)
is implemented on the areas where [i(y) is a decreasing function of
y, which means that this condition is not applicable since we use the
Laplace method for calculating (27).

It is easy to make sure about the latter fact directly from calculations.
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E(y,p,u)=0
a) b)

Figure 2: a — division boundary of two surfaces which give the line of ex-
tremes ([Z12)) of the function E(7,p, ). Figure 2b — the imposed (white)
part meet the condition of minimum of E(g,p, ) (p =6a =1.2,v = 12).

Figure 2h shows the intersection of the surface E(y,p,p) (ZI2) with
the plane of zeroth level corresponding to the line of extremes fi(y). On
Figure2b the image of the surface Fo(y, p, 1) > 0 projection (white part)
is imposed on the projection from Figure Bh. Positive part of the second
derivative of the function Fy(7,y) coincide with the area where fi(y) as
a function of § decrease. The condition Fs(y,p, ) < 0 is held only on
the areas where [i(y), is an increasing function of its argument.

3.1. The equation of state in a single-phase domain

In a single-phase domain, the function in ([2.8) has a unique global max-
imum §(p, p), and hence the Laplace method yields in (277) that

En ~ ey exp [NE(y(p, p)p, )]

where the asymptotic equality is understood in the large N limit.

Let us write the equation of state of the model in case of p < p.(a)
in the region of temperature 7' > T.. At this range of parameter p
the chemical potential [i(y) behaves as a monotonic increasing function
of § (Figure [[k). The explicit form of the pressure is given in (Z20)
This equation expresses the pressure P as a function of temperature and
chemical potential since § is a monotonic increasing function of p as it
is seen from (ZI3). This equation can be rewritten in terms of the mean
density n as the mean value of the occupation number n over probability
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measure @, ,(n) from ([2.I5). Taking into account (2.I9) we have

n= Wm exp (—C;—me) exp (pﬁm + ﬂlu(p, ﬁ)m) /
m=0 '
Z %": exp (_a_2pm2) exp (pnm + Bu(p, A)m) . (3.3)

The equation ([33]) holds a central place in the grand canonical ensem-
ble formalism. It gives a possibility to find the chemical potential as
a function of density and express the pressure in terms of density and
temperature. In range of values of the parameter p < p.(a) for (Z2I]) we
obtain the explicit form of the equation of state

m

1, >\ v ap o _ _
Pv = —5pn +In Z o exp (—?m ) exp (pnm + Bu(p,a)m), (3.4)

here p(p,n) is a function of temperature and average density as it can
be seen in ([B.3).

Figure [B] shows pressure as a function of average density i and the
parameter p, which is inversely proportional to temperature. Easy to
see that pressure is a monotonic increasing function of temperature and
density.

3.2. The case of T < T,

Consider calculation of the grand partition function in the region of
p > pe(a), that correspond to temperatures T < T.. Here the chemical
potential fi(y) is a monotonic function of §. Let as explore the behavior
of fi(y) in this range of values of the parameter p. It is represented
on Figure @l at p = 6. For example, here we have chosen a large (in
comparison to the critical one) value of this parameter so the maximum
coordinates fi(y) are not too close to each other.

The points of extremes of fi(y) can be found from the equation [213)).
This equation allows us to determine the local maximums y1, y11, Y12
and local minimums ys, Y21, y22 of the function f(y)(g). Taking into
account the equality ([2.I7) we obtain the following equation

Ko (g, p, 1)/ Ko(7,p, 1) — (K1(7,p, 1)/ Ko (7, p, 1)) = 1/p (3.5)

for the extremum points of the function i(y). Comparing the latter ex-
pression to the condition (ZI4]) easy to see that the solutions 7 of this
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Figure 3: Plot of pressure as a function of density and parameter of
attraction p (see equation ([B4)) at temperature higher then critical one
(a=12,v=12).

equation do not meet the condition max E(g,p, u). However this solu-
tions determine specific points, which divide the region of values y into
intervals. In particular, in the interval (Figure M)

y€(0,91) (3.6)
where y; = 1.267510, the function FEy(y,n) has its maximum
(E2(y,p, ) < 0), while at

y € (y1,v2) (3.7)
where yo = 4.755127, this function meet the condition of minimum

(E2(g,p, 1t) > 0). The following range of values (see also Figure [T])

U € (y2,y11); ¥ € (Yo1,%12) (3.8)

correspond to the maximum of E(g, p, 1) etc. This function has its min-
imum at

Y€ (y1,92); ¥ € (yin,y21)
therefore there is no need to consider them anymore. Here y11 = 7.244287,

y21 = 10.763368. For the purpose of calculating the integral (2.7)) we are
interested in max FE(g, p, ) and intervals of values of § in (36), B.8).
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Figure 4: Plot of the chemical potential as a function of §j at p = 6 in he
region of monotonic dependence.

In the region of values § € (0,y5) the function w(y) is monotonic
increasing. Here each value of § has specific corresponding value of i(y) <
t2. So the form of the equation of state for ¢ in this interval coincides
with (220).

Consider in more details the region of the first maximum of the func-
tion fi(y) (Figure d]). There are multiple solutions ¢ in the interval

i(y) € (pa, pir) (3.9)

where po = —2.308041, 3 = —1.470040. It is necessary to find out which
one leads to max F(g, p, ).
Let us introduce the function

corresponding to the values § € (0, 1), and the function
Er(g1,p, i(y)) = E(F,p, i(y))O U — y2)0(y11 — 7)), (3.11)

defined in the interval § € (y2,y11), y11 is the coordinate of the second
local maximum of f(y) (Figured]). Each of this functions is a function of
chemical potential. The interval of values ([B.7) is not taken into account
since E(g,p, p) fails to meet the condition of maximum there.

The function E(g,p, 1) at p = 6 is monotonic for all

[i(y) € (=00, p2), (3.12)
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and also for
fi(y) € (11, p21). (3.13)

where po; = —0.4173780. The value uo; of the chemical potential cor-
respond to the solution of the equation B8] at § = yo1. Appliance of
the Laplace method for calculation of the integral (Z7) in regions of the
chemical potential (B12]) and [B.I3) is obvious, since for each § one has
a single extremum (maximum) value of E(g, p, 11). One should pay addi-
tional attention to values of the chemical potential ([B.9]). It is necessary
to find which function either (BI0) or (BI1)) has larger value. Easy to
make sure that at fi(y) = p2 we have

EG(g7p7 /142) > EOL (ga M?)a

and at i(y) =
EG(gupa Ml) < EL(gapu /Jfl)

Therefore in range of values B3] for all p > p.(a) there exist such p.
that

EG(vapa,uC) = EL(yvaa,uC)a (314)

moreover yg < yr. Here the sign of equality refer to case of T = T..
Easy to see that for all p < p. we have Eg > Er, and for p > p. the
maximal one will be E;, > Eg.

Figure [l represent the plot of E(g,p, 1) at two fixed values of fi(y)
(at p = 6,v = 12,a = 1.2). The critical value of the chemical potential
in case of mentioned above values of the parameters is . = —1.890291.
Case a) correspond to pg < p, case b) to up > pe. Note that p, is close
to pa (e > p2), and up is close to g (s < p1). At smaller value of the
chemical potential p, the maximum on the left-hand side is larger then
the one on the right-hand side. At larger one u;, we have the opposite
situation. In other words, at small values of the chemical potential p €
(=00, 1) the function Eg > F, and at larger ones p € (fi¢, pi21) we have
Ep, > E¢. Same situation occurs in the region of values p € (uz1, p11)-
In the next section we consider this in more details.

Quantitative calculation of u. is the following. Firstly we consider
the coordinates of extremes point of the curve p(g) in the interval

¥ € (0,y11), (3.15)

where 11 is the coordinate of the second larger maximum of this function
(Figure). Applying the equation ([B35]) for this purpose allows us to find
the extremum points y1, y2; y11, y21 and so on. Using this values in (213))
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Figure 5: Plot of the function E(g,p, u) at two fixed values of the chem-
ical potential a) u, = —1.950,b) pp = —1.800 (. = —1.890291, p = 6,
a=12v=12).

we obtain corresponding values of the chemical potential w1, po, p11, po1
(Figure [)).

The following scheme serves to calculate the chemical potential p,
see ([BI4). The value of ") matching the coordinate ys = (y1 +¥2)/2 is
obtained from the equation (ZI3)

pD = fly,).

In the interval (3I5) there are two more values of §, namely yg ) < Ys

and y(Ll) > y,, corresponding to p(V)

_ 1
v =),y € (0,m),
1
W), y(L) € (y2,y11)
Then E¢ (yg),p, 1) should be compared with EL(y(Ll),p, pM). In case
they are not equal one has to find (2 from the condition
2 2
Ea(yG p,n®) = EL(y)” ,p, u?).
and to repeat the applied for u(!) procedure of calculation for the value
p?). This is the way to find . which meet the condition ([BI4) with pre-
set accuracy. The value . = lim;, u(”) = —1.890291 allows to set the
mechanism of the first order phase transition. The chemical potential is
the control parameter since we consider the grand canonical partition.
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In the limit g — —oo we have § = 0, as follows from (2.I3). The increase
of u cause the increase of 7. In the range of values

€ (=00, fic)

the value g increase starting from § = 0 to ¥ = yg (yg = lim, 00 ygl) =
0.420875). The further increase of i cause changing the function E(g, p, i)
from Eq(g,p, p) at g = pe— 0, to the function Eq(g,p, 1) at g = pe+0.
This situation is accompanied by jump of § starting from y¢ to yr, (yr =
limy, oo y(L"):5.621854). Moreover at T = T, we have yr(T¢.) = ya(Te).
With decrease of temperature (T' < T;) the value

Ay(T) = yo(T) — ya(T)

increases.

3.3. Equation of state in the region of low densities and tem-
peratures T' < T,

Taking into account previous results we can write the equation of state
in the region of low densities 7 at p > p.(a). Let us denote

Pav = —5atIn 37 e Frammnenn - (316)

m=0

where pu(p, 1) is the solution of the equation ([B:3). There are some fixed
values of the density n = g/p at T < T,.. The first one appear in the
region of the first maximum of f(y) (Figure @)

nG = ya/p (3.17)

It correspond to the value 7 in the interval § € (0,y1) for the chemical
potential . (BI4). At p = 6 we have ng = 0.070146.
The second fixed value is

nr =yL/p (3.18)

(n, = 0.936975 at p = 6). This one correspond to the value § on the
interval § € (ya2,y11) at p = pe. Moreover ny, > ng for all T < T..

There is a fixed value of the chemical potential in the region of the
second maximum

Ny, = Yoy /P (3.19)
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(for p = 6 we have 7, = 6.163534, n%; = 1.027256), corresponding to the
coordinate y), which is calculated at po; (Figure ). The values (317,

BI8) and BI9) can be obtained from the equation B3] in different
intervals of the variable §.
The equation of state of the system in the region of densities

n € (0,n4;) (3.20)

including the values of 7 starting from zero to y4; has the following form
Pv = PpuO(ng — 1) + Po,vO(fi — ng)O(ng — ) +

+PrvO(n —nL)O(ny —n). (3.21)

0 0.2 0.4 0.6 0.8

n

Figure 6: Isotherms of pressure as a function of density at p > p.(1.2)
in the region of low densities (8:20). Curve 1 corresponds to p = 3.8 <
p(1.2). The curves 2-9 correspond to p > pe: p = pe(1.2) (curve 2),
p =4 (curve 3), p = 4.135 (curve 4), p = 4.3647 (curve 5), p = 4.5824
(curve 6), p = 4.8 (curve 7), p =5 (curve 8), p = 6 (curve 9).

Moreover the first term in [B21]) describes the behavior of the phase
I with the lowest density, the third term — the phase II, which has larger
density than the phase I at all T' < T,. At T = T, both phases has equal
densities and at T' > T, there exist only one density which is a monotonic
increasing function of pressure (Figure [).

The second term in (B2I)) indicate that pressure remains constant
and equal to

p — "
_ _ap, 2 n
P,,v=—=ng+1n E e 2 PG Brem
2 m!
m=0

in the interval
n € (ng,nr) (3.22)
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Note that the condition ([B.I4) gives P,,, = P,,, where P, is as follows

p — "
_ _ap, .2 n
P,,v=—-Znr+1n E ez ePrLmeBuem,
2 m!
m=0

In case of p > p.(a) there are unattainable densities in the interval (3:22))
from the point of varying the chemical potential fi(y). When fi(y) tends
to u. from the left-hand side we have the density region

n € (0,ng). (3.23)
When fi(y) tends to u. from the right-hand side
n € (ng,nb ). (3.24)

The density region (3.22)) in between does not exist. The solutions of the
phase I, where the density varies in the interval [B.23)), transit by jump
into the solutions of the phase II, with (824). This is connected with
change of derivative value of the chemical potential in the point ..

Figure [0 shows the isotherms of pressure in the interval [B20) at
different values of the parameter p.

3.4. Transition between the phase II and the phase 111

The previous section was dedicated to description of behavior of the
model in the region of low densities (3:20). It can be conditionally linked
to the gas-liquid phase transition, since density in this case vary starting
from zero up to some fixed value. Let us describe the behavior of the
system for larger values of density i > nf; (Figure [[) and show that
transition from the phase II to the phase III (with larger density than
in the phase II) is possible here. Behavior of fi(y) is of most importance
here.

Figure [0 shows the characteristic points of the function fi(y) in the
region of the second and the third maximums of the value fi(y) from

213)

In the interval of the chemical potential values

i(y) € (p21, pa1) (3.25)

(o1 = —0.417380, 11 = 0.431080) we have a non-monotonic behavior
of fi(y). Let us define the function

Es(g,p, 1) = E(9,p, 11)O(y12 — 7)O(y21 — 9), (3.26)




18 IIpenpunt

H(y)

T I T T B R

=
J
N

L

1

______________________________________________________

PHASE 111 [

=
N
[y}

|

.\Fn
N e
o
[
i T
| '
1 '
1 '
\ '
| '
I '
| '
\ '
| '
| '
1 '
| '
1 '
| '
! '
1 '
| '
| '
! '
'
1 |
| '
*
|
1
\
!
1
\
|
|
!
1

i
U

_____________

-\_T_l_l L I’T)I Ill IT

T ITI T | 1T | l I T | T T 17 QI/ T ﬁ KSI\I T |1 | L I | T
T N * Y2 > YZ;K y YZl f ’ > YL4 y
YG YL YLI YLZ y22 Y12

Y.

Figure 7: Plot of fi(y) in the region of the second maximum at p = 6,
a=12v=12.

which is nonzero in the interval

Y € (y21,Y12)-
where y12 = 13.236413. The function fi(y) is monotonic in the interval

v <€ (yo,ya1)

so the function E(g, p, u) is characterized by one value § determining the
integral (2.7)), therefore it determines the expression of pressure (B.16).
The phase II exists here in "pure" form.

The interval of values

g € (y/215 ylll)

(yh, = 6.163534,y;; = 11.862089) correspond to non-monotonic depen-
dence of E(y, p, ) on y. Therefore it is worthily to compare the functions
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Er(y,p, ) from BII) and Es(g,p, n) from B26) at all values of the
chemical potential from the interval [B.25]). As well as in case of transi-

tion from the phase I to the phase II, there exist the chemical potential
ey such that

EL(ylepa ,ucl) == ES(yL27pa :ucl)v

where
yr1 € (Ya1,911) and  yro € (Ya1,%12).

The way of calculating p., is the same as represented in Section 4 for the
case of .. Figure [§ shows the pressure as a function of § at p = 4,p =
5,p =6 and p = 8 including the region of the first and the second local
maximums of the curve [i(y). Evidently, except the transition from the
phase I to the phase IT (at y € (yg,yr)) there exist the transition from
phase II to phase III, where the jump of the order parameter occurs in
the interval of values

y € (yLla yLQ)a

where yr1 = 6.373312, yro = 11.641773, moreover yz; characterizes the
maximal density of the phase II, and yr2 — the minimal density of the
phase IIT at correspondent values of p.

The further growth of the chemical potential yield the cascade of
phase transitions from the phase f to the phase (f+1). Each subsequent
cascade correspond to larger densities. Note that this model has more
than a single critical point. Each of them is characterized by its critical
temperature, critical density, and exist in appropriate cascade.

Sufficient growth of the attraction parameter p causes the possibility
of transition of the system from the phase I to the phase III omitting the
phase II. As we can see from the numerical results there exist some value
of the parameter pr, that at p > pp there occurs a competition between
Ec(g,p, 1), Er(g,p, ) and Es(g, p, p) aimed to find out which one of
this functions is maximal at the same value of the chemical potential
(see Figure [d). According to the definition ([BI0) the variable § of the
function Eg(y,p, u) takes small values § € (0,y1), in EL(y,p, ) this
variable changes in the interval § € (yo2,y11), where y2 > y1, and in
Es(g,p, 1) — § € (y21,y12), moreover ya1 > y11. Note that in the region
of values p.(1.2) < p < pr correspondent to the temperature interval

Tr<T<T, (3.27)

there occur only the sequence of phase transitions phase I — phase II,
phase II — phase IIT etc. This is because each [i(y) has not more than
three extremum points (two of them correspond to max E(y,p, it)).




20 IIpenpunt
P
5 Ps
a4
6
3
4
2
2
1
0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 _ 16
a) Y b) y
7 P
P 12
6]
5] 10
4 8
34
o]
2]
5]
]
0 o]
2 4 6 8 10 12 14 16_18 5 10 15 20 _
c) y d) y

Figure 8: Plot of the pressure as a function of density in the region of
first three maximums of dependence fi(y) at a = 1.2, v = 12: a) p = 4,
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Figure 10: Plot of the function
fi(y) at p = 10.
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At p > pr there is a situation where five extremum points of the
function E(g,p, ) (three of them are maximums of E(y,p,p)) corre-
spond to single value of fi(y) (see Figure [I0)). In this case it is worthily
to find out which one of them is the largest. To do this we have to com-
pare the functions E¢ (g, p, 1), Fr(g,p, 1) and Es(g,p, 1) at some values
of u. There are two possible cases. In the former Eg (7, p, pt) transits to
Er(g,p, 1) at p = pe, and EL(7,p, 1) transits to Es(g, p, 1) at g = piec.
Moreover p1. > pe. This situation occurs in the region of temperatures
BZ17). In the latter case Eg(y,p,n) transits to Es(g,p, ) at once at
= ps, namely there occur the transition of the phase I to the phase
III, omitting the phase II. This situation can happen only in the region
of p > pr which match the temperature region T' < T < T,. There are
important quantitative results which show that first of all for (B1I) we
have at a = 1.2

pr = 8.440525.

and secondly the direct transition between the phases I and III is im-
possible. Therefore we have the sequence of phase transitions between
neighboring phases.

3.5. Investigation of dependence on the parameter a

This parameter characterizes the relation between repulsive J; and at-
tractive Jo components of the interaction potential. The represented
above calculations were executed at ¢ = 1.2 and v = 12 from @I]).
Let us see how the results change when the parameter a vary in the in-
terval 1 < a < 10. In accordance to the condition of stability (2.2) a > 1.
The parameter v will be the same as previously v = 12.

The quantitative results show that changing the value of a has no
influence on existence of the phase transition in the model. It only lead
to slightly different absolute value of the critical temperature which is
defined in (B:2). The latter fact is natural, since T, depends on the pa-
rameter p which is the repulsive component of the interaction potential
and on the value p.(a) separating monotonic behavior of the extremum
value of the chemical potential from non-monotonic one.

However note that the critical value of the chemical potential in-
creases sufficiently when a grows (v = 12):

a = 0.0001 s, = —2.516, pc(1) = 3.8255,
a=12 pe? =—2.105, p(1.2) = 3.9282,
a=2 pZ, = —0.4866, p.(2) = 3.9973,
a=10 fey = 15.5196,  p.(10) = 4.0000.
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It means that with growth of repulsive part of the interaction potential
(with respect to the attractive one) the phase transition occur at more
larger value of the chemical potential.

Numerical way of calculating p.(a) is the following. The function
f(y) has an inflection point in the critical point. Namely the following
equalities are held

ony)y) _
o] '
P _
0y? ’
If these equalities are held simultaneously we obtain § = ¢, and p =

pe(a).

Figure [[1h represent the isotherms of the equation of state at v =
12,a = 1.0001, and different p. Easy to see that curves of isotherms have
no intersection at any p

The case of a = 1.0001 is shown on Figure [[Ib. At low p this curves
also don’t intersect but the isotherms where p = 6 and p = 8 cross in
the phase transition in the third cascade. The same situation occur at
a = 1.02 (Figure [[Ik). Here we have a crossing in the third cascade of
the phase transition (particularly in case of p = 5, p = 6 and p = 8).
Besides the values of pressure coincide in cases of p = 6 and p = 8 in the
phase transition point of the second phase transition cascade.

In case of a = 1.2 and different p isotherms in the first cascade has
no crossing, but there are numerous intersections in the second and the
third cascades.

4. Conclusions

We made the accurate calculation of the grand partition function of
single-sort cell model with Curie-Weiss potential. Consequently it is
found that this model has a sequence of first order phase transitions at
temperatures below the critical one T.. The critical temperature value
depends on two parameters: attractive component of the interaction po-
tential J; and the parameter a. We proved the existence of multiple
thermodynamic phases at the same values of the extensive model param-
eters — temperature and chemical potential. In contrast to the approach
of [I], we deal directly with thermodynamic phases in the grand canon-
ical setting. We provided detailed quantitative analysis at fixed values
of parameters of the model in wide region of densities and temperature.
Behavior of the pressure as a function of density is explored for first
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Figure 11: Isotherms of pressure as a function of density at v = 12, a)
correspond to a = 1.0001, b) — @ = 1.01 and ¢) — a = 1.02. Curve 1 is
forp=4,curve 2 - p =25, curve 3 — p =6 and curve 4 — p = 8.

three cascades of first-order phase transitions at temperatures below the
critical one T,. To the best of our knowledge, this is the first result of
this kind.
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