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Ïëèí ì'ÿêèõ ÷àñòèíîê iç êîíêóðóþ÷èìè âçà¹ìîäiÿìè ïîáëèçó
òâåðäî¨ ïîâåðõíi: òåîðåòèêî-ïîëüîâèé ïiäõiä

I. Êðàâöiâ, Ò. Ïàöàãàí, Ì. Ãîëîâêî, Ä. äi Êàïðiî

Àíîòàöiÿ. Ðîçãëÿíóòî ìîäåëü êîíêóðóþ÷î¨ ìiæ÷àñòèíêîâî¨ âçà¹-
ìîäi¨ ó ôîðìi ïîòðiéíîãî ïîòåíöiàëó Þêàâè. Êîìï'þòåðíå ìîä åëþ-
âàííÿ ñèñòåìè ïîêàçàëî, ùî çàïðîïîíîâàíà ìîäåëü çäàòíà îïè ñóâàòè
ñïîíòàííå âèíèêíåííÿ â ñèñòåìi ìåçîñòðóêòóðîâàíèõ ôàç ðiç íî¨ ìîð-
ôîëîãi¨. Çàçíà÷åíi ÿâèùà ñàìîîðãàíiçàöi¨ ñòàþòü áiëüø âèð àæåíèìè
çà ïðèñóòíîñòi îáìåæóþ÷èõ ïîâåðõîíü. Äëÿ âèâ÷åííÿ ñòðóêòó ðè òà
òåðìîäèíàìiêè ìåçîñêîïi÷íî îäíîðiäíîãî ïëèíó â îá'¹ìíié î áëàñòi
òà ïîáëèçó òâåðäî¨ ïîâåðõíi, çàñòîñîâàíî òåîðåòèêî-ïîëüî âèé ïiäõiä.
Îòðèìàíî ÿâíi àíàëiòè÷íi âèðàçè äëÿ ïàðíî¨ êîðåëÿöiéíî¨ ôó íêöi¨ òà
ïðîôiëþ ãóñòèíè. Îçíà÷åíî õàðàêòåðíèé òâåðäèé ðàäióñ ôîðì àëüíî
ì'ÿêèõ ÷àñòèíîê i ðîçðàõîâàíî ñòðóêòóðíèé ôàêòîð, íà îñíîâ i ÿêîãî
ïîáóäîâàíî � -ëiíi¨ òà äîñëiäæåíî ôàçîâó ïîâåäiíêó.

Soft particle �uid with competing interactions at a hard wal l:
�eld theory approach

I. Kravtsiv, T. Patsahan, M. Holovko, D. Di Caprio

Abstract. A model of competing pair interaction in the form of a three-
Yukawa (3Y) potential is considered. The results of computer simulati-
ons show that the model proposed can describe spontaneous appearance
in a homogeneous �uid of a large variety of mesostructured phases.
Furthermore, these self-assembly e�ects appear to be favored by the
presence of con�ning walls. To study the structure and thermodynamics
of a mesoscopically homogeneous 3Y �uid in the bulk and closeto a hard
wall, a �eld theory approach is subsequently applied. Explicit analytical
expressions for the pair correlation function and the density pro�le are
derived. The structure factor is calculated by introducing an e�ective
hard core radius characteristic of the system, based on which the � -lines
are constructed and phase behavior discussed.
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1. Introduction

Models of �uids with competing interactions, which are characterized
by short-range attraction and long-range repulsion (the so-called SALR
potential), have been the focus of extensive research due totheir ability
to describe spontaneous emergence in a homogeneous �uid of mesostruc-
tured phases of di�erent morphologies [1]. Such potentialsare of coarse-
grained nature and are often used to model e�ective solvent-mediated
interaction between complex molecules.

For systems with competing interactions in the bulk a large body of
research has been reported, yet far fewer results exist for spatially con-
�ned systems. Even for the bulk case, most studies have been done in the
framework of phenomenological approaches such as Landau-Brazowski
theory [2], which make it di�cult to link microscopic parame ters of the
system to respective measurable quantities. Con�ned systems have typ-
ically been investigated in two dimensions [3], although some results for
the three dimensional case have also been reported. In [4] a hard core
two-Yukawa �uid con�ned in a slit-like pore was studied. In [ 5] the struc-
ture and adsorption of a system with competing interactionscon�ned by
an attractive wall was considered.

We propose to study a �uid interacting with a three-Yukawa po tential
of the SALR form. Such a model with a soft core takes into account the
possibility of partial overlap between two particles. Examples of such
systems include, but are not limited to, protein molecules,soft colloids,
polymer grafted nanoparticles, star and branched polymers, microgels.
Such a potential also has the advantage of being analytical,which makes
it possible to perform analytical calculations.

Using computer simulations, we have examined the system under
consideration in a wide range of density and temperature values. We
show that at low temperatures various well-known mesostructures, such
as lamellar and gyroidal phases, hexagonally packed cylindrical phases,
cubically ordered and disordered clusters [6�9], are formed. In the case
of the system con�ned between two hard walls, the self-assembly e�ects
become more pronounced may be observed at temperatures thatare
noticeably higher than in the bulk.

To describe structural properties of a 3Y �uid at high temper atures,
a classical �eld theory [10, 11] is employed. As a �rst step, we present
theoretical results for the mesoscopically homogeneous phase in contact
with a hard wall. Explicit analytical expressions for the pair correlation
function and the density pro�le are derived. The results found are tested
against computer simulations data.
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2. The model

We study a �uid of soft particles interacting with a Three-Yu kawa (3Y)
potential given by

� (r ) =
A1

r
exp(� � 1r ) +

A2

r
exp(� � 2r ) +

A3

r
exp(� � 3r ); (2.1)

where r denotes the distance between two particles,A i are the ampli-
tudes of interaction and � i are the inverse ranges. We choose the values
of these parameters so as to reproduce the SALR (short-rangeattractive
and long-range repulsive) potential. We therefore assume that A1 > 0,
A2 < 0, A3 > 0 and jA1 j > jA2 j > jA3j, � 1 > � 2 > � 3.

Hence, we consider two sets of parameters which we will referto as
Models M1 (A1 = 92:1106, � 1 = 1 :463485, A2 = � 81:91964, � 2 = 1 :0,
A3 = 16:07036, � 3 = 0 :6) and M2 (A1 = 150:6561, � 1 = 1 :923254,
A2 = � 122:613, � 2 = 1 :26115, A3 = 27:11811, � 3 = 0 :75669). The
respective shapes of these potentials are shown in Figure 1.We note
that the Model M2, shown by the red dashed line, displays stronger
long-range repulsion relative to the Model M1.
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Figure 1. Pair interaction potential (2.1) corresponding to M1 (lower
line) and M2 (upper line) sets of parameter values

Due to the softness of the core, the potential (2.1) makes it possi-
ble to take into account partial overlap between particles. The model
can, therefore, describe e�ective pair interaction in a variety of soft mat-
ter systems such as star-polymer blends, dispersions of polymer-grafted
nanoparticles, solutions of proteins, and microgel suspensions. In addi-
tion, the potential is convenient for analytical calculati ons as well as
molecular dynamics computer simulations.
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3. Computer simulations

A series of Monte-Carlo (MC) and Molecular Dynamics (MD) com-
puter simulations have been performed to investigate whether Models
M1 and M2 can describe micro-segregation phenomena and to estimate
the ranges of temperatures and densities at which they occur. In ad-
dition, we were interested in the con�nement e�ects for such systems.
Having the intention to study purely the impact of con�nemen t, we con-
sidered the case with no attraction between the walls and theparticles.

In Figure 2 we present simulation snapshots for the Model M1 in the
bulk. For comparison, Figure 3 shows simulation snapshots for the same
system con�ned between two inert walls. One can see that atT = 10:0
the bulk �uid is uniform, while near the walls distinct clust ers of particles
are formed. As the temperature is raised, atT = 12:0 clusters disappear;
however, some inhomogeneties at the walls still persist. From these facts
we infer that con�ning walls trigger and favor micro-segregation e�ects
for �uids with competing interactions.

Figure 2. MC snapshots in the bulk (Model M1) at T = 8 :0, � = 0 :25
(left) and T = 10:0, � = 0 :25 (right).

Figure 3. MC snapshots for a �uid con�ned between two hard walls
(Model M1) at T = 10:0, � = 0 :25 (left) and T = 12:0, � = 0 :25 (right).
The walls are located on the left and right edges of the box.

In Figures 4 and 5 some simulation snapshots for the Model M2 in
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the bulk are presented. Due to the fact that potential M2 is stronger than
M1, the respective systems show richer phenomenological behavior. At
high temperatures a uniform �uid is observed. As the temperature is
decreased, the model exhibits spontaneous appearance in the system of
a wide variety of mesostructures including lamellar and gyroid phases,
hexagonal packed cylindrical phases, cubically ordered and disordered
clusters formed by particles as well as voids.

Figure 4. MC snapshots for a bulk �uid (Model M2). BCC lattice of
spherical clusters (left) and hexagonal ordered cylinders(right)

Figure 5. MC snapshots for a bulk �uid (Model M2). Gyroid (lef t) and
lamellar (right) structures.

A phase transition to a modulated inhomogeneous phase can also be
seen in the plots of the pair distribution function g(r ) for the bulk M2
�uid and the density pro�le for a �uid at a con�ning wall (Figu res 6
and 7). At higher temperatures, the function g(r ) displays a weak peak
and rapidly tends to its asymptotic value of unity. However, for lower
temperatures g(r ) signi�cantly enhances its value over a large length
scale indicative of the cluster radius. For all the temperatures, the density
pro�les are characterized by distinct double maxima close to the wall. At
higher temperatures the pro�le decays to its bulk value, while at lower
temperatures the density displays oscillations signalingthe presence of
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large scale ordering in the system. These e�ects are more pronounced in
the case of higher density� = 0 :75(Fig. 7), which at T = 2 :0 corresponds
to a lamellar structure (Fig. 5 on the right) and less prominent for a
�uid with � = 0 :25 (Fig. 6) corresponding to a spherical cluster phase at
T = 2 :0 (Fig. 4 on the left).
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Figure 6. The pair distribution function (left) for a bulk �u id and the
density pro�le for a �uid con�ned by a hard wall (right) for M2 param-
eters at � = 0 :25. The temperature T = 2 :0 corresponds to a spherical
cluster phase. The results have been obtained from computersimula-
tions.
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Figure 7. Same as in Figure 6 for� = 0 :75. The temperature T = 2 :0
corresponds to a lamellar structure.

The aim of the present paper is to show that the soft core SALR
potential (2.1) can describe spontaneous transition of a homogeneous
�uid to mesoscopically inhomogeneous phases and to explorestructural
properties of such a �uid in the bulk and in the vicinity of a co n�ning
wall. In a series of papers on �uids with speci�c interactions [10�18], we
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show that it is possible to describe these systems using a �eld theoretical
approach. To reproduce density pro�les found from computersimulations
and as a �rst step toward �eld theoretical description of �ui ds with
competing interactions, in the present paper we apply this method to
a �uid with the pair potential (2.1) in the mesoscopically ho mogeneous
region of the phase space.

4. Field theoretical approach

In the framework of the �eld theory (FT) formalism, the Hamil tonian of
a classical system is a functional of the density �eld� (r ) and is expressed
as the sum of an entropic and an interaction terms

�H [� (r )] = �H entr [� (r )] + �H int [� (r )]; (4.1)

which respectively have the forms

�H entr [� (r )] =
Z

� (r )
�
ln

�
� (r )� 3�

� 1
�

dr (4.2)

�H int [� (r )] =
�
2

Z
� (r )

�
� (r 1)� (r 2) � � (r 1)� (r 1 � r 2)

�
dr 1dr 2; (4.3)

wherekB is the Boltzmann constant, � = 1 =kB T is the inverse tempera-
ture, � (r ) is the potential of interaction between two particles at points
1 and 2, and� (r ) is the Dirac function.

In the present work the calculations are carried out in the framework
of the canonical ensemble approach. For this reason we are interested in
the partition function ZN of the system, which is expressed as

ZN [� (r )] =
Z

D� (r ) expf� �H [� (r )]g: (4.4)

The number of particles is �xed by the condition
R

� (r )dr = N or
1
V

R
� (r )dr = � , where V is the volume and � = N=V is the average

density. To ensure this condition, we de�ne a Lagrange multiplier � such
that

��H [� (r )]
�� (r )

= �: (4.5)

The logarithm of the partition function gives the Helmholtz free energy

�F = � ln ZN : (4.6)

The lowest order approximation for the partition function i s the saddle
point approximation for the functional integral (4.4), whi ch corresponds
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to the mean �eld (MF) approximation from the physical standp oint. The
MF approximation thus corresponds to the condition

��H
��

�
�
�
�
� MF ( r )

= �: (4.7)

In order to take into account �uctuations one should expand the Hamil-
tonian around the �eld � MF (r ), i.e. write � (r ) = � MF (r ) + �� (r ). In
general, this leads to the following expression for the Hamiltonian

�H [� ] = �H
�
� MF �

+
Z

�� (r 1 )
��H

� (�� (r 1 ))

�
�
�
�
� MF

dr 1+ (4.8)

1
2

Z
�� (r 1 )�� (r 2 )

� 2�H
� (�� (r 1 )) � (�� (r 2 )

)

�
�
�
�
� MF

dr 1dr 2 +

X

n � 3

(� 1)n (n � 1)!
n!

Z
�� (r 1 ) ::: �� (r n )

� n �H
� (�� (r 1 )) ::: � (�� (r n )

)

�
�
�
�
� MF

dr 1 :::dr n :

The �rst term corresponds to the functional (4.1) for the mean �eld
density

�H [� MF ] =
Z

� MF (r 1 )
�
ln

�
� MF (r 1 )� 3�

� 1
�

dr 1 (4.9)

+
�
2

Z
� (r 1; r 2)

�
� MF (r 1 )� MF (r 2 ) � � MF (r 1)� (r 1 � r 2)

�
dr 1dr 2 :

The linear term disappears as in the canonical ensemble the �uctuations
preserve the number of particles and

R
�� (r )dr = 0 . The terms of higher

orders come from the expansion of the logarithm in the expression (4.2).

5. Three-Yukawa �uid in the bulk

In this section we apply �eld theory to study analytically th e properties
of a 3Y �uid in the bulk region. One point of interest is to inve stigate the
conditions for the appearance of inhomogeneous phases, which is signaled
by the divergence of the structure factorS(k). The curve separating the
respective homogeneous and inhomogeneous phases (known asthe � -
line) is therefore determined by the locus of points on the phase diagram,
at which S(k) diverges. This knowledge is also important for numerical
calculations of the density pro�les which we intend to perform within the
homogeneous part of the phase diagram. In addition, it is instrumental
to know whether the model under consideration exhibits liquid-vapor
phase separation.
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5.1. The pair distribution function

The structure of a �uid can be described by the pair distribut ion function
g(r ) = 1+ h(r ), whereh(r ) is the pair correlation function. This quantity
can be found from the following expression [19]

h(r 1; r 2)h� (r 1)ih� (r 2)i = h�� (r 1)�� (r 2)i � � (r 1 � r 2) h� (r 1)i : (5.1)

We expand the Hamiltonian with respect to the mean �eld density
� MF (r ). Truncation of expansion (4.8) at the second term corresponds
to the description of the system in the Gaussian approximation.

The quadratic term in Eq. (4.8) is

�H 2[� ] =
1
2

Z
�� (r 1 )�� (r 2 )

�
� (r 1 � r 2)
� MF (r 1 )

+ �� (r )
�

dr 1dr 2 ; (5.2)

where the �rst term comes from the expansion of the logarithm in the
entropic part of the Hamiltonian.

In order to calculate the averages using the Gaussian integrals, it is
necessary to have the quadratic term of the Hamiltnian in a diagonal
form. For bulk properties we can expand the density on the Fourier
components

�� (r ) =
X

k > 0

�� k eikr : (5.3)

In this basis the quadratic Hamiltonian equals

�H 2[� ] =
V
2�

X

k > 0

�� k �� � k [1 + � (k)] ; (5.4)

where

� (k) =
3X

i =1

4��A i

k2 + � 2
i

(5.5)

is the Fourier transform of the interaction potential (2.1) multiplied by
the inverse temperature.

Calculating the averages in (5.1) with the weight given by the quadratic
Hamiltonian (5.4), we arrive at the following relation

h�� (k)�� (� k )i =

Z
D (�� (k)) e� �H 2 [� (k)] �� (k)�� (� k )

Z
D (�� (k)) e� �H 2 [� (k)]

(5.6)
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The Fourier transform of the pair correlation function is th en

h(k) = �
�� (k)

1 + ��� (k)
= �

1
�

P(k)
D(k)

: (5.7)

The numerator and denominator on the RHS of equation (5.7) equal,
respectively,

P(k) = { 2
1 (k2 + � 2

2)(k2 + � 2
3) + { 2

2 (k2 + � 2
1)(k2 + � 2

3) (5.8)

+ { 2
3(k2 + � 2

1)(k2 + � 2
2);

D (k) = k6 + k4(~{ 2
1 + ~{ 2

2 + ~{ 2
3 )

+ k2 �
~{ 2

1 ~{ 2
2 + ~{ 2

1 ~{ 2
3 + ~{ 2

2 ~{ 2
3 � { 2

1 { 2
2 � { 2

1 { 2
3 � { 2

2 { 2
3

�

+ � 2
1� 2

2� 2
3 + { 2

1 � 2
2� 2

3 + { 2
2 � 2

1� 2
3 + { 2

3 � 2
1� 2

2; (5.9)

where ~{ 2
i = { 2

i + � 2
i .

Taking the inverse Fourier transform of expression (5.7), we can �nd
h(r )

h(r ) =
1

(2� )3

Z 1

�1
dk h(k) exp (� i kr ) : (5.10)

In order to perform analytical integration in Eq. (5.10), on e needs to
factorize the denominatorD(k). To this end, we need to solve the bicubic
equation D(k) = 0 .

5.2. Solution of the bicubic equation

Equation D(k) = 0 can be presented in a cubic form

K 3 + bK 2 + cK + d = 0 ; (5.11)

where

K = k2; (5.12)

b = (~{ 2
1 + ~{ 2

2 + ~{ 2
3 ); (5.13)

c =
�
~{ 2

1 ~{ 2
2 + ~{ 2

1 ~{ 2
3 + ~{ 2

2 ~{ 2
3 � { 2

1 { 2
2 � { 2

1 { 2
3 � { 2

2 { 2
3

�
(5.14)

d = ~{ 2
1

�
~{ 2

2 ~{ 2
3 � { 2

2 { 2
3

�
� { 2

1 { 2
2 ~{ 2

3 � { 2
1 { 2

3 ~{ 2
2 + 2 { 2

1 { 2
2 { 2

3 : (5.15)

The numbers of real and complex roots are determined by the discrimi-
nant of the cubic equation,

� = 18 bcd� 4b3d + b2c2 � 4c3 � 27d2: (5.16)
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If � > 0, then the equation has three distinct real roots. If � = 0 , then
the equation has a multiple root and all of its roots are real. If � < 0,
then the equation has one real root and two non-real complex conjugate
roots.

The general solution of the cubic equation involves �rst calculating:

� 0 = b2 � 3c (5.17)

� 1 = 2 b3 � 9bc+ 27d; (5.18)

C =
3

s
� 1 �

p
� 1

2 � 4� 0
3

2
=

3

s
� 1 �

p
� 27�

2
(5.19)

There are three possible cube roots implied by the expression, of
which at least two are non-real complex numbers; any of thesemay be
chosen when de�ning C. In addition, either sign in front of the square
root may be chosen unless� 0 in which case the sign must be chosen so
that the two terms inside the cube root do not cancel.

We consider the case when the cubic equation (6.25) producesone
real solution k2

0 and a pair of complex conjugate solutionsk2
1 and k2

2 .
For C we choose a plus in front of the square root. For the region of
parameter values considered, the resulting expression under the cube
root is positive, therefore C can take on three values: a realpositive
number or one of the two complex conjugate numbers. We choosethe
real positive root to de�ne C:

C =
3

s
� 1 +

p
� 27�

2
(5.20)

The solution of the cubic equation can be expressed compactly in-
cluding all 3 roots as follows:

k2
j = �

1
3

�
b+ � j C +

� 0

� j C

�
; j 2 f 0; 1; 2g, (5.21)

where � = � 1=2 + 1=2
p

3i (which is a cube root of unity).
The real solution of the cubic equation appears atj = 0 :

k2
0 = �

1
3

�
b+ C +

� 0

C

�
(5.22)

The complex conjugate solutions appear atj = 1 and j = 2 .
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For the parameters under consideration, the solutionk2
0 is a negative

quantity. Due to this, we introduce a more convenient set of notations

� 2
j = � k2

j ; j 2 f 0; 1; 2g: (5.23)

The quantities � 2
j are essentially the solutions of the cubic equation (6.25)

but of the opposite sign. Therefore, they can be written as

� 2
0 =

1
3

�
b+ C +

� 0

C

�
(5.24)

� 2
1 = M 1 + M 2i; (5.25)

� 2
2 = M 1 � M 2i; (5.26)

where

M 1 =
1
3

�
b�

C
2

�
� 0

2C

�
(5.27)

M 2 =
1
3

p
3

2

�
C �

� 0

C

�
: (5.28)

Since the quantities � 2
1 and � 2

2 are complex conjugate, so are their
roots. We can, therefore, write

� 1 = � + i�; (5.29)

� 2 = � � i�; (5.30)

where

� =
1

p
2

� q
M 2

1 + M 2
2 + M 1

� 1=2

(5.31)

� =
signum(M 2)

p
2

� q
M 2

1 + M 2
2 � M 1

� 1=2

: (5.32)

The function D(k) can now be written in a factorized form

D(k) = ( k2 + � 2
0)(k2 + � 2

1)(k2 + � 2
2) (5.33)

= ( k + i� 0)(k � i� 0)(k + i� 1)(k � i� 1)(k + i� 2)(k � i� 2):

The real solutions for the bicubic equation are readily found from
Eq. (5.22) and equal� � 0, where

� 0 =

s
1
3

�
b+ C +

� 0

C

�
: (5.34)
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From Eq. (5.10), the expression for the pair correlation function is

h(r ) = �
1

2��

�
H0

exp(� � 0r )
r

+ [ H1 cos (�r ) + H2 sin (�r )]
exp(� �r )

r

�
;

(5.35)

H0 =
1

2 [� 4
0 � 2� 2

0(� 2 � � 2) + ( � 2 + � 2)2]

3X

i =1

{ 2
i (� 2

j � � 2
0)( � 2

k � � 2
0);

(5.36)

H1 =
1

8� 2� 2 + 2 �� 2
0

2

3X

i =1

{ 2
i

h
� �� 2

j
�� 2
k + �� 2

0( �� 2
j + �� 2

k ) + 4 � 2� 2
i

; (5.37)

H2 =
1

16� 3� 3 + 4 �� �� 2
0

2

3X

i =1

{ 2
i

h
4� 2� 2( �� 2

j + �� 2
k ) + �� 2

0( �� 2
j

�� 2
k � 4� 2� 2)

i
;

(5.38)

where j; k 2 f 1; 2; 3g with i 6= j 6= k, and we use the bar to denote
shifted quantities �(:::) = ( ::: � � 2 + � 2).

Equation (5.35) tells us that the quantities � 0, � and � have the
meaning of parameters that characterize the screening of interaction with
� 0 and � responsible for the decaying and� responsible for the oscillatory
parts of the interaction. We note that for the values of the pair potential
considered in this paper, the quantities� 0, � and � are real numbers. In
addition, � 0 and � are positive.

In the Gaussian approximation, the radial distribution fun ction (RDF)
g(r ) can be written as

g(r ) = 1 + h(r ): (5.39)

From Eq. (5.35) one can see that the functiong(r ) diverges whenr ! 0.
As we discussed in our previous papers [10, 11], this behavior can be
corrected by introducing exponential approximation for the RDF in the
form

gexp (r ) = exp [ h(r )] : (5.40)

In Figures 8-11 we compare numerical results for the pair distribu-
tion function calculated from Equations (5.39) and (5.40) with computer
simulations data. The plots are presented for Models M1 and M2 at dif-
ferent densities and temperatures. One can see that the results of the the-
ory are in qualitative agreement with the simulations while quantitative
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agreement improves as the temperature rises. We also note the correct
behavior of the exponential approximation (5.40) at small distances in
contrast to the non-physical behavior of the initial approximation (5.39).
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Figure 8. Pair distribution function for Model M1. The blue s olid lines
are given by Eq. (5.39), the red dashed lines correspond to approximation
(5.40), and the black solid curves are calculated from the MCsimulations
data.
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Figure 9. Same as in Figure 8 but at higher temperatures.

5.3. The structure factor and phase coexistence curves

The static structure factor characterizes the microphase structuring dis-
played by the system.S(k) is given by the expression

S(k) =
1

1 � � ~c(k)
; (5.41)
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Figure 10. Same as in Figure 8 but for� = 0 :50.
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Figure 11. Same as in Figure 10 but at higher temperatures.

where~c(k) is the Fourier transform of the direct pair correlation function
c(r ) of the bulk �uid. In the random phase approximation,

~c(k) = � �� (k); (5.42)

where � (k) is given by Eq. (5.5).
The � -line is de�ned as the locus of points in the phase diagram

for which the static structure factor S(k) diverges at a particular wave
number [24]. We take the � -line to indicate that the model predicts a
phase transition to a modulated inhomogeneous phase. When the �uid
is in the homogeneous phase, the denominator1 � � ~c(k) on the RHS of
expression (5.41) takes on positive values. As we lower the temperature,
the S(k) curve shifts downward and at certain values of the density be-
comes equal to zero. Therefore, the� -line can be found from the solution
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of the system of equations

� ~c(k; f �; T g) = 1 ; (5.43)

@~c(k; f �; T g)
@k

= 0 : (5.44)

For the function ~c(k) in the form (5.42), the system (5.43)-(5.44) amounts
to the following equations

(k2 + � 2
1)(k2 + � 2

2) = 0 ; (5.45)
3X

l =1

{ 2
l (k2 + � 2

m )2(k2 + � 2
n )2 = 0 ; (5.46)

where m; n 2 f 1; 2; 3g and l 6= m 6= n.
Due to the fact that in the Equations (5.45)-(5.46) the density and

the temperature are present only in the form of the product �� , the
solution of this system comes out as a linear equation�� = const. This
means that in this case the� -line is a straight line. In Figure 12 we show
the respective result for the model M 1, while for the model M 2 the
solution lies outside of a reasonable range of density and temperature
values. We attribute the non-physical behavior of these results to the
weakness of the approximation employed.
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r

Figure 12. � -line for model M1 calculated from the direct correlation
function given by Eq. (5.42).

Nevertheless, one can show that the model potential (2.1) does, in
fact, describe the possibility of the phase transition to a mesoscopically
inhomogeneous structure.

Whereas the model of the �uid considered here is formally soft, it can
e�ectively be presented as a system of particles with a hard core [20,21].
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One way to determine the corresponding hard core diameter� is to use
the distance at which the pair potential (2.1) equals the thermal energy
kB T with an arbitrary factor � [20], i.e.

� (r ) � �T = 0 : (5.47)

Another way to determine � is by employing the Barker-Henderson for-
mula [23]

� BH =
Z �

0
dr

�
1 � e� �� ( r )

�
; � (� ) = 0 : (5.48)

It is reasonable to presume that the value of the e�ective diameter
should stem from the condition that two particles cannot overlap beyond
the distance � , i.e. the distance where the value of the radial distribu-
tion function is close to zero. In Figures (13) and (14) we show di�erent
estimations of the e�ective hard core diameter by employingexpression
(5.47) at � = 1 and � = 4 as well as the Barker-Henderson recipe (5.48).
We analyze the curves of the radial distribution functions given by Equa-
tions (5.39) and (5.40) relative to di�erent � in order to determine the
maximum distance, at which the RDF takes on a value close to zero.
One can infer that the best approximation corresponds to expression
(5.47) with � � 4. We, therefore, �nd the value of the e�ective hard core
diameter from the solution of the following equation

� (r ) � 4T = 0 : (5.49)

Hence, in the framework of the random phase approximation the
direct correlation function can be presented as the sum of two parts

~c(k) = ~cHS (k) + ~c3Y (k): (5.50)

One part is the e�ective hard core contribution [22]

~cHS = �
4�
q3

�
a1 [sinq � qcosq] +

6�a 2

q

�
2qsinq + (2 � q2) cosq � 2

�

(5.51)

+
�a 1

2q3

�
4q(q2 � 6) sinq � (24 � 12q2 + q4) cosq + 24

�
�

;

whereq = kD is a dimensionless wave number,� = ��� 3=6 is the packing
fraction, and

a1 =
(1 + 2 � )2

(1 � � )4 ; a2 = �
(1 + �= 2)2

(1 � � )4 : (5.52)
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Figure 13. Estimations of the e�ective hard core diameter for model
M1. The green vertical lines correspond to expressions (5.48) and (5.47)
at � = 1 and � = 4 , respectively. The blue solid lines depict the radial
distribution function given by Eq. (5.39), the red dashed lines correspond
to approximation (5.40), and the black solid curves come from the MC
simulations data.

The other part of the direct correlation function comes from the long-
range potential and can be calculated as

~c3Y (k) = �
4�
k

Z 1

�
r sin(kr )�� (r )dr (5.53)

= � 4��
3X

l =1

A l e� � l �
�
f k cosk� + � l sink� gf � 2

m � 2
n + k2(� 2

m + � 2
n ) + k3g

�
;

where m; n 2 f 1; 2; 3g and l 6= m 6= n.
In Figure (4), left panel, we show the structure factors for models
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Figure 14. Same as in Figure (13) but for model M2.
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M 1 and M 2 with an e�ective hard core diameter determined from the
equation (5.49). One can see distinct pre-peaks signaling the presence of
mesoscopic ordering in the system.

On the right panel of Figure (4) we show the respective� -lines for
modelsM 1 and M 2. Both curves have correct shapes, which was not the
case when equations (5.45)-(5.46) were considered. We conclude that a
correct description of inhomogeneous phases requires one to take into
account the excluded volume e�ects, models with a soft core not being
su�ciently accurate. At the same time, the homogeneous phase can be
studied without considering an e�ective hard core model. Having the
knowledge of the location of the regions on the phase diagramwhere
there is no micro-segregation and the �uid is uniform, we cansafely
apply the expressions for the structural properties derived from the �eld-
theoretical approach by substituting the values of the density and the
temperature well above the� -lines.
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Figure 15. Left: structure factors for modelsM 1 and M 2 at � = 0 :25; T =
10. Right: � -lines for modelsM 1 and M 2.

In this context, another point to consider is related to the vapor-
liquid phase separation curves. One way to determine the location of the
critical region is to construct the spinodals from the condition

� ~c(k = 0 ; f �; T g) = 1 (5.54)

and see where the critical point lies with respect to the� -lines. However,
the model (5.50) yields no solutions for equation (5.54) foreither M 1
or M 2. This means that the model �uid studied in this paper does not
exhibit vapor-liquid phase transition.
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6. Density pro�les at a hard wall

In this section we study a three-Yukawa �uid with competing i nteractions
in the vicinity of a hard wall. The potential of interaction b etween the
wall and a particle is taken to be in�nite when the distance between
them is negative and zero elsewhere.

As expression (4.9) contains the �eld � MF (r 1 ), one can readily see
that in the framework of the FT formalism spatially structur ed systems
can be examined even in the framework of the simplest mean �eld ap-
proximation.

From the mean �eld condition (4.7) we derive the following equation

ln
� (r 1 )

� b
+ V1(r 1 ) + V2(r 1 ) + V3(r 1 ) = � (6.1)

where potentials Vi (r 1 ) are de�ned as

Vi (r 1 ) = �
Z

� (r 2 )
A i

r
exp(� � i r )dr 2 : (6.2)

We put

� � V1b + V2b + V3b; (6.3)

where Vib are the values of potentialsVi (r 1) in the bulk

Vib =
{ 2

i

� 2
i

; (6.4)

{ 2
i � 4�� b�A i , and we denote the density of the �uid in the bulk by

� b to distinguish it from the distance-dependent density � (z) within the
interface between the wall and the bulk region.

The gradient of Eq. (6.1) gives

r � (r )
� (r )

� E1(r ) � E2(r ) � E3(r ) = 0 ; (6.5)

where we de�ne an equivalent of the electric �eld by

E i (r 1 ) � �r Vi (r 1 ); (6.6)

Due to the properties of the Yukawa potential we can write
�
4 � � 2

i

�
Vi (r ) = � 4��A i � (r ): (6.7)
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Given the translational invariance of the system in the directions par-
allel to the wall, all the distance-dependent functions in the equations
(6.5)-(6.7) are essentially functions of the distancez in the direction per-
pendicular to the wall. In consequence, from these equations we obtain
a set of seven di�erential equations with seven unknown functions � (z),
E1(z), E2(z), E3(z), V1(z), V2(z), V3(z):

@�(z)
@z

= � (z) [E1(z) + E2(z) + E3(z)] ; (6.8)

@Vi (z)
@z

= � E i (z); (6.9)

@Ei (z)
@z

= � � 2
i Vi (z) +

{ 2
i

� b
� (z): (6.10)

From Eq. (6:1) we have the following equation for the density pro�le

� (z) = � b exp
�

� [V1(z) � V1b] � [V2(z) � V2b] � [V3(z) � V3b]
�
: (6.11)

Equation (6.11) is an integral equation of the Euler-Lagrange type.
Numerical solution of this equation provides the mean �eld approxima-
tion for the density pro�le of the �uid.

6.1. Analytical expression for the density pro�le

The density pro�le can also be estimated in an explicit analytical form.
To this end, we approximate the exponent function in Eq. (6.11) as

� (z) = � b
�
1 � [V1(z) � V1b] � [V2(z) � V2b] � [V3(z) � V3b]

�
; (6.12)

which leads to a linearized system of equations

�
0
(z) = � b [E1(z) + E2(z) + E3(z)] ; (6.13)

V
0

i (z) = � E i (z); (6.14)

E
0

i (z) = � � 2
i Vi (z) +

{ 2
i

� b
� (z): (6.15)

In turn, this system can be reduced to a system of three second-order
di�erential equations

E
00

1 (z) = E1(z)
�
{ 2

1 + � 2
1

�
+ [ E2(z) + E3(z)]{ 2

1 ; (6.16)

E
00

2 (z) = [ E1(z) + E3(z)]{ 2
2 + E2(z)

�
� 2

2 + { 2
2

�
; (6.17)

E
00

3 (z) = [ E1(z) + E2(z)]{ 2
3 + E3(z)

�
� 2

3 + { 2
3

�
; (6.18)
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or in the matrix form

E
00

= AE ; (6.19)

where

E =

0

@
E1(z)
E2(z)
E3(z)

1

A ; A =

0

@

�
{ 2

1 + � 2
1

�
{ 2

1 { 2
1

{ 2
2

�
� 2

2 + { 2
2

�
{ 2

2
{ 2

3 { 2
3

�
� 2

3 + { 2
3

�

1

A

(6.20)

Matrix A can be presented in the diagonal form as

A = PDP � 1 (6.21)

where

D =

0

@
� 0 0 0
0 � 1 0
0 0 � 2

1

A : (6.22)

The coe�cients � i are the eigenvalues of the matrixA . Denoting the
identity matrix as I , we can �nd these eigenvalues as the roots of the
characteristic polynomial of A , i.e. from the equation

det (A � � I ) = 0 : (6.23)

In our case, this reduces to solving the equation

� 3 � � 2(~{ 2
1 + ~{ 2

2 + ~{ 2
3 ) (6.24)

+�
�
~{ 2

1 ~{ 2
2 + ~{ 2

1 ~{ 2
3 + ~{ 2

2 ~{ 2
3 � { 2

1 { 2
2 � { 2

1 { 2
3 � { 2

2 { 2
3

�

� ~{ 2
1

�
~{ 2

2 ~{ 2
3 � { 2

2 { 2
3

�
+ { 2

1 { 2
2 ~{ 2

3 + { 2
1 { 2

3 ~{ 2
2 � 2{ 2

1{ 2
2 { 2

3 = 0 ;

where ~{ 2
i = { 2

i + � 2
i .

Equation (6.24) can be presented as

� 3 � b� 2 + c� � d = 0 ; (6.25)

where the coe�cients b, c, and d are given by expressions (5.13)-(5.15).
Comparing polynomials (6.25) and (5.11), we note that the coe�-

cients in front of the variables of the same powers are identical by the
absolute value but alternate their signs. One can show, thatin such a
case the roots of the two polynomials are equal by the absolute value but
have opposite signs. Hence, due to the de�nitions (5.23), wecan readily
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see that parameters� 2
0, � 2

1, and � 2
2, given by equations (5.24)-(5.25), are

also the three eigenvalues of the matrixA .
As a result, the general solution forE1(z), for instance, is

E1(z) = ~c10e� 0 z + c10e� � 0 z + ~C1e( � + �i )z + C1e( � � + �i )z + ~C2e( � � �i )z

(6.26)

+ C2e( � � � �i )z = c10e� � 0 z + C1e( � � + �i )z + C2e( � � � �i )z ;

where we leave only the terms with negative� 0z and �z in the exponents
due to the fact that � 0 and � are positive and the function E(z) vanishes
in the bulk.

For the �eld E1(z) to have a physical meaning, the coe�cients C1

and C2 must be complex conjugate as well. From the system of equations
(6.16) we can tell that the functions E2(z) and E3(z) are of a form similar
to that of (6.26). We can therefore write the functions E i (z) as

E1(z) = c10e� � 0 z + ( r11 + r12i ) e( � � + �i ) z + ( r11 � ri ) e( � � � �i ) z

(6.27)

E2(z) = c20e� � 0 z + ( r21 + r22i ) e( � � + �i ) z + ( r21 � r22 i ) e( � � � �i ) z

(6.28)

E3(z) = c30e� � 0 z + ( r31 + r32i ) e( � � + �i ) z + ( r31 � r32 i ) e( � � � �i ) z

(6.29)

Because the system (6.16) is homogeneous, we essentially have three
unknown coe�cients, for instance c10, r11, r12, and we can use any pair
of equations (6.16) to express the rest of the coe�cients in terms of these
unknowns. Using expressions (6.27) and equating the real and the imag-
inary parts of the coe�cients in front of the same z-dependent functions
on the LHS and RHS of equations (6.16), we obtain two system ofequa-
tions - one for the coe�cients in front of the functions exp[(� � � �i )z]
and one for the functionexp[� � 0z]. In the �rst case we have the following
equations

�� 2
1r11 + 2 ��r 12 � { 2

1 r21 � { 2
1 r31 = 0 (6.30)

�� 2
1r12 � 2��r 11 � { 2

1 r22 � { 2
1 r32 = 0 (6.31)

�� 2
2r21 + 2 ��r 22 � { 2

2 r11 � { 2
2 r31 = 0 (6.32)

�� 2
2r22 � 2��r 21 � { 2

2 r12 � { 2
2 r32 = 0 (6.33)

�� 2
3r31 + 2 ��r 32 � { 2

3 r11 � { 2
3 r21 = 0 (6.34)

�� 2
3r32 � 2��r 31 � { 2

3 r12 � { 2
3 r22 = 0 ; (6.35)
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where �� 2
j = � 2 � � 2 � � 2

j � { 2
j .

We can pick any two pairs of these equations and the solution of this
system will be the same. Choosing, for instance, the �rst twopairs, it is
convenient to present coe�cients r21, r22, r31, r32 in terms of coe�cients
r11 and r12 as

r lm = K 11
lm r11 + K 12

lm r12; (6.36)

where

K 11
21 =

�
1 + �� 2

1
{ 2

1
+ (2 �� )2

{ 2
1 [�� 2

2 + { 2
2 ]

�

�
1 + �� 2

2
{ 2

2
+ (2 �� )2

{ 2
2 [�� 2

2 + { 2
2 ]

� (6.37)

K 12
21 =

�
2��
{ 2

1
�

2�� ( �� 2
1 + { 2

1 )
( �� 2

2 + { 2
2 ){ 2

1

�

�
1 + �� 2

2
{ 2

2
+ (2 �� )2

{ 2
2 [�� 2

2 + { 2
2 ]

� (6.38)

K 11
22 =

{ 2
2

{ 2
2 + �� 2

2

�
�

2��
{ 2

1
+

2��
{ 2

2
K 11

21

�
(6.39)

K 12
22 =

{ 2
2

{ 2
2 + �� 2

2

��
1 +

�� 2
1

{ 2
1

�
+

2��
{ 2

2
K 12

21

�
(6.40)

K 11
31 =

1
{ 2

2

�
� { 2

2 + �� 2
2K 11

21 + 2 ��K 11
22

�
(6.41)

K 12
31 =

1
{ 2

2

�
�� 2

2K 12
21 + 2 ��K 12

22

�
(6.42)

K 11
32 =

1
{ 2

2

�
�� 2

2K 11
22 � 2��K 11

21

�
(6.43)

K 12
32 =

1
{ 2

2

�
� { 2

2 + �� 2
2K 12

22 � 2��K 12
21

�
(6.44)

(6.45)

For the second system of equations we have three equations

� 2
0c10 =

�
� 2

1 + { 2
1

�
c10 + { 2

1 (c20 + c30) (6.46)

� 2
0c20 =

�
� 2

2 + { 2
2

�
c20 + { 2

2 (c10 + c30) (6.47)

� 2
0c30 =

�
� 2

3 + { 2
3

�
c30 + { 2

3 (c20 + c10) : (6.48)

Choosing any two of these equations, and due to the fact the determinant
of the homogeneous system is zero, we can express the coe�cients c20
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and c30 in terms of c10 as

c20 = K 20c10; c30 = K 30c10: ; (6.49)

K 20 =
(� 2

0 � � 2
1){ 2

2

(� 2
0 � � 2

2){ 2
1

(6.50)

K 30 =
(� 2

0 � � 2
1)

{ 2
1 (� 2

0 � � 2
2)

�
� 2

0 � � 2
2 � { 2

2

�
� 1: (6.51)

The potentials Vi (z) then have the form

Vi (z) = Vib + �r i 0e� � 0 z + e� �z [(� �r i 1 � � �r i 2) cos�z � (� �r i 1 + � �r i 2) sin �z ] ;
(6.52)

where �r i 0 = � ci 0=� 0, �r ij = 2 r ij =(� 2 + � 2), i = 1 ; 2; 3, j = 1 ; 2.
In our earlier work [12] we showed that in the framework of themean

�eld approximation of the �eld theory formalism, for a multi -Yukawa
�uid the so-called contact theorem [25,26] holds true. According to this
theorem, the density of the �uid at the wall is determined by t he pressure
of the �uid in the bulk, i.e.

�P = � (0+ ); (6.53)

where P is the pressure within the mean �eld approximation:

�P = � b

�
1 +

{ 2
1

2� 2
1

+
{ 2

2

2� 2
2

+
{ 2

3

2� 2
3

�
: (6.54)

The unknown coe�cients �r10, �r11 and �r12 can then be found from the
boundary conditions given by the contact theorem (6.53). Setting z = 0
in Eq. (6.12), we obtain

Vib � Vi (0) =
{ 2

i

2� 2
i

; (6.55)

which results in a system of three equations

�
{ 2

1

2� 2
1

= �r10 + � �r11 � � �r12; (6.56)

�
{ 2

2

2� 2
2

= �r20 + � �r21 � � �r22; (6.57)

�
{ 2

3

2� 2
3

= �r30 + � �r31 � � �r32: (6.58)
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The solution of this system is

�r11 =
� { 2

3
2� 2

3
+ { 2

1
2� 2

1
K 30 � A

�
�K 30 + �K 12

31 � �K 12
32

�

� �K 30 + �K 11
31 � �K 11

32 � B [�K 30 + �K 12
31 � �K 12

32 ]
(6.59)

�r12 = A � B �r11 (6.60)

�r10 = �
{ 2

1

2� 2
1

� � �r11 + � �r12 = �
{ 2

1

2� 2
1

+ �A � [� + �B ] �r11; (6.61)

where

A =
1

[�K 20 + �K 12
21 � �K 12

22 ]

�
�

{ 2
2

2� 2
2

+
{ 2

1

2� 2
1

K 20

�
; (6.62)

B =
1

[�K 20 + �K 12
21 � �K 12

22 ]

�
� �K 20 + �K 11

21 � �K 11
22

�
: (6.63)

Due to Eq. (6.12), the �nal expression for the linearized density pro�le
is

� (z)
� b

= 1 � [�r10 + �r20 + �r30] e� � 0 z (6.64)

� e� �z
�

f � (�r11 + �r21 + �r31) � � (�r12 + �r22 + �r32)gcos�z

� f � (�r11 + �r21 + �r31) + � (�r12 + �r22 + �r32)gsin �z
�
:

As was the case with the pair correlation function (5.35), the function
on the RHS of Eq. (6.64) is de�ned by parameters� 0, � , and � that shape
the exponentially damped oscillatory behavior of the pro�le.

In Figures 16-23 we display density pro�le curves provided by the nu-
merical solution of the mean �eld equation (6.12) (MF), the analytical
expression (6.64) corresponding to the linearized mean �eld approxima-
tion (LMF), and test these results against Monte Carlo simulations data
(MC). Due to the fact that the numerical solution requires th e use of a
cuto� radius, for comparison purposes we also present two estimations
for the linearized pro�le with and without the respective va lue of that
cuto�.

The results prove that theoretical predictions for the pro� le agree
with the simulations very well. Moreover, the explicit analytical estimate
(6.64) reproduces MC data better than the mean �eld solution. At high
densities the agreement is the best for the �rst peak and deteriorates at
distances farther away from the wall. In all the cases, as thetemperature
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Figure 16. Density pro�les for the Model M1. The dotted lines correspond
to MC simulations; the blue solid lines come from the mean �eld solution
(6.12); the dashed red and green lines correspond to analytical expression
(6.64) with and without the cuto� radius, respectively.
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Figure 17. Same as in Figure (16) at higher temperatures.

rises the agreement between the theory and the simulations improves.
Also, one can note that for all the densities and temperatures considered
the theory reproduces very well the locations of the respective minima
and maxima of the pro�le. For the Model M2 we observe signi�cant
discrepancy between the contact values of the density. Thismismatch
can likely be corrected by going beyond the mean �eld approximation
and taking into account �uctuation e�ects as was done in our earlier
study on a two-Yukawa �uid [10].

The behavior of the density pro�le is characterized by the split of
the �rst maximum which leads to the formation of a distinct bi -layer
close to the wall. We took note of this e�ect earlier in the Computer
Simulations section as it was present also in the mesostructured systems
we considered. The formation of the double peak can be explained by the
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Figure 18. Same as in Figure (16) for higher densities and temperatures.
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Figure 19. Same as in Figure (18).

attractive part of the SALR interaction potential as no simi lar behavior
had been observed in the case of a 2Y �uid at a hard wall [10].

7. Conclusions

A �uid interacting with a three-Yukawa (3Y) potential was st udied in
the bulk and in the vicinity of a hard wall. The amplitudes and the
ranges of the respective Yukawa terms were chosen so as to reproduce the
short-range attraction and long-range repulsion (SALR) between parti-
cles, thus o�ering a di�erent model of a system with competing inter-
actions. A notable feature of this potential is the softnessof the core,
which describes the possibility of partial overlap betweenparticles.

Two sets of parameter values for the three-Yukawa potentialwere con-
sidered to construct a SALR potential. A series of Monte-Carlo (MC) and
Molecular Dynamics (MD) computer simulations across a widerange of
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Figure 20. Same as in Figure (16) but for model M2.
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Figure 21. Same as in Figure (20).

temperatures and densities were performed. The results show that the
model proposed can describe spontaneous appearance in the system of
various mesostructures including lamellar and gyroidal phases, hexago-
nally packed cylindrical phases, cubically ordered and disordered clus-
ters formed by particles or voids. Furthermore, we observedthat these
self-assembly e�ects become more pronounced when the �uid is con�ned
between two inert walls, i.e. close to the walls cluster formation can occur
at temperatures higher than those required for micro-segregation in the
bulk. As the temperature increases, the clusters vanish, though distinct
inhomogeneuity near the interface still persists.

A classical �eld theory was subsequently applied to describe the
micro-structure and thermodynamics of a 3Y �uid at high temp eratures
and reproduce the density pro�les obtained from our simulations. As a
�rst step, we investigated the mesoscopically homogeneousphase in the
bulk and close to a hard wall.

For the bulk region, a bicubic equation for generalized screening pa-
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Figure 22. Same as in Figure (20) at higher densities.
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Figure 23. Same as in Figure (22).

rameters was derived and solved analytically. Based on these results,
explicit analytical expressions for the radial distributi on function were
derived and compared to the MC data. Attempts to construct th e re-
spective phase diagram revealed that description of mesoscopic phases
requires one to take into account excluded volume e�ects while a purely
soft model in the random phase approximation leads to non-physical
results. The structure factor was then calculated by introducing an ef-
fective hard core radius characteristic of the system. The� -lines were
subsequently constructed and phase behavior discussed. The results in-
dicate that the model does indeed describe the possibility of spontaneous
emergence of mesostructured phases in the system. Having the knowledge
of the phase regions where the �uid is homogeneous, we therefore deter-
mined the conditions of applicability of the expressions for the structural
properties derived from the �eld-theoretical approach. To this end, one
should substitute the values of the density and the temperature above
the � -lines found. The location of these applicability regions is also sup-
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ported by computer simulations data.
The microstructure of a 3Y-�uid in the vicinity of a hard wall was

further investigated. In the framework of the mean �eld appr oximation
an integral equation of the Euler-Lagrange type was obtained for the
density pro�le. Linearization of this equation led to a system of second-
order di�erential equations which were solved using the contact theorem
as a boundary condition. The solution of these equations ledto explicit
analytical expressions for the density pro�le, which proved to be in very
good agreement with the simulations data. Close to the wall we observed
a characteristic split of the �rst maximum of the density pro �le. We
relate the presence of this bilayer to the competing nature of the pair
potential between particles, because this speci�c behavior had not been
observed earlier in a simple attractive two-Yukawa �uid. Th e agreement
between theoretical predictions for the pro�le and the MD simulations
data improves with increasing temperature.
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