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Анотацiя. Обговорюється вплив iндукованої корельованим
переносом локалiзацiї колективiзованих електронiв на електронний
транспорт заряду i тепла в слабко легованiй фазi моттiвського
дiелектрика моделi Фалiкова-Кiмбала. Детально розглядається
випадок сильно редукованого переносу мiж вузлами iз заповненими
рiвнями f -електронiв, коли на густинi станiв виникає додаткова
зона локалiзованих станiв d-електронiв у моттiвськiй щiлинi.
Внаслiдок сильної електрон-дiркової асиметрiї i появи аномальних
особливостей на густинi станiв та транспортнiй функцiї,
спостерiгається сильне зростання коефiцiєнта Зеєбека при низьких
температурах, коли вiн слабко змiнюється в широкому дiапазонi
температур.

Thermoelectric properties of Mott insulator with correlated
hopping at microdoping

D.A. Dobushovskyi, A.M. Shvaika

Abstract. An influence of the induced by correlated hopping localiza-
tion of itinerant electrons on the electronic charge and heat transport
is discussed for the lightly doped Mott insulator phase of the Falicov-
Kimball model. The case of strongly reduced hopping amplitude between
the sites with occupied f -electron levels, when an additional band of lo-
calized d-electron states could appear on the DOS in the Mott gap, is
considered. Due to the electron-hole asymmetry and anomalous features
on the DOS and transport function induced by correlated hopping, the
strong enhancement of the Seebeck coefficient is observed at low temper-
atures, when the flatted dependence is displays in a wide temperature
range.
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1. Introduction

During last decade, various systems with specific electron properties are
attracting a great interest of investigators. They include the one- and
two-dimensional organic conductors, three-dimensional solids and topo-
logical conductors, and up to the fermionic atoms on optical lattices.
Many of their properties can be explained only by the proper treating
of the electron dynamics involving the many-electron effects and elec-
tron correlations. One of the perspective applications of such systems
can be the power generation or cooling through the thermoelectric ef-
fect. Theoretical description of the thermoelectric transport in strongly
correlated electron systems is a challenge and requires developing of the
new approaches, see e.g. reference [1], and most of the previous inves-
tigations were done for the models with local single-site correlations of
the Hubbard or Anderson type.

But it was first pointed by Hubbard [2], that the second quantized
representation of the inter-electron Coulomb interaction contains, be-
sides the local term U

∑

i ni↑ni↓, the nonlocal contributions including
the inter-site Coulomb interaction

∑

ij Vij n̂in̂j and the so-called corre-
lated hopping

∑

ijσ

t
(2)
ij (n̂iσ̄ + n̂jσ̄)c†iσcjσ, (1.1)

which introduces a new physical effects because now the value of inter-
site hopping depends on the occupation of these states.

Local Coulomb interaction is a subject of the famous Hubbard model
and has been investigated for many decades in the theory of strongly cor-
related electron systems, whereas the correlated hopping attracts much
less attention. Mainly, it was considered in connection with elaboration of
new mechanisms for high temperature superconductivity [3, 4], descrip-
tion of organic compounds [5] and molecular crystals [6], electron-hole
asymmetry [7], and enhancement of magnetic properties [8]. Last years
show, that correlated hopping is an important puzzle in the physics of
quantum dots [9–11] and it appears in a natural way in modelling of the
fermionic [12,13] and bosonic [14–16] atoms on optical lattices. However,
due to its nonlocal character, the theoretical treatment of correlated hop-
ping is difficult and, in most cases, the solutions can only be obtained
by rather drastic approximations.

The exact results, that one can obtain in some special cases, are of
great importance, as they can be used for benchmarking various approx-
imations. In this article, we examine the Falicov-Kimball model [17],
the simplest model of strongly correlated electrons, which considers the
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local interaction between the itinerant d electrons and localized f elec-
trons. It is a binary alloy type model and it displays a variety of mod-
ulated phases [18–21] in the ground state phase diagram for the one-
dimensional (D = 1) and two-dimensional (D = 2) cases. The main
advantage of the Falicov-Kimball model is in the featuring of an exact
solution in infinite dimensions [22, 23] within the dynamical mean field
theory (DMFT) [24,25]. Its extension by inclusion of correlated hopping
was also considered and the DMFT solution with a nonlocal self-energy
were provided [26, 27].

In our previous articles [28, 29], we have considered the charge and
heat transport as well as optical conductivity spectra for the Falicov-
Kimball model with correlated hopping on Bethe lattice. We have calcu-
lated the one particle density of states (DOS) and two particle transport
function (the “quasiparticle” scattering time) for a wide range of the
correlated hopping parameter values and have observed the singularities
on transport function due to the resonant two-particle contributions,
whereas the one particle DOS does not show any anomalous features.
By tuning the doping of itinerant electrons, one can bring the chemi-
cal potential close to the resonant frequency and a large increase of the
electrical and thermal conductivities and of the thermoelectric power
can be achieved. Simultaneously, the strong enhancement of the Drude
peek is developed on optical conductivity spectra and the strong devia-
tion from the Debye relaxation is observed at low temperatures. On the
other hand, for some values of correlated hopping, when the hopping
amplitude between the occupied sites is reduced sufficiently, itinerant
electrons localize in the clusters of sites occupied by f -electrons giving
rise to an additional narrow band in the DOS between the lower and
upper Hubbard bands separated by additional gap.

It was shown already by Zlatić and Freericks [30] and Zlatić et al. [31]
that light doping of the Mott insulator hugely enhanced its thermoelec-
tric properties and electronic thermal transport, which displays a univer-
sal behaviour in the case of bad metals. But nobody have investigated
these for the systems with correlated hopping. The main subject of this
article is to study the dc charge and thermal transport as well as ther-
mopower for the Falicov-Kimball model with correlated hopping at light
doping levels.

The paper is organized as follows. In section 2, we present the DMFT
solution for the Falicov-Kimball model with correlated hopping on a
Bethe lattice and provide derivation of the expressions for the charge
and thermal transport coefficients. In section 3, we present our results
for the charge and thermal transport for different values of the corre-
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lated hopping parameters and for different doping levels. The results are
summarized in section 4.

2. Dynamical mean-field theory for thermoelectric

transport on Bethe lattice with correlated hopping

We consider the Falicov-Kimball model [17] with correlated hopping de-
scribed by the Hamiltonian

H = Hloc + Ht, (2.1)

which contains two terms:

Hloc =
∑

i

[Unidnif − µfnif − µdnid] (2.2)

includes local correlations between the itinerant d-electrons and localized
f -electrons and

Ht =
∑

〈ij〉

t∗ij√
Z

[

t1d
†
idj + t2d

†
idj (nif + njf ) + t3d

†
idjnifnjf

]

(2.3)

describes the nearest-neighbor inter-site hopping with amplitude t1 and
nonlocal correlations, the so-called correlated hopping, with amplitudes
t2 and t3 on the Bethe lattice with infinite coordination number, Z → ∞.
The occupation of localized f states is conserved, [nif , H ] = 0, and, by
introducing the projection operators P+

i = nif and P−
i = 1 − nif , one

can define the projected d-electron operators

di =

(

diP
+
i

diP
−
i

)

, (2.4)

such that the nonlocal term can be rewritten in a compact matrix
form [27]

Ht =
∑

〈ij〉

t∗ij√
Z

[

t++P+
i d†idjP

+
j + t−−P−

i d†idjP
−
j + t+−P+

i d†idjP
−
j

+t−+P−
i d†idjP

+
j

]

=
∑

〈ij〉

t∗ij√
Z
d
†
itdj . (2.5)

Here, the hopping matrix

t =

[

t++ t+−

t−+ t−−

]

(2.6)



4 Препринт

is defined in terms of the initial hopping amplitudes by

t−− = t1, t+− = t−+ = t1 + t2, t++ = t1 + 2t2 + t3, (2.7)

where t−−, t+− = t−+, and t++ describe hopping between the sites with
different filling of f -states: both empty, one empty and one occupied,
and both occupied, respectively.

Accordingly, the matrix Green’s function for projected d-electrons
Gij = [Gαβ

ij ], where α, β = ±, is defined by

Gij(τ − τ ′) = −
〈

T di(τ) ⊗ d
†
j(τ

′)
〉

, (2.8)

where T is the imaginary-time ordering operator and the angular bracket
denotes the quantum statistical averaging with respect to H . Due to the
nonlocal character of correlated hopping, it is convenient to treat Ht as
perturbation and expand around the atomic limit. The corresponding
Dyson-type equation can be written in a matrix form as

Gij(ω) = Ξij(ω) +
∑

〈i′j′〉

Ξij′ (ω) ·
t∗j′i′√
Z
t ·Gi′j(ω), (2.9)

where Ξij(ω) is the irreducible cumulant [25, 32].
It can be shown that the irreducible cumulant is local in the limit

of infinite coordination Z → ∞ [32], Ξij(ω) = δijΞ(ω), and can be
calculated within the dynamical mean-field theory (DMFT). Now, the
formal solution of the Dyson equation (2.9) for lattice Green’s function
can be written in a matrix form as

Gǫ(ω) =
[

Ξ
−1(ω) − tǫ

]−1
(2.10)

with the components

Gβα
ǫ (ω) =

Aβα(ω) −Bβαǫ

C(ω) −D(ω)ǫ + ǫ2 det t
. (2.11)

Here, the band energy is distributed according to the density of states
ρ(ǫ), the semi-elliptic one for the Bethe lattice

ρ(ǫ) =
2

πW 2

√

W 2 − ǫ2 , (2.12)

and we introduced two adjugate matrices

A(ω) = adjΞ−1(ω) = Ξ(ω)/ detΞ(ω) (2.13)
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and
B = adj t = t

−1 det t . (2.14)

In our case, the scalars C and D are given by

C(ω) = detA(ω) = detΞ−1(ω) = 1/ detΞ(ω), (2.15)

and

D(ω) = Tr [A(ω)t] = Tr
[

Ξ
−1(ω)B

]

. (2.16)

An irreducible cumulant Ξij(ω) can be found as a solution of the
DMFT equations

Glocal(ω) ≡ Gii(ω) =

+∞
∫

−∞

dǫρ(ǫ)Gǫ(ω) =
[

Ξ
−1(ω) −Λ(ω)

]−1
= Gimp(ω),

(2.17)
where the local lattice Green’s functions is equated with the one of an
auxiliary impurity embedded in a self-consistent bath, described by the
time-dependent mean field Λ(ω) = [λαβ(ω)] (λ-field). For the Bethe
lattice, we can rewrite the DMFT equation (2.17) as [27]

Λ(ω) =
W 2

4
tGimp(ω)t (2.18)

and in numerical calculations we use W = 2, which defines our energy
scale.

For the Falicov-Kimball model with correlated hopping, the compo-
nents of the Green’s function of impurity are given by an exact expres-
sions [27]

G++
imp(ω) = w1g1(ω),

G−−
imp(ω) = w0g0(ω),

G+−
imp(ω) = G−+

imp(ω) = 0, (2.19)

where w1 = 〈P+〉 = 〈nf 〉, w0 = 〈P−〉 = 〈1 − nf 〉, and

g0(ω) =
1

ω + µd − λ−−(ω)
,

g1(ω) =
1

ω + µd − U − λ++(ω)
(2.20)
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are the impurity Green’s functions of a conduction electron in the pres-
ence of a f -state which is either permanently empty or occupied, re-
spectively. After substitution of these expressions in (2.18), one can get
the 4th order polynomial equations for g0(ω) or g1(ω) and details of its
solution are given in [28].

For the local single-particle Green’s function

Gii(τ − τ ′) = −
〈

T di(τ)d†i (τ
′)
〉

, (2.21)

we have
Gii(ω) =

∑

α,β=±

Gαβ
imp(ω) = w0g0(ω) + w1g1(ω), (2.22)

and, finally, the renormalized DOS of the lattice is expressed in terms of
the impurity Green’s function

Ad(ω) = − 1

π
ImGii(ω) = − 1

π
[w0 Im g0(ω) + w1 Im g1(ω)] . (2.23)

The chemical potential for d-electrons µd is obtained by solving the
equation

nd = − 1

π

∫ +∞

−∞

dωf(ω) ImGii(ω), (2.24)

where f(ω) = 1/(eω/T + 1) is the Fermi function, for a given value of
their concentration nd = 〈nd〉.

We now proceed to the calculation of transport properties by linear
response theory. The dc charge conductivity

σdc = e2L11, (2.25)

the Seebeck coefficient (thermoelectric power E = S∇T )

S =
1

eT
L
−1
11 L12, (2.26)

and the electronic contribution to thermal conductivity

κe =
1

T

[

L22 − L21L
−1
11 L12

]

(2.27)

are expressed in terms of the transport integrals [33–36]

Llm =
σ0

e2

∫ +∞

−∞

dω

[

−df(ω)

dω

]

I(ω)ωl+m−2, (2.28)
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where I(ω) is the transport function. In the considered case of correlated
hopping, the DMFT expression for transport function reads

I(ω) =
1

π

∫

dǫρ(ǫ)Φxx(ǫ) Tr [t ImGǫ(ω) t ImGǫ(ω)]

=
1

π

∑

αβα′β′

tαβtα
′β′

∫

dǫρ(ǫ)Φxx(ǫ) ImGβα′

ǫ (ω) ImGβ′α
ǫ (ω), (2.29)

where Φxx(ǫ) is the so-called lattice-specific transport DOS [37] and, for
the Z = ∞ Bethe lattice with semielliptic DOS, the f -sum rule yields [38]

Φxx(ǫ) =
1

3Z

(

W 2 − ǫ2
)

. (2.30)

Finally, the transport function reads [28]

I(ω) =
1

2π

[

Re {Ψ′[E1(ω)] + Ψ′[E2(ω)]} − Im Ψ [E1(ω)]

ImE1(ω)
− Im Ψ [E2(ω)]

ImE2(ω)

−K(ω)

{

1

ImE1(ω)
Im

Ψ[E1(ω)]

[E1(ω) − E2(ω)] [E1(ω) − E∗
2 (ω)]

+
1

ImE2(ω)
Im

Ψ[E2(ω)]

[E2(ω) − E1(ω)] [E2(ω) − E∗
1 (ω)]

}]

, (2.31)

where E1 and E2 are the roots of the denominator in equation (2.11),
C(ω) −D(ω)ǫ + ǫ2 det t = 0, given by

E1(ω) =
D(ω)

2 det t

[

1 +

√

1 − 4C(ω)

D2(ω)
det t

]

, (2.32)

E2(ω) =
2C(ω)

D(ω)

[

1 +

√

1 − 4C(ω)

D2(ω)
det t

]−1

, (2.33)

and K(ω) reads

K(ω) = 2 Re[E1(ω)E∗
2 (ω)] − 1

det t
Re Tr[A∗(ω)Ξ−1(ω)]. (2.34)

Here,

Ψ(ζ) =

∫

dǫ
ρ(ǫ)

ζ − ǫ
Φxx(ǫ),

Ψ′(ζ) =
dΨ(ζ)

dζ
, (2.35)
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and, for the semielliptic DOS, we find

Ψ(ζ) =
1

3

[

(W 2 − ζ2)F (ζ) + ζ
]

,

Ψ′(ζ) =
1

3

[

(W 2 − ζ2)F ′(ζ) + 1 − 2ζF (ζ)
]

, (2.36)

where

F (ζ) =

∫

dǫ
ρ(ǫ)

ζ − ǫ
=

2

W 2

(

ζ −
√

ζ2 −W 2
)

,

F ′(ζ) =
dF (ζ)

dζ
=

ζF (ζ) − 2

ζ2 −W 2
. (2.37)

In addition, we calculate the Lorentz number

L =
κe

σdcT
=

1

e2T 2

[

L22

L11
−
(

L12

L11

)2
]

, (2.38)

which for the pure metal with degenerate fermions is equal L0 = π2/3,
as it follows from the Wiedemann-Franz law.

3. Results and discussion

According to equations (2.25)–(2.28), the transport coefficients are de-
termined by the shape and value of the transport function I(ω) within
the so-called Fermi window, defined by function [−df(ω)/dω], around the
Fermi level (chemical potential value) [36]. The largest thermoelectric ef-
fect can be observed when transport function is strongly asymmetric at
the chemical potential, e.g. it is nonzero on the one side from the chem-
ical potential and zero on the other one. Such case can be achieved in
a lightly doped Mott insulators, when the chemical potential is stuck at
the band edge [30].

In the case of correlated hopping, the Mott insulator phase has some
specific features. First of all, the DOS Ad(ω) is strongly asymmetric and
contains two Hubbard bands, lower and upper one, with spectral weights
w0 = 1 − nf and w1 = nf , respectively. The Mott gap is the largest at
t2 = −0.5 value, see figure 1(a), when t++ = 0 and hopping between the
sites with occupied f states is prohibited (here and below we put t1 = 1
and consider the case of t3 = 0). Besides, at half filling, nf = 0.5, and
exactly at t2 = −0.5 value, there is a square root singularity at the lower
edge of the upper Hubbard band, figure 2, which strongly effects the
temperature behaviour of the chemical potential. At high temperatures,

ICMP–19–05E 9

Figure 1. (Colour online) (a,c) Density of states Ad(ω) and (b,d) trans-
port function I(ω) for U = 2.0 and (a,b) nf = 0.5 and (c,d) nf = 0.75
depending on the correlated hopping parameter t2.
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Figure 2. Density of states Ad(ω) and transport function I(ω) for U =
2.0, nf = 0.5, and t2 = −0.5 (t++ = 0).

the chemical potential µd is placed closer to the lower Hubbard band,
but with the temperature decrease it starts to approach the centre of the
Mott gap.

The shape of transport function I(ω) is different and it is strongly
affected by the resonant peek [28] placed at the frequency ω = ωres given
by

ωres + µd =
U

1 − η
(3.1)
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with

η =
(t+−)2

(t−−)2
− (t+−)2 −

√

(t+−)4 + 4w1w0 [(t++t−−)2 − (t+−)4]

2(t−−)2w0
. (3.2)

Transport function displays a power law frequency dependence at the
top of the lower Hubbard band [39], instead of the square root one for
DOS, and an anomalous step-like feature at the bottom of the upper
Hubbard band. As a result, the temperature dependences of transport
coefficients, figure 3, strongly depend on the doping character and its
level. At half filling nd = 0.5 and in the Mott insulator phase, the dc
charge and thermal conductivities display typical dependences for the
large gap insulators with an exponential decay at β = 1/T → +∞ with
divergent Lorentz number L. On the other hand, the Seebeck coefficient
is negative and follows the 1/T dependence at small temperatures, which
results from the mentioned above strong asymmetry of the transport
function, power law dependence for the lower Hubbard band and step-
like feature for the upper one, see, for comparison, [40].
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Figure 3. (Colour online) Temperature dependences of the dc charge
σdc and thermal κe conductivities, Lorentz number L (L0 = π2/3), and
thermopower (Seebeck coefficient) S for U = 2.0, nf = 0.5, t2 = −0.5
(t++ = 0), nd = 0.5 + nc.
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Now, let us consider an effect of doping. For hole doping, nd = 0.5+nc

and nc < 0, the chemical potential is placed at T = 0 somewhere in at
the top of lower Hubbard band. The temperature dependences of the dc
charge and thermal conductivities display at high temperatures the same
behaviour as in the Mott insulator case. For low temperatures, when the
chemical potential enters the lower Hubbard band, the dc charge conduc-
tivity starts to increase, as it should be for bad metal, and the thermal
one displays linear temperature dependence. The strongest doping effect
is observed for the thermoelectric transport. Because now the chemical
potential approaches the lower Hubbard band with decreasing of tem-
perature faster than in the Mott insulator case, the Seebeck coefficient
increases faster too until the chemical potential enters the lower Hub-
bard band. After that, the transport function becomes smooth within the
Fermi window resulting in the lowering of the absolute value of Seebeck
coefficient at low temperatures. One can notice the strong deviation of
the temperature dependence of thermopower S(T ) from the one typical
for bad metals [31] and specific for light doping [30]. Now, S(T ) exhibits
almost linear temperature dependence below the peek, which is caused
by the character of the temperature dependence of the chemical poten-
tial due to the sharp features of DOS. Similar behaviour is observed for
an electron doping, nc > 0, but now the Seebeck coefficient becomes pos-
itive when the chemical potential approaches the upper Hubbard band,
and transport coefficients are larger in comparison with the hole dop-
ing case because the transport function is larger for the upper Hubbard
band in comparison with the lower one. Also, the linear segment on S(T )
extends and becomes flattened.

The results presented above were obtained for the special case of
t2 = −0.5, when the hopping between the sites with occupied f states is
zero, t++ = 0. In figures 4–5, we present results for the case with small
values of t++ = 0.04. Now, the edge singularity on DOS is smoothed
in narrow peek, whereas the step-like feature on transport function is
replaced by the resonant peek. Nevertheless, the discussed above features
preserve, and we observe only quantitative changes in the temperature
dependences of the transport coefficient. The only prominent effect is
visible for the electron doping case, nc > 0, when the step-like feature
on transport function is smoothed leading to the faster decreasing of the
Seebeck coefficient at T → 0.

Above we have considered the case of half filling of f particle states,
nf = 0.5. However, in our previous investigations [28], it was found
that for the case of f particle doping, nf > 0.5, the third narrow band
appears [figure 1 (c) and (d)] when the hopping amplitude between the
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Figure 4. Density of states Ad(ω) and transport function I(ω) for U =
2.0, nf = 0.5, and t2 = −0.48 (t++ = 0.04).
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Figure 5. (Colour online) Temperature dependences of the dc charge
σdc and thermal κe conductivities, Lorentz number L (L0 = π2/3), and
thermopower (Seebeck coefficient) S for U = 2.0, nf = 0.5, t2 = −0.48
(t++ = 0.04), nd = 0.5 + nc.

sites occupied by f particle become very small, |t++| ≪ t1. Now, the
DOS contains three band: the lower and upper Hubbard bands with
equal spectral weights w0 = 1 − nf and the narrow middle band with
spectral weight 2nf −1 arising from the localized d electron states in the
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clusters of sites with occupied f states formed at nf > 0.5. Hence, one
can consider two cases of Mott insulators: the large gap Mott insulator
for nd = 1 − nf and the small gap one for nd = nf . For t++ = 0
(t2 = −0.5), this middle band shrinks to a level with a δ-peek on DOS,
whereas it gives no any contribution to transport function (figure 6).
Hence, the gaps on the DOS and transport function are of different
width. In the cases of the pure large gap insulator, nd = 1 − nf + nc

with nc = 0, at very low temperatures, T → 0, the chemical potential
is placed in the centre of large gap, i.e., in a middle between the top
of lower Hubbard band and δ-peek from localized states on DOS. On
the other hand, these localized states do not contribute in transport
coefficients and the transport function I(ω) “feels” the larger gap between
the top of the lower Hubbard band and the bottom of the upper one.
But now, the chemical potential is shifted from the centre of the gap
on transport function leading to an additional strong enhancement of
thermopower S(T ) at T → 0, not seen in figure 7, which results in the
strong reduction of the Lorentz number by the second term in (2.38) at
low temperatures, in contrast to the divergent behaviour observed for
typical Mott insulators.
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Figure 6. Density of states Ad(ω) and transport function I(ω) for U =
2.0, nf = 0.75, and t2 = −0.5 (t++ = 0).

For the lightly hole doped large gap insulator, nc < 0, the behaviour
is similar to the one considered above (figure 7). On the other hand, for
the case of electron doping, nc > 0, and at low temperatures, the chemi-
cal potential is placed in the middle level of localized states separated by
small gap from the upper Hubbard band which it never enters. Now, the
transport function is always very asymmetric on different sides of the
Fermi level, within the Fermi window, producing large enhancement of
the Seebeck coefficient at low temperatures. For the small gap insulator
at nd = nf + nc, we observe almost metallic transport at high tempera-
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Figure 7. (Colour online) Temperature dependences of the dc charge
σdc and thermal κe conductivities, Lorentz number L (L0 = π2/3), and
thermopower (Seebeck coefficient) S for U = 2.0, nf = 0.75, t2 = −0.5
(t++ = 0), nd = 0.25 + nc.

tures and an enhancement of thermopower at very low temperatures.
Switching on the hopping between the sites occupied by f electrons,

t++ > 0 (t2 < −0.5), leads to the spreading of the δ-peak from local-
ized states on DOS into the narrow band and the narrow resonant peek
appears on the transport function, figure 8. Now, the gaps on the DOS
and transport function are of the same width, that restores the typical
behaviour for the Mott insulator case. The transport properties, figure 9,
of the hole doped Mott insulator, nd = 1 − nf + nc with nc < 0, are
similar to the one discussed in the previous case of t++ = 0, but one
can notice a strong enhancement of the dc charge conductivity for the
electron doping, nc > 0, when chemical potential enters the resonant
peek on transport function. Also, for electron doping, the Seebeck coeffi-
cient displays almost flat temperature dependence in a wide temperature
range and it starts to decrease in an expected manner at T → 0.

For larger values of the hopping amplitude t++ between the sites
occupied by f electrons, the middle band of localized states joints with
the upper Hubbard band. Now we observe a huge enhancement at the
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Figure 8. Density of states Ad(ω) and transport function I(ω) for U =
2.0, nf = 0.75, and t2 = −0.496 (t++ = 0.008).
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Figure 9. (Colour online) Temperature dependences of the dc charge
σdc and thermal κe conductivities, Lorentz number L (L0 = π2/3), and
thermopower (Seebeck coefficient) S for U = 2.0, nf = 0.75, t2 = −0.496
(t++ = 0.008), nd = 0.25 + nc.

bottom of the upper Hubbard band as on DOS as on transport function
due to resonant peek, figure 10. The temperature dependences of the
dc charge and thermal conductivities are similar to the discussed above
but the thermopower displays an anomaly for the case of Mott insulator,
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figure 11. Now, the Seebeck coefficient S(T ) is positive at high temper-
atures and increases with its decreasing up to some temperature value.
For lower temperatures it starts to decrease, change its sign and rapidly
increase at low temperatures.
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Figure 10. Density of states Ad(ω) and transport function I(ω) for U =
2.0, nf = 0.75, and t2 = −0.48 (t++ = 0.04).

1*10-3

2*10-3

3*10-3

 0  0.02  0.04  0.06  0.08  0.1

T

d
c

0

nc=-10-3

nc=-10-4

nc=-10-5

nc= 0.0 
nc= 10-5

nc= 10-4

nc= 10-3

1*10-3

2*10-3

3*10-3

 0  0.02  0.04  0.06  0.08  0.1

T

e

nc=-10-3

nc=-10-4

nc=-10-5

nc= 0.0 

nc= 10-5

nc= 10-4

nc= 10-3

 0

 10

 20

 30

 40

 50

 0  0.02  0.04  0.06  0.08  0.1

T

L
/L

0

nc=-10-3

nc=-10-4

nc=-10-5

nc= 0.0 

nc= 10-5

nc= 10-4

nc= 10-3

-10

-5

 0

 5

 10

 15

 20

 25

 0  0.02  0.04  0.06  0.08  0.1

T

S

nc=-10-3

nc=-10-4

nc=-10-5

nc= 0.0 

nc= 10-5

nc= 10-4

nc= 10-3

Figure 11. (Colour online) Temperature dependences of the dc charge
σdc and thermal κe conductivities, Lorentz number L (L0 = π2/3), and
thermopower (Seebeck coefficient) S for U = 2.0, nf = 0.75, t2 = −0.48
(t++ = 0.04), nd = 0.25 + nc.

ICMP–19–05E 17

4. Conclusions

In this article we have discussed the peculiarities of the charge and ther-
mal transport in the Falicov-Kimball model with correlated hopping at
light doping of the Mott insulator phase. The cases of the strongly re-
duced hopping amplitude t++ between the sites occupied by the f elec-
trons, when the DOS and transport function display anomalous features,
including edge singularity, resonant peek, and additional band of local-
ized states at nf > 0.5, are considered. At half filling nf = 0.5 and in the
Mott insulator phase, nc = 0, the dc charge and thermal conductivities
display typical behaviour for the large gap insulators with asymmetric
DOS, whereas the light hole and electron doping restore the bad metal-
lic conductivity with an enhanced thermopower for electron doping case.
Outside the half filling case, when nf > 0.5, and for the completely re-
duced hopping between the sites occupied by f -electrons, the gaps on the
DOS and transport function do not coincide, which results in anomalous
thermoelectric transport at low temperatures featuring strong reduction
of the Lorentz number and huge enhancement of thermopower for the
electron doping case.
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