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Soft particle uid with competing interactions at a hard wal l:
eld theory approach

I. Kravtsiv, T. Patsahan, M. Holovko, D. Di Caprio

Abstract. A model of competing pair interaction in the form of a three-
Yukawa (3Y) potential is considered. The results of compute simulati-

ons show that the model proposed can describe spontaneousgarance
in a homogeneous uid of a large variety of mesostructured phses.
Furthermore, these self-assembly e ects appear to be faved by the
presence of con ning walls. To study the structure and thermodynamics
of a mesoscopically homogeneous 3Y uid in the bulk and clos® a hard
wall, a eld theory approach is subsequently applied. Explicit analytical

expressions for the pair correlation function and the dengy pro le are

derived. The structure factor is calculated by introducing an e ective

hard core radius characteristic of the system, based on whitthe -lines
are constructed and phase behavior discussed.
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1. Introduction

Models of uids with competing interactions, which are characterized
by short-range attraction and long-range repulsion (the secalled SALR
potential), have been the focus of extensive research due tieir ability
to describe spontaneous emergence in a homogeneous uid oesostruc-
tured phases of di erent morphologies[[1]. Such potentialsare of coarse-
grained nature and are often used to model e ective solvenmediated
interaction between complex molecules.

For systems with competing interactions in the bulk a large body of
research has been reported, yet far fewer results exist fopatially con-
ned systems. Even for the bulk case, most studies have beenathe in the
framework of phenomenological approaches such as Landaudowski
theory [2], which make it di cult to link microscopic parame ters of the
system to respective measurable quantities. Con ned systas have typ-
ically been investigated in two dimensions[[3], although sme results for
the three dimensional case have also been reported. Iql[4] aafd core
two-Yukawa uid con ned in a slit-like pore was studied. In [ 5] the struc-
ture and adsorption of a system with competing interactionscon ned by
an attractive wall was considered.

We propose to study a uid interacting with a three-Yukawa po tential
of the SALR form. Such a model with a soft core takes into accont the
possibility of partial overlap between two particles. Examples of such
systems include, but are not limited to, protein molecules,soft colloids,
polymer grafted nanoparticles, star and branched polymersmicrogels.
Such a potential also has the advantage of being analyticalwhich makes
it possible to perform analytical calculations.

Using computer simulations, we have examined the system uref
consideration in a wide range of density and temperature vales. We
show that at low temperatures various well-known mesostrutures, such
as lamellar and gyroidal phases, hexagonally packed cylinctal phases,
cubically ordered and disordered clusters([6 9], are formé. In the case
of the system con ned between two hard walls, the self-assebty e ects
become more pronounced may be observed at temperatures thatre
noticeably higher than in the bulk.

To describe structural properties of a 3Y uid at high temper atures,
a classical eld theory [10/11] is employed. As a rst step, ve present
theoretical results for the mesoscopically homogeneous pke in contact
with a hard wall. Explicit analytical expressions for the pair correlation
function and the density pro le are derived. The results found are tested
against computer simulations data.
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2. The model

We study a uid of soft particles interacting with a Three-Yu kawa (3Y)
potential given by

(r) = % exp( 1r)+ % exp(  or)+ ? exp( ar); (2.1)

where r denotes the distance between two particlesA; are the ampli-
tudes of interaction and ; are the inverse ranges. We choose the values
of these parameters so as to reproduce the SALR (short-rangatractive
and long-range repulsive) potential. We therefore assumehiat A; > 0,
A< 0, Az > 0andjAij> jAsj > jAs), 1> 2> a.

Hence, we consider two sets of parameters which we will reféo as
Models M1 (A; =92:1106 1 = 1:463485 A, = 8191964 , =1:0,
As = 16:07036 3 = 0:6) and M2 (A; = 150:6561, ; = 1:923254
A, = 122613 , = 1:26115 A3z = 27:11811 3 = 0:75669. The
respective shapes of these potentials are shown in Figufg e note
that the Model M2, shown by the red dashed line, displays strmger
long-range repulsion relative to the Model M1.
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Figure 1. Pair interaction potential (Z1) corresponding to M1 (lower
line) and M2 (upper line) sets of parameter values

Due to the softness of the core, the potential [Z]1) makes it pssi-
ble to take into account partial overlap between particles. The model
can, therefore, describe e ective pair interaction in a vaiiety of soft mat-
ter systems such as star-polymer blends, dispersions of poher-grafted
nanoparticles, solutions of proteins, and microgel suspesions. In addi-
tion, the potential is convenient for analytical calculations as well as
molecular dynamics computer simulations.
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3. Computer simulations

A series of Monte-Carlo (MC) and Molecular Dynamics (MD) com-
puter simulations have been performed to investigate whetbr Models
M1 and M2 can describe micro-segregation phenomena and totenate
the ranges of temperatures and densities at which they occurln ad-
dition, we were interested in the con nement e ects for such systems.
Having the intention to study purely the impact of con nemen t, we con-
sidered the case with no attraction between the walls and theparticles.

In Figure Plwe present simulation snapshots for the Model M1 the
bulk. For comparison, Figure[3 shows simulation snapshotsdr the same
system con ned between two inert walls. One can see that aff = 10:0
the bulk uid is uniform, while near the walls distinct clust ers of particles
are formed. As the temperature is raised, afl = 12:0 clusters disappear;
however, some inhomogeneties at the walls still persist. Em these facts
we infer that con ning walls trigger and favor micro-segregation e ects
for uids with competing interactions.

Figure 2. MC snapshots in the bulk (Model M1) at T =8:0, =0:25
(left) and T =10:0, = 0:25(right).

Figure 3. MC snapshots for a uid con ned between two hard walls
(Model M1) at T =10:0, =0:25(left)and T =12:0, =0:25 (right).
The walls are located on the left and right edges of the box.

In Figures[4 and[B some simulation snapshots for the Model M2ni
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the bulk are presented. Due to the fact that potential M2 is stronger than
M1, the respective systems show richer phenomenological bavior. At

high temperatures a uniform uid is observed. As the temperaure is
decreased, the model exhibits spontaneous appearance ingtsystem of
a wide variety of mesostructures including lamellar and gypid phases,
hexagonal packed cylindrical phases, cubically ordered ahdisordered
clusters formed by particles as well as voids.

Figure 4. MC snapshots for a bulk uid (Model M2). BCC lattice of
spherical clusters (left) and hexagonal ordered cylindergright)

Figure 5. MC snapshots for a bulk uid (Model M2). Gyroid (lef t) and
lamellar (right) structures.

A phase transition to a modulated inhomogeneous phase cansd be
seen in the plots of the pair distribution function g(r) for the bulk M2
uid and the density prole for a uid at a con ning wall (Figu res 6
and 7). At higher temperatures, the function g(r) displays a weak peak
and rapidly tends to its asymptotic value of unity. However, for lower
temperatures g(r) signi cantly enhances its value over a large length
scale indicative of the cluster radius. For all the temperatres, the density
pro les are characterized by distinct double maxima close b the wall. At
higher temperatures the pro le decays to its bulk value, whie at lower
temperatures the density displays oscillations signalinghe presence of
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large scale ordering in the system. These e ects are more pnounced in
the case of higher density = 0:75(Fig. 7), which at T = 2:0 corresponds
to a lamellar structure (Fig. 5 on the right) and less prominent for a
uid with = 0:25 (Fig. 6) corresponding to a spherical cluster phase at
T =2:0 (Fig. 4 on the left).

= ok -

Figure 6. The pair distribution function (left) for a bulk u id and the

density pro le for a uid con ned by a hard wall (right) for M2  param-

eters at = 0:25. The temperature T = 2:0 corresponds to a spherical
cluster phase. The results have been obtained from computesimula-

tions.

Figure 7. Same as in Figure 6 for = 0:75. The temperature T = 2:0
corresponds to a lamellar structure.

The aim of the present paper is to show that the soft core SALR
potential (2.1) can describe spontaneous transition of a hmogeneous
uid to mesoscopically inhomogeneous phases and to explorgructural
properties of such a uid in the bulk and in the vicinity of a co n ning
wall. In a series of papers on uids with speci ¢ interactions [10 18], we
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show that it is possible to describe these systems using a dltheoretical
approach. To reproduce density pro les found from computersimulations
and as a rst step toward eld theoretical description of ui ds with
competing interactions, in the present paper we apply this nethod to
a uid with the pair potential (2.1) in the mesoscopically ho mogeneous
region of the phase space.

4. Field theoretical approach

In the framework of the eld theory (FT) formalism, the Hamil tonian of
a classical system is a functional of the density eld (r) and is expressed
as the sum of an entropic and an interaction terms

HIMI= HE [+ H ™[0 (4.1)
which respectively have the forms
z
H e [ (r)] = (r)In () 2 1dr (4.2)
z

H ™[ ()= > (r) (r1) (r2)  (r1) (r1 r2) dradrp; (4.3)

wherekg is the Boltzmann constant, = 1=kg T is the inverse tempera-
ture, (r) is the potential of interaction between two particles at points
1 and 2, and (r) is the Dirac function.

In the present work the calculations are carried out in the framework
of the canonical ensemble approach. For this reason we aretarested in

the partition function Zy of the system, which is expressed as
Z

Zn[(NI= D (nexpf HI[(r)lg (4.4)

R
Thg number of particles is xed by the condition (r)dr = N or

Vi (r)dr = |, whereV is the volume and = N=V is the average

density. To ensure this condition, we de ne a Lagrange multplier such

that H [ ()]
r — .

The logarithm of the partition function gives the Helmholtz free energy
F = InZy: (4.6)

The lowest order approximation for the partition function i s the saddle
point approximation for the functional integral (4.4), whi ch corresponds
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to the mean eld (MF) approximation from the physical standp oint. The
MF approximation thus corresponds to the condition

H

—_— = 4.7)
MF (I')
In order to take into account uctuations one should expand the Hamil-
tonian around the eld MF (r), i.e. write (r) = MF(r)+ (r). In
general, this leads to the following expression for the Hanttionian
z
H
H[]=H M + r)———  drg+ 4.8
Z[] (1)( ) e I (4.8)
1 2H
= r r dridro+
> (ra) (2)£ ) (rz)) _drydry
X (n 1! nH
nyn—— ro) o (r drydrp:
O ()5 )y () S

The rst term corresponds to the functional (4.1) for the mean eld
density
z
HEY 1= M) in MP(ry) ° 1dny (4.9)
z
t 5 (riir) M (ra) MP(r2)  MP(ry) (i rp) dradrs:

The linear term disappears as in the ganonical ensemble theuctuations
preserve the number of particles and  (r)dr = 0. The terms of higher
orders come from the expansion of the logarithm in the expresion (4.2).

5. Three-Yukawa uid in the bulk

In this section we apply eld theory to study analytically th e properties
of a 3Y uid in the bulk region. One point of interest is to inve stigate the
conditions for the appearance of inhomogeneous phases, whiis signaled
by the divergence of the structure factorS(k). The curve separating the
respective homogeneous and inhomogeneous phases (knownths -
line) is therefore determined by the locus of points on the plase diagram,
at which S(k) diverges. This knowledge is also important for numerical
calculations of the density pro les which we intend to perform within the
homogeneous part of the phase diagram. In addition, it is insumental
to know whether the model under consideration exhibits liqud-vapor
phase separation.
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5.1. The pair distribution function

The structure of a uid can be described by the pair distribut ion function
g(r) =1+ h(r), whereh(r) is the pair correlation function. This quantity
can be found from the following expression [19]

h(ri;rz)h (ro)ih (r2)i = h (r) (r2)i  (ra ra)h (ry)ic (5.1)

We expand the Hamiltonian with respect to the mean eld densiy
MF (r). Truncation of expansion (4.8) at the second term correspods
to the description of the system in the Gaussian approximaton.
The quadratic term in Eq. (4.8) is
z

Holl= 3 () (1) b D

MF (r1)

where the rst term comes from the expansion of the logarithmin the
entropic part of the Hamiltonian.

In order to calculate the averages using the Gaussian integis, it is
necessary to have the quadratic term of the Hamiltnian in a dagonal
form. For bulk properties we can expand the density on the Fouier
components

(r) drpdry; (5.2)

X .
(r) = L ek (5.3)
k>0

In this basis the quadratic Hamiltonian equals

v X
Holl= 5=« w1+ (W (5.4)
k>0
where
X4
W= 2 (55)

i=1 i

is the Fourier transform of the interaction potential (2.1) multiplied by
the inverse temperature.
Calculating the averages in (5.1) with the weight given by the quadratic
Hamiltonian (5.4), we arrive at the following relation
z
D( (ke "2LOT 1) (K
h (k) ( k)i= Z (5.6)
D( (k)e H 2[ (K)]
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The Fourier transform of the pair correlation function is th en
(k) _ 1P(K).
1+ (k)  D(k)’

The numerator and denominator on the RHS of equation (5.7) eqal,
respectively,

P(k)= {f(k*+ DK+ D+ {3+ DK+ 3 (5.8)

HE0C DO D)

h(k) = (5.7)

D(k)= k®+ K} (EZ+ £3+ £5)
K EE IR 00 (12 {(HE {33
+ i3+ {i33+ {5 15+(5 15 (5.9)
wheref2 = {2+ 2,
Taking the inverse Fourier transform of expression (5.7), v can nd

h(r)

dkh(k)exp( ikr): (5.10)
In order to perform analytical integration in Eqg. (5.10), one needs to
factorize the denominatorD (k). To this end, we need to solve the bicubic

equationD (k) =0.

5.2. Solution of the bicubic equation

Equation D(k) =0 can be presented in a cubic form

K3+ bK2+ cK +d=0; (5.11)

where
K = K2 (5.12)
b=({f+ €3+ £3); (5.13)
c= FEE+ IS+ 368 {32 {H3 (3(3 (5.14)

d=+{f €268 {33 {3365 (f3E5+2{i{i5 (1Y)
The numbers of real and complex roots are determined by the dicrimi-
nant of the cubic equation,

=18 bed 4b’d+ KPS 4 27d%: (5.16)
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If > 0, then the equation has three distinct real roots. If =0 , then
the equation has a multiple root and all of its roots are real.If < 0,
then the equation has one real root and two non-real complexanjugate
roots.

The general solution of the cubic equation involves rst catulating:

o= 3¢ (5.17)
1=2b 9bc+ 27d; (5.18)
S S
S 1© 4 0 31 27
C= = = = 5.19

There are three possible cube roots implied by the expressip of
which at least two are non-real complex numbers; any of thesenay be
chosen when de ning C. In addition, either sign in front of the square

root may be chosen unless ¢ in which case the sign must be chosen so

that the two terms inside the cube root do not cancel.

We consider the case when the cubic equation (6.25) produceme
real solution k3 and a pair of complex conjugate solutionsk? and k3.
For C we choose a plus in front of the square root. For the regio of
parameter values considered, the resulting expression uwed the cube
root is positive, therefore C can take on three values: a reapositive
number or one of the two complex conjugate numbers. We choosthe
real positive root to de ne C:

c=2_" e (5.20)

The solution of the cubic equation can be expressed compagtlin-
cluding all 3 roots as follows:

1

2= = i _0 . i 1
K; 3 b+ 'C+ c j 210;1;2g, (5.21)
where = 1=2+ 1=2IO 3i (which is a cube root of unity).
The real solution of the cubic equation appears afj =0:
K= L prc+ -0 (5.22)
°” 3 C ‘

The complex conjugate solutions appear aj =1 andj =2.
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For the parameters under consideration, the solutionk3 is a negative
guantity. Due to this, we introduce a more convenient set of rotations
2=k j 210:1;2g: (5.23)

The quantities ]2 are essentially the solutions of the cubic equation (6.25)

but of the opposite sign. Therefore, they can be written as

1

2= - p+C+ 2
6= 3 b+ C c (5.24)
2= M+ Myi; (5.25)
2=M1 Myi (5.26)
where
_1 c 0
Mi = épb > (5.27)
1 3 0
Mo= 32— C = (5.28)

Since the quantities 2 and 2 are complex conjugate, so are their
roots. We can, therefore, write

1= i (5.29)
.= i (5.30)
where
1 q__ 1=2
= ps  MP+MEr M, (5.31)
) q 1=2
= SomMa) Tpziwmz oM, (5.32)

2
The function D (k) can now be written in a factorized form
D(K)=(Kk?+ {)Kk*+ K>+ 2) (5.33)
=(k+i o)k i o)(k+i 1)k i 1)(k+i )k i 2):

The real solutions for the bicubic equation are readily fourd from
Eqg. (5.22) and equal ¢, where

0= = b+rC+ -2 (5.34)
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From Eg. (5.10), the expression for the pair correlation furction is

h(r) = Zi H0M+[chos(r)+ stin(r)]w :
(5.35)
Ho = 1 x 202 2y 2 2y
0_2[3 2(2)(2 2)+( 2 z)z]i_l{i(j O)( k O)’
(5.36)
. > .h i
Hi= ————— {f 2%+ §(f+ P+4 22, (537
82242 (2) i=1
1 X _h i
Ho = 5 AZ 4222+ P J(PE 4%
163 3+4 27, : '
(5.38)

where j;k 2 f1;2;3g with i 6 | 6 k, and we use the bar to denote
shifted quantities (:::) = (2 2+ 2?).

Equation (5.35) tells us that the quantities o, and have the
meaning of parameters that characterize the screening of teraction with

o and responsible for the decaying and responsible for the oscillatory

parts of the interaction. We note that for the values of the pair potential
considered in this paper, the quantities o, and are real numbers. In
addition, o and are positive.

In the Gaussian approximation, the radial distribution fun ction (RDF)
g(r) can be written as

g(r)=21+ h(r): (5.39)

From Eq. (5.35) one can see that the functiong(r) diverges whenr ! 0.
As we discussed in our previous papers [10, 11], this behavi@an be
corrected by introducing exponential approximation for the RDF in the
form

g*®(r) = exp[h(r)]: (5.40)

In Figures 8-11 we compare numerical results for the pair digibu-
tion function calculated from Equations (5.39) and (5.40) with computer
simulations data. The plots are presented for Models M1 and N at dif-
ferent densities and temperatures. One can see that the refis of the the-
ory are in qualitative agreement with the simulations while quantitative
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agreement improves as the temperature rises. We also note ¢hcorrect
behavior of the exponential approximation (5.40) at small dstances in
contrast to the non-physical behavior of the initial approximation (5.39).

Figure 8. Pair distribution function for Model M1. The blue s olid lines
are given by Eq. (5.39), the red dashed lines correspond to gpoximation
(5.40), and the black solid curves are calculated from the MGsimulations
data.

Figure 9. Same as in Figure 8 but at higher temperatures.

5.3. The structure factor and phase coexistence curves

The static structure factor characterizes the microphase sucturing dis-
played by the system.S(k) is given by the expression
1

S(k) = T ; (5.41)
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Figure 10. Same as in Figure 8 but for =0:50.

Figure 11. Same as in Figure 10 but at higher temperatures.

wheree(k) is the Fourier transform of the direct pair correlation function
c(r) of the bulk uid. In the random phase approximation,

e(k) = (K); (5.42)

where (k) is given by Eq. (5.5).

The -line is de ned as the locus of points in the phase diagram
for which the static structure factor S(k) diverges at a particular wave
number [24]. We take the -line to indicate that the model predicts a
phase transition to a modulated inhomogeneous phase. Wherhe uid
is in the homogeneous phase, the denominatdt k) on the RHS of
expression (5.41) takes on positive values. As we lower theemperature,
the S(k) curve shifts downward and at certain values of the density be
comes equal to zero. Therefore, the -line can be found from the solution
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of the system of equations

ek;f;Tg=1,; (5.43)
@k f;Tg _ ..
— K =0: (5.44)

For the function ¢(k) in the form (5.42), the system (5.43)-(5.44) amounts
to the following equations

(k*+ 4)(k*+ 3)=0; (5.45)

{F+ D)2+ 2)?=0; (5.46)
1=1

wherem;n 2f1;2;3gand| 6 m 6 n.

Due to the fact that in the Equations (5.45)-(5.46) the density and
the temperature are present only in the form of the product , the
solution of this system comes out as a linear equation = const. This
means that in this case the -line is a straight line. In Figure 12 we show
the respective result for the modelM 1, while for the model M 2 the
solution lies outside of a reasonable range of density and teperature
values. We attribute the non-physical behavior of these reslts to the
weakness of the approximation employed.

Figure 12. -line for model M1 calculated from the direct correlation
function given by Eq. (5.42).

Nevertheless, one can show that the model potential (2.1) des, in
fact, describe the possibility of the phase transition to a nesoscopically
inhomogeneous structure.

Whereas the model of the uid considered here is formally sdf it can
e ectively be presented as a system of particles with a hard ore [20,21].
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One way to determine the corresponding hard core diameter is to use
the distance at which the pair potential (2.1) equals the themal energy
kg T with an arbitrary factor  [20], i.e.

(ry T =0: (5.47)

Another way to determine is by employing the Barker-Henderson for-
mula [23]
z
g = dr 1 e (O ()=0: (5.48)
0
It is reasonable to presume that the value of the e ective dianeter
should stem from the condition that two particles cannot overlap beyond
the distance , i.e. the distance where the value of the radial distribu-
tion function is close to zero. In Figures (13) and (14) we shw di erent
estimations of the e ective hard core diameter by employingexpression

(5.47)at =1 and =4 as well as the Barker-Henderson recipe (5.48).

We analyze the curves of the radial distribution functions gven by Equa-
tions (5.39) and (5.40) relative to dierent in order to determine the
maximum distance, at which the RDF takes on a value close to z®.
One can infer that the best approximation corresponds to expession
(5.47) with 4, We, therefore, nd the value of the e ective hard core
diameter from the solution of the following equation

(r) 4T =0: (5.49)

Hence, in the framework of the random phase approximation tle
direct correlation function can be presented as the sum of tw parts

(k) = €us (k) + €sv (k): (5.50)

One part is the e ective hard core contribution [22]

€Hs = 2—3 a; [sing qcosq]+6—:12 2gsing+ (2 ¢?)cosq 2

(5.51)
* o 4 G)sSing (24 127+ cosqr2a
whereq = kD is a dimensionless wave number, = 3=6is the packing
fraction, and
o= 3r2) o G+ =2 (5.52)

@ )»’ @ )
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Figure 13. Estimations of the e ective hard core diameter fa& model

M1. The green vertical lines correspond to expressions (58} and (5.47)
at =1 and =4, respectively. The blue solid lines depict the radial
distribution function given by Eq. (5.39), the red dashed lines correspond
to approximation (5.40), and the black solid curves come fron the MC

simulations data.

The other part of the direct correlation function comes from the long-
range potential and can be calculated as
4 4o
esy (k) = ? rsin(kr) (r)dr (5.53)

X3
= 4 Aje ' fkcosk + sink gf 2 2+ K3 2+ 2)+ K3g ;

m n
1=1

wherem;n 2f1;2;3gand| 6 m 6 n.
In Figure (4), left panel, we show the structure factors for models

e S

Figure 14. Same as in Figure (13) but for model M2.
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M, and M, with an e ective hard core diameter determined from the
equation (5.49). One can see distinct pre-peaks signalindhe presence of
mesoscopic ordering in the system.

On the right panel of Figure (4) we show the respective -lines for
modelsM 1 and M 2. Both curves have correct shapes, which was not the
case when equations (5.45)-(5.46) were considered. We cdute that a
correct description of inhomogeneous phases requires one take into
account the excluded volume e ects, models with a soft core ot being
su ciently accurate. At the same time, the homogeneous pha can be
studied without considering an e ective hard core model. Hasing the
knowledge of the location of the regions on the phase diagrarwhere
there is no micro-segregation and the uid is uniform, we cansafely
apply the expressions for the structural properties derivel from the eld-
theoretical approach by substituting the values of the dengty and the
temperature well above the -lines.

g 1 R e .Ml

~

P

Figure 15. Left: structure factors for modelsM; andM, at =0:25T =
10. Right:  -lines for modelsM; and M.

In this context, another point to consider is related to the vapor-
liquid phase separation curves. One way to determine the laation of the
critical region is to construct the spinodals from the condtion

egk=0;f;Tg=1 (5.54)

and see where the critical point lies with respect to the -lines. However,
the model (5.50) yields no solutions for equation (5.54) foreither M 1
or M 2. This means that the model uid studied in this paper does not
exhibit vapor-liquid phase transition.

ICMP 20 09E 19

6. Density pro les at a hard wall

In this section we study a three-Yukawa uid with competing i nteractions
in the vicinity of a hard wall. The potential of interaction b etween the
wall and a particle is taken to be in nite when the distance between
them is negative and zero elsewhere.

As expression (4.9) contains the eld MF (r1), one can readily see
that in the framework of the FT formalism spatially structur ed systems
can be examined even in the framework of the simplest mean el ap-

proximation.
From the mean eld condition (4.7) we derive the following equation
(r1) _
In - + Vi(ro) + Vao(ra) + Va(ra) = (6.1)
where potentials V;(r1) are de ned as
z A
Vi(ri) = (fz)Tl exp( ir)dra: (6.2)
We put
Vip + Vap + Vap; (6.3)

where V;, are the values of potentialsV;(r1) in the bulk
{7
\/Ib - _2! (64)
I

{2 4 A, and we denote the density of the uid in the bulk by
p to distinguish it from the distance-dependent density (z) within the
interface between the wall and the bulk region.

The gradient of Eq. (6.1) gives

r (r)
(r)

where we de ne an equivalent of the electric eld by

Ea(r) Ex(r) Es(r)=0; (6.5)

Ei(r1) r  Vi(r1); (6.6)
Due to the properties of the Yukawa potential we can write

4 2 V@)= 4A () (6.7)




20 idaiseio

Given the translational invariance of the system in the directions par-
allel to the wall, all the distance-dependent functions in the equations
(6.5)-(6.7) are essentially functions of the distancez in the direction per-
pendicular to the wall. In consequence, from these equatiwe obtain
a set of seven di erential equations with seven unknown funtions (z),
E1(2), E2(2), Es(2), Vi(2), V2(2), Va(2):

@(2) _

@: - DE@* Ex2)+ Es(@)]; (6.8)
2D - e (6.9)
@&(z) _ : {Z .\

9. - Vi@ = (2 (6.10)

From Eqg. (6:1) we have the following equation for the density pro le

(2)= vexp [Vi(z) Vil [Va(2) Van] [Va(z) Vao] @ (6.11)

Equation (6.11) is an integral equation of the Euler-Lagrarge type.
Numerical solution of this equation provides the mean eld goproxima-
tion for the density pro le of the uid.

6.1. Analytical expression for the density pro le

The density pro le can also be estimated in an explicit analytical form.
To this end, we approximate the exponent function in Eq. (6.11) as

(z2)= b1 [Va(z) Vil [M2(2) Vo] [Va(z) Van]; (6.12)

which leads to a linearized system of equations

@)= b[E1(2) + E2(2) + E3(2)]; (6.13)
V'(@) = Ei(2); (6.14)
ED= M@+ L (@) (6.15)

b

In turn, this system can be reduced to a system of three secondrder
di erential equations

E:(2)= E1i(2) {3+ § +[E2(2)+ Es@U & (6.16)
E;(2) =[E1(2)+ Es(@{ 3+ Ea(2) 3+{3 ; (6.17)
Es(2) =[E1(2)+ E2(2Q{ 3+ Ea(2) 3+{3 ; (6.18)
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or in the matrix form

E®= AE (6.19)
where
0 1 0 1
E1(2) {2+ 2 { {1
E= @E,(2)A; A=@ (3 3+ {3 {3 A
Ea(2) {3 {3 5+1{3
(6.20)

Matrix A can be presented in the diagonal form as

A =PDP ! (6.21)
where
1
o 0 0
D=@0 ; O0A: (6.22)
0 0

The coe cients ; are the eigenvalues of the matrixA . Denoting the
identity matrix as |, we can nd these eigenvalues as the roots of the
characteristic polynomial of A, i.e. from the equation

det (A 1)=0: (6.23)
In our case, this reduces to solving the equation

P O2F2+ £33+ 40 (6.29)
+ R85 (38 (35 (43
6865 (35 + {5+ {3565 A4 %=0;

wheref2 = {2+ 2.

Equation (6.24) can be presented as
5 b2+c d=0; (6.25)

where the coe cients b, ¢, and d are given by expressions (5.13)-(5.15).
Comparing polynomials (6.25) and (5.11), we note that the ce -
cients in front of the variables of the same powers are idential by the
absolute value but alternate their signs. One can show, thatin such a
case the roots of the two polynomials are equal by the absoletvalue but
have opposite signs. Hence, due to the de nitions (5.23), wean readily
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see that parameters 3, %, and 3%, given by equations (5.24)-(5.25), are
also the three eigenvalues of the matrixA .
As a result, the general solution forE;(z), for instance, is

El(Z) = €10€ 0Z 4 Ci0€ 0z 4 C]_e( i)z g Cle( i)z gy Cze( i)z
(6.26)

+Coel  1)Z=cpe 02+ Ciel T2+ el 17

where we leave only the terms with negative ¢z and z in the exponents
due to the factthat o and are positive and the function E (z) vanishes
in the bulk.

For the eld E;(z) to have a physical meaning, the coe cients Cy
and C, must be complex conjugate as well. From the system of equatits
(6.16) we can tell that the functions E,(z) and E3(z) are of a form similar
to that of (6.26). We can therefore write the functions E;(z) as

E1(z) = croe %2+ (rin+ ropi)el T2+ (ryy xi)el Pz
(6.27)

E2(z) = Cooe %+ (rar+ rpi)el 124 (ry rpi)el 12
(6.28)

i)z

(6.29)

E3(z) = cgoe %+ (rap+ rai)el 1%+ (ry  rai)el

Because the system (6.16) is homogeneous, we essentiallybahree
unknown coe cients, for instance cig, r11, r12, and we can use any pair
of equations (6.16) to express the rest of the coe cients in rms of these
unknowns. Using expressions (6.27) and equating the real @nthe imag-
inary parts of the coe cients in front of the same z-dependent functions
on the LHS and RHS of equations (6.16), we obtain two system oéqua-
tions - one for the coe cients in front of the functions exp[( i)z]
and one for the functionexp[ oz]. In the rst case we have the following
equations

fru+2r1 1 {fra {%ra=0 (6.30)
frio 21 11 {%rn {%rp=0 (6.31)
Sra1+2 1 2 {5ru {3ra1=0 (6.32)
St 21 21 {3r1p {3r3=0 (6.33)
Sra+2 1 5 {5ru {3ra=0 (6.34)
fr2 21 a1 {35r2 {3r2=0; (6.35)
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where 7= 2 2 2 {2

We can pick any two pairs of these equations and the solution fothis
system will be the same. Choosing, for instance, the rst twopairs, it is
convenient to present coe cients r1, 22, ra1, 32 in terms of coe cients
rip andrqs as

Mm = Kimri + Kiar; (6.36)

where

K= (6.37)

Py @ )
BTN ey
2 2 (i+d
K12 o (i (6.38)
21 = 1+ L, ey .
(EARH R
5 2 2
Kip= i2 S+ K3 (6.39)
SERTENE AT
KZ= 2 1+ 1+ 2k (6.40)
SRR R C Rt R
1
Kii=pz {2+ Ka+2Kz (6.41)
1
Kii=r7 Ka+2K 3 (6.42)
2
1
K=z Kz 2K 3 (6.43)
2
1
K=z 2+ K& 2K % (6.44)
(6.45)

For the second system of equations we have three equations

Scio= 3+ {% cio+ {Z(Coo+ Cz0) (6.46)
2co0= 5+ {3 coo+ {3 (Cio+ Cz0) (6.47)
2c0= 3+ {3 cao+ {3(Co+ Cro): (6.48)

Choosing any two of these equations, and due to the fact the derminant
of the homogeneous system is zero, we can express the coe nis ¢y
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and czg in terms of ¢ig as

Co = K2oCio; C30 = K3oCio:; (6.49)
K= Lo DU (6.50)
(5 Df
_ (8D 2 2 o :
Keo= 55— o 2 {2 & (6.51)
{i(o 2

The potentials V;(z) then have the form

Vi(z)= Vip + rige °*+e ?[(rix ri2)cosz  (rigt rig)sinzl];
(6.52)

whererig = Go= o, rj =2rj=( 2+ 2),i=1;23,j =12

In our earlier work [12] we showed that in the framework of themean
eld approximation of the eld theory formalism, for a multi -Yukawa
uid the so-called contact theorem [25, 26] holds true. Accading to this
theorem, the density of the uid at the wall is determined by t he pressure
of the uid in the bulk, i.e.

P = (0:); (6.53)
where P is the pressure within the mean eld approximation:

{

P =5 1+2—+

PN
—~
NN

+
~~
[AINY

(6.54)

RN
N

NN
N

W)

The unknown coe cients rqg, r11 andrq» can then be found from the
boundary conditions given by the contact theorem (6.53). Sding z=0
in Eq. (6.12), we obtain

Vb Vi(0)= S5; (6.55)

which results in a system of three equations

~
[l \V]

rig rao; (6.56)

N‘
1
—
=
o
+

—~
NN o

ro1 oo (6.57)

~ N

WN o
1
—
N
o
+

la1 r32: (6.58)

“\

[AIN)
1
—
w
o
+
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The solution of this system is

2 2
S+ ik A Kot KE K E

= L 6.59
M= R+ KE KT Bkt KE kg &
rr=A Brq (660)

2 {2
o = ﬁ rp+ rpo= ﬁ'i' A [ + B ]rll; (661)
1 1
where
1 {3 ({1
A = X2 4 YKo 6.62
Ko+ KE KE 275 27¢ (6.6
1
B Ko+ K K3 (6.63)

Ko+ K2 KZ

Due to Eq. (6.12), the nal expression for the linearized dersity pro le

——==1 [rio+r+rzle °° (6.64)
e * f (ru+ra+ra)  (r2+ rp+r)gcosz
fo(ria+ra+ra)+ (ri2+ ryp+ra)gsinz

As was the case with the pair correlation function (5.35), the function
on the RHS of Eq. (6.64) is de ned by parameters o, ,and that shape
the exponentially damped oscillatory behavior of the pro le.

In Figures 16-23 we display density pro le curves provided ly the nu-
merical solution of the mean eld equation (6.12) (MF), the analytical
expression (6.64) corresponding to the linearized mean el approxima-
tion (LMF), and test these results against Monte Carlo simulations data
(MC). Due to the fact that the numerical solution requires th e use of a
cuto radius, for comparison purposes we also present two agnations
for the linearized pro le with and without the respective va lue of that
cuto .

The results prove that theoretical predictions for the pro le agree
with the simulations very well. Moreover, the explicit analytical estimate
(6.64) reproduces MC data better than the mean eld solution. At high
densities the agreement is the best for the rst peak and detdorates at
distances farther away from the wall. In all the cases, as theemperature
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Figure 16. Density pro les for the Model M1. The dotted lines correspond
to MC simulations; the blue solid lines come from the mean eH solution

(6.12); the dashed red and green lines correspond to analytal expression
(6.64) with and without the cuto radius, respectively.

Figure 17. Same as in Figure (16) at higher temperatures.

rises the agreement between the theory and the simulationsmproves.
Also, one can note that for all the densities and temperaturs considered
the theory reproduces very well the locations of the respedte minima
and maxima of the prole. For the Model M2 we observe signi cant
discrepancy between the contact values of the density. Thisnismatch
can likely be corrected by going beyond the mean eld approxination
and taking into account uctuation e ects as was done in our earlier
study on a two-Yukawa uid [10].

The behavior of the density prole is characterized by the sgit of
the rst maximum which leads to the formation of a distinct bi -layer
close to the wall. We took note of this e ect earlier in the Computer
Simulations section as it was present also in the mesostruated systems
we considered. The formation of the double peak can be explaéd by the
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Figure 19. Same as in Figure (18).

attractive part of the SALR interaction potential as no simi lar behavior
had been observed in the case of a 2Y uid at a hard wall [10].

7. Conclusions

A uid interacting with a three-Yukawa (3Y) potential was st udied in
the bulk and in the vicinity of a hard wall. The amplitudes and the
ranges of the respective Yukawa terms were chosen so as to regduce the
short-range attraction and long-range repulsion (SALR) bdween parti-
cles, thus o ering a di erent model of a system with competing inter-
actions. A notable feature of this potential is the softnessof the core,
which describes the possibility of partial overlap betweenparticles.

Two sets of parameter values for the three-Yukawa potentialvere con-
sidered to construct a SALR potential. A series of Monte-Cato (MC) and
Molecular Dynamics (MD) computer simulations across a widerange of
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Figure 20. Same as in Figure (16) but for model M2.

L

Figure 21. Same as in Figure (20).

temperatures and densities were performed. The results skothat the
model proposed can describe spontaneous appearance in thgstem of
various mesostructures including lamellar and gyroidal plases, hexago-
nally packed cylindrical phases, cubically ordered and disrdered clus-
ters formed by particles or voids. Furthermore, we observedhat these
self-assembly e ects become more pronounced when the uidsicon ned
between two inert walls, i.e. close to the walls cluster formation can occur
at temperatures higher than those required for micro-segreation in the
bulk. As the temperature increases, the clusters vanish, thugh distinct
inhomogeneuity near the interface still persists.

A classical eld theory was subsequently applied to descrile the
micro-structure and thermodynamics of a 3Y uid at high temp eratures
and reproduce the density pro les obtained from our simulatons. As a
rst step, we investigated the mesoscopically homogeneoughase in the
bulk and close to a hard wall.

For the bulk region, a bicubic equation for generalized screning pa-
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Figure 23. Same as in Figure (22).

rameters was derived and solved analytically. Based on the&sresults,
explicit analytical expressions for the radial distributi on function were
derived and compared to the MC data. Attempts to construct the re-
spective phase diagram revealed that description of mesospic phases
requires one to take into account excluded volume e ects whe a purely
soft model in the random phase approximation leads to non-pisical
results. The structure factor was then calculated by introducing an ef-
fective hard core radius characteristic of the system. The -lines were
subsequently constructed and phase behavior discussed. €tresults in-
dicate that the model does indeed describe the possibility fospontaneous
emergence of mesostructured phases in the system. Havingelknowledge
of the phase regions where the uid is homogeneous, we the® deter-
mined the conditions of applicability of the expressions fo the structural

properties derived from the eld-theoretical approach. To this end, one
should substitute the values of the density and the temperatire above
the -lines found. The location of these applicability regions § also sup-
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ported by computer simulations data.

The microstructure of a 3Y- uid in the vicinity of a hard wall was
further investigated. In the framework of the mean eld approximation
an integral equation of the Euler-Lagrange type was obtaind for the
density pro le. Linearization of this equation led to a system of second-
order di erential equations which were solved using the cotact theorem
as a boundary condition. The solution of these equations ledo explicit
analytical expressions for the density pro le, which proved to be in very
good agreement with the simulations data. Close to the wall ve observed
a characteristic split of the rst maximum of the density pro le. We
relate the presence of this bilayer to the competing nature bthe pair
potential between particles, because this speci ¢ behaviohad not been
observed earlier in a simple attractive two-Yukawa uid. Th e agreement
between theoretical predictions for the pro le and the MD simulations
data improves with increasing temperature.
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