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Плин м’яких частинок iз конкуруючими взаємодiями поблизу
твердої поверхнi: теоретико-польовий пiдхiд

I. Кравцiв, Т. Пацаган, М. Головко, Д. дi Капрiо

Анотацiя. Розглянуто модель конкуруючої мiжчастинкової взає-
модiї у формi потрiйного потенцiалу Юкави. Комп’ютерне моделю-
вання системи показало, що запропонована модель здатна описувати
спонтанне виникнення в системi мезоструктурованих фаз рiзної мор-
фологiї. Зазначенi явища самоорганiзацiї стають бiльш вираженими
за присутностi обмежуючих поверхонь. Для вивчення структури та
термодинамiки мезоскопiчно однорiдного плину в об’ємнiй областi
та поблизу твердої поверхнi, застосовано теоретико-польовий пiдхiд.
Отримано явнi аналiтичнi вирази для парної кореляцiйної функцiї та
профiлю густини. Означено характерний твердий радiус формально
м’яких частинок i розраховано структурний фактор, на основi якого
побудовано λ-лiнiї та дослiджено фазову поведiнку.

Soft particle fluid with competing interactions at a hard wall:
field theory approach

I. Kravtsiv, T. Patsahan, M. Holovko, D. Di Caprio

Abstract. A model of competing pair interaction in the form of a three-
Yukawa (3Y) potential is considered. The results of computer simulati-
ons show that the model proposed can describe spontaneous appearance
in a homogeneous fluid of a large variety of mesostructured phases.
Furthermore, these self-assembly effects appear to be favored by the
presence of confining walls. To study the structure and thermodynamics
of a mesoscopically homogeneous 3Y fluid in the bulk and close to a hard
wall, a field theory approach is subsequently applied. Explicit analytical
expressions for the pair correlation function and the density profile are
derived. The structure factor is calculated by introducing an effective
hard core radius characteristic of the system, based on which the λ-lines
are constructed and phase behavior discussed.
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1. Introduction

Models of fluids with competing interactions, which are characterized
by short-range attraction and long-range repulsion (the so-called SALR
potential), have been the focus of extensive research due to their ability
to describe spontaneous emergence in a homogeneous fluid of mesostruc-
tured phases of different morphologies [1]. Such potentials are of coarse-
grained nature and are often used to model effective solvent-mediated
interaction between complex molecules.

For systems with competing interactions in the bulk a large body of
research has been reported, yet far fewer results exist for spatially con-
fined systems. Even for the bulk case, most studies have been done in the
framework of phenomenological approaches such as Landau-Brazowski
theory [2], which make it difficult to link microscopic parameters of the
system to respective measurable quantities. Confined systems have typ-
ically been investigated in two dimensions [3], although some results for
the three dimensional case have also been reported. In [4] a hard core
two-Yukawa fluid confined in a slit-like pore was studied. In [5] the struc-
ture and adsorption of a system with competing interactions confined by
an attractive wall was considered.

We propose to study a fluid interacting with a three-Yukawa potential
of the SALR form. Such a model with a soft core takes into account the
possibility of partial overlap between two particles. Examples of such
systems include, but are not limited to, protein molecules, soft colloids,
polymer grafted nanoparticles, star and branched polymers, microgels.
Such a potential also has the advantage of being analytical, which makes
it possible to perform analytical calculations.

Using computer simulations, we have examined the system under
consideration in a wide range of density and temperature values. We
show that at low temperatures various well-known mesostructures, such
as lamellar and gyroidal phases, hexagonally packed cylindrical phases,
cubically ordered and disordered clusters [6–9], are formed. In the case
of the system confined between two hard walls, the self-assembly effects
become more pronounced may be observed at temperatures that are
noticeably higher than in the bulk.

To describe structural properties of a 3Y fluid at high temperatures,
a classical field theory [10, 11] is employed. As a first step, we present
theoretical results for the mesoscopically homogeneous phase in contact
with a hard wall. Explicit analytical expressions for the pair correlation
function and the density profile are derived. The results found are tested
against computer simulations data.
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2. The model

We study a fluid of soft particles interacting with a Three-Yukawa (3Y)
potential given by

ν(r) =
A1

r
exp(−α1r) +

A2

r
exp(−α2r) +

A3

r
exp(−α3r), (2.1)

where r denotes the distance between two particles, Ai are the ampli-
tudes of interaction and αi are the inverse ranges. We choose the values
of these parameters so as to reproduce the SALR (short-range attractive
and long-range repulsive) potential. We therefore assume that A1 > 0,
A2 < 0, A3 > 0 and |A1| > |A2| > |A3|, α1 > α2 > α3.

Hence, we consider two sets of parameters which we will refer to as
Models M1 (A1 = 92.1106, α1 = 1.463485, A2 = −81.91964, α2 = 1.0,
A3 = 16.07036, α3 = 0.6) and M2 (A1 = 150.6561, α1 = 1.923254,
A2 = −122.613, α2 = 1.26115, A3 = 27.11811, α3 = 0.75669). The
respective shapes of these potentials are shown in Figure 1. We note
that the Model M2, shown by the red dashed line, displays stronger
long-range repulsion relative to the Model M1.
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Figure 1. Pair interaction potential (2.1) corresponding to M1 (lower
line) and M2 (upper line) sets of parameter values

Due to the softness of the core, the potential (2.1) makes it possi-
ble to take into account partial overlap between particles. The model
can, therefore, describe effective pair interaction in a variety of soft mat-
ter systems such as star-polymer blends, dispersions of polymer-grafted
nanoparticles, solutions of proteins, and microgel suspensions. In addi-
tion, the potential is convenient for analytical calculations as well as
molecular dynamics computer simulations.

ICMP–20–09E 3

3. Computer simulations

A series of Monte-Carlo (MC) and Molecular Dynamics (MD) com-
puter simulations have been performed to investigate whether Models
M1 and M2 can describe micro-segregation phenomena and to estimate
the ranges of temperatures and densities at which they occur. In ad-
dition, we were interested in the confinement effects for such systems.
Having the intention to study purely the impact of confinement, we con-
sidered the case with no attraction between the walls and the particles.

In Figure 2 we present simulation snapshots for the Model M1 in the
bulk. For comparison, Figure 3 shows simulation snapshots for the same
system confined between two inert walls. One can see that at T = 10.0
the bulk fluid is uniform, while near the walls distinct clusters of particles
are formed. As the temperature is raised, at T = 12.0 clusters disappear;
however, some inhomogeneties at the walls still persist. From these facts
we infer that confining walls trigger and favor micro-segregation effects
for fluids with competing interactions.

Figure 2. MC snapshots in the bulk (Model M1) at T = 8.0, ρ = 0.25
(left) and T = 10.0, ρ = 0.25 (right).

Figure 3. MC snapshots for a fluid confined between two hard walls
(Model M1) at T = 10.0, ρ = 0.25 (left) and T = 12.0, ρ = 0.25 (right).
The walls are located on the left and right edges of the box.

In Figures 4 and 5 some simulation snapshots for the Model M2 in
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the bulk are presented. Due to the fact that potential M2 is stronger than
M1, the respective systems show richer phenomenological behavior. At
high temperatures a uniform fluid is observed. As the temperature is
decreased, the model exhibits spontaneous appearance in the system of
a wide variety of mesostructures including lamellar and gyroid phases,
hexagonal packed cylindrical phases, cubically ordered and disordered
clusters formed by particles as well as voids.

Figure 4. MC snapshots for a bulk fluid (Model M2). BCC lattice of
spherical clusters (left) and hexagonal ordered cylinders (right)

Figure 5. MC snapshots for a bulk fluid (Model M2). Gyroid (left) and
lamellar (right) structures.

A phase transition to a modulated inhomogeneous phase can also be
seen in the plots of the pair distribution function g(r) for the bulk M2
fluid and the density profile for a fluid at a confining wall (Figures 6
and 7). At higher temperatures, the function g(r) displays a weak peak
and rapidly tends to its asymptotic value of unity. However, for lower
temperatures g(r) significantly enhances its value over a large length
scale indicative of the cluster radius. For all the temperatures, the density
profiles are characterized by distinct double maxima close to the wall. At
higher temperatures the profile decays to its bulk value, while at lower
temperatures the density displays oscillations signaling the presence of
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large scale ordering in the system. These effects are more pronounced in
the case of higher density ρ = 0.75 (Fig. 7), which at T = 2.0 corresponds
to a lamellar structure (Fig. 5 on the right) and less prominent for a
fluid with ρ = 0.25 (Fig. 6) corresponding to a spherical cluster phase at
T = 2.0 (Fig. 4 on the left).
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Figure 6. The pair distribution function (left) for a bulk fluid and the
density profile for a fluid confined by a hard wall (right) for M2 param-
eters at ρ = 0.25. The temperature T = 2.0 corresponds to a spherical
cluster phase. The results have been obtained from computer simula-
tions.
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Figure 7. Same as in Figure 6 for ρ = 0.75. The temperature T = 2.0
corresponds to a lamellar structure.

The aim of the present paper is to show that the soft core SALR
potential (2.1) can describe spontaneous transition of a homogeneous
fluid to mesoscopically inhomogeneous phases and to explore structural
properties of such a fluid in the bulk and in the vicinity of a confining
wall. In a series of papers on fluids with specific interactions [10–18], we
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show that it is possible to describe these systems using a field theoretical
approach. To reproduce density profiles found from computer simulations
and as a first step toward field theoretical description of fluids with
competing interactions, in the present paper we apply this method to
a fluid with the pair potential (2.1) in the mesoscopically homogeneous
region of the phase space.

4. Field theoretical approach

In the framework of the field theory (FT) formalism, the Hamiltonian of
a classical system is a functional of the density field ρ(r) and is expressed
as the sum of an entropic and an interaction terms

βH [ρ(r)] = βHentr[ρ(r)] + βHint[ρ(r)], (4.1)

which respectively have the forms

βHentr [ρ(r)] =

∫

ρ(r)
(

ln
[

ρ(r)Λ3
]

− 1
)

dr (4.2)

βHint[ρ(r)] =
β

2

∫

ν(r)

[

ρ(r1)ρ(r2) − ρ(r1)δ(r1 − r2)

]

dr1dr2, (4.3)

where kB is the Boltzmann constant, β = 1/kBT is the inverse tempera-
ture, ν(r) is the potential of interaction between two particles at points
1 and 2, and δ(r) is the Dirac function.

In the present work the calculations are carried out in the framework
of the canonical ensemble approach. For this reason we are interested in
the partition function ZN of the system, which is expressed as

ZN [ρ(r)] =

∫

Dρ(r) exp{−βH [ρ(r)]}. (4.4)

The number of particles is fixed by the condition
∫

ρ(r)dr = N or
1
V

∫

ρ(r)dr = ρ, where V is the volume and ρ = N/V is the average
density. To ensure this condition, we define a Lagrange multiplier λ such
that

δβH [ρ(r)]

δρ(r)
= λ. (4.5)

The logarithm of the partition function gives the Helmholtz free energy

βF = − lnZN . (4.6)

The lowest order approximation for the partition function is the saddle
point approximation for the functional integral (4.4), which corresponds
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to the mean field (MF) approximation from the physical standpoint. The
MF approximation thus corresponds to the condition

δβH

δρ

∣

∣

∣

∣

ρMF (r)

= λ. (4.7)

In order to take into account fluctuations one should expand the Hamil-
tonian around the field ρMF (r), i.e. write ρ(r) = ρMF (r) + δρ(r). In
general, this leads to the following expression for the Hamiltonian

βH [ρ] = βH
[

ρMF
]

+

∫

δρ(r1)
δβH

δ(δρ(r1))

∣

∣

∣

∣

ρMF

dr1+ (4.8)

1

2

∫

δρ(r1)δρ(r2)
δ2βH

δ(δρ(r1))δ(δρ(r2)
)

∣

∣

∣

∣

ρMF

dr1dr2+

∑

n≥3

(−1)n
(n− 1)!

n!

∫

δρ(r1) ... δρ(rn)
δnβH

δ(δρ(r1)) ... δ(δρ(rn)
)

∣

∣

∣

∣

ρMF

dr1...drn.

The first term corresponds to the functional (4.1) for the mean field
density

βH [ρMF ] =

∫

ρMF (r1)
(

ln
[

ρMF (r1)Λ3
]

− 1
)

dr1 (4.9)

+
β

2

∫

ν(r1, r2)

[

ρMF (r1)ρMF (r2) − ρMF (r1)δ(r1 − r2)

]

dr1dr2.

The linear term disappears as in the canonical ensemble the fluctuations
preserve the number of particles and

∫

δρ(r)dr = 0. The terms of higher
orders come from the expansion of the logarithm in the expression (4.2).

5. Three-Yukawa fluid in the bulk

In this section we apply field theory to study analytically the properties
of a 3Y fluid in the bulk region. One point of interest is to investigate the
conditions for the appearance of inhomogeneous phases, which is signaled
by the divergence of the structure factor S(k). The curve separating the
respective homogeneous and inhomogeneous phases (known as the λ-
line) is therefore determined by the locus of points on the phase diagram,
at which S(k) diverges. This knowledge is also important for numerical
calculations of the density profiles which we intend to perform within the
homogeneous part of the phase diagram. In addition, it is instrumental
to know whether the model under consideration exhibits liquid-vapor
phase separation.
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5.1. The pair distribution function

The structure of a fluid can be described by the pair distribution function
g(r) = 1+h(r), where h(r) is the pair correlation function. This quantity
can be found from the following expression [19]

h(r1, r2)〈ρ(r1)〉〈ρ(r2)〉 = 〈δρ(r1)δρ(r2)〉 − δ (r1 − r2) 〈ρ(r1)〉. (5.1)

We expand the Hamiltonian with respect to the mean field density
ρMF (r). Truncation of expansion (4.8) at the second term corresponds
to the description of the system in the Gaussian approximation.

The quadratic term in Eq. (4.8) is

βH2[ρ] =
1

2

∫

δρ(r1)δρ(r2)

[

δ(r1 − r2)

ρMF (r1)
+ βν(r)

]

dr1dr2, (5.2)

where the first term comes from the expansion of the logarithm in the
entropic part of the Hamiltonian.

In order to calculate the averages using the Gaussian integrals, it is
necessary to have the quadratic term of the Hamiltnian in a diagonal
form. For bulk properties we can expand the density on the Fourier
components

δρ(r) =
∑

k>0

δρk e
ikr. (5.3)

In this basis the quadratic Hamiltonian equals

βH2[ρ] =
V

2ρ

∑

k>0

δρkδρ−k [1 + ν(k)] , (5.4)

where

ν(k) =

3
∑

i=1

4πβAi

k2 + α2
i

(5.5)

is the Fourier transform of the interaction potential (2.1) multiplied by
the inverse temperature.

Calculating the averages in (5.1) with the weight given by the quadratic
Hamiltonian (5.4), we arrive at the following relation

〈δρ(k)δρ(−k)〉 =

∫

D (δρ(k)) e−βH2 [ρ(k)]δρ(k)δρ(−k)
∫

D (δρ(k)) e−βH2 [ρ(k)]
(5.6)
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The Fourier transform of the pair correlation function is then

h(k) = − βν(k)

1 + ρβν(k)
= −1

ρ

P (k)

D(k)
. (5.7)

The numerator and denominator on the RHS of equation (5.7) equal,
respectively,

P (k) = κ
2
1(k2 + α2

2)(k2 + α2
3) + κ

2
2(k2 + α2

1)(k2 + α2
3) (5.8)

+κ
2
3(k2 + α2

1)(k2 + α2
2),

D(k) = k6 + k4(κ̃2
1 + κ̃

2
2 + κ̃

2
3)

+ k2
[

κ̃
2
1κ̃

2
2 + κ̃

2
1κ̃

2
3 + κ̃

2
2κ̃

2
3 − κ

2
1κ

2
2 − κ

2
1κ

2
3 − κ

2
2κ

2
3

]

+ α2
1α

2
2α

2
3 + κ

2
1α

2
2α

2
3 + κ

2
2α

2
1α

2
3 + κ

2
3α

2
1α

2
2, (5.9)

where κ̃
2
i = κ

2
i + α2

i .
Taking the inverse Fourier transform of expression (5.7), we can find

h(r)

h(r) =
1

(2π)3

∫ ∞

−∞

dkh(k) exp (−ikr) . (5.10)

In order to perform analytical integration in Eq. (5.10), one needs to
factorize the denominator D(k). To this end, we need to solve the bicubic
equation D(k) = 0.

5.2. Solution of the bicubic equation

Equation D(k) = 0 can be presented in a cubic form

K3 + bK2 + cK + d = 0, (5.11)

where

K = k2; (5.12)

b = (κ̃2
1 + κ̃

2
2 + κ̃

2
3); (5.13)

c =
[

κ̃
2
1κ̃

2
2 + κ̃

2
1κ̃

2
3 + κ̃

2
2κ̃

2
3 − κ

2
1κ

2
2 − κ

2
1κ

2
3 − κ

2
2κ

2
3

]

(5.14)

d = κ̃
2
1

[

κ̃
2
2κ̃

2
3 − κ

2
2κ

2
3

]

− κ
2
1κ

2
2κ̃

2
3 − κ

2
1κ

2
3κ̃

2
2 + 2κ2

1κ
2
2κ

2
3 . (5.15)

The numbers of real and complex roots are determined by the discrimi-
nant of the cubic equation,

∆ = 18bcd− 4b3d + b2c2 − 4c3 − 27d2. (5.16)
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If ∆ > 0, then the equation has three distinct real roots. If ∆ = 0, then
the equation has a multiple root and all of its roots are real. If ∆ < 0,
then the equation has one real root and two non-real complex conjugate
roots.

The general solution of the cubic equation involves first calculating:

∆0 = b2 − 3c (5.17)

∆1 = 2b3 − 9bc + 27d, (5.18)

C =
3

√

∆1 ±
√

∆1
2 − 4∆0

3

2
=

3

√

∆1 ±
√
−27∆

2
(5.19)

There are three possible cube roots implied by the expression, of
which at least two are non-real complex numbers; any of these may be
chosen when defining C. In addition, either sign in front of the square
root may be chosen unless ∆0 in which case the sign must be chosen so
that the two terms inside the cube root do not cancel.

We consider the case when the cubic equation (6.25) produces one
real solution k20 and a pair of complex conjugate solutions k21 and k22 .
For C we choose a plus in front of the square root. For the region of
parameter values considered, the resulting expression under the cube
root is positive, therefore C can take on three values: a real positive
number or one of the two complex conjugate numbers. We choose the
real positive root to define C:

C =
3

√

∆1 +
√
−27∆

2
(5.20)

The solution of the cubic equation can be expressed compactly in-
cluding all 3 roots as follows:

k2j = −1

3

(

b + ξjC +
∆0

ξjC

)

, j ∈ {0, 1, 2}, (5.21)

where ξ = −1/2 + 1/2
√

3i (which is a cube root of unity).
The real solution of the cubic equation appears at j = 0:

k20 = −1

3

(

b + C +
∆0

C

)

(5.22)

The complex conjugate solutions appear at j = 1 and j = 2.

ICMP–20–09E 11

For the parameters under consideration, the solution k20 is a negative
quantity. Due to this, we introduce a more convenient set of notations

λ2
j = −k2j , j ∈ {0, 1, 2}. (5.23)

The quantities λ2
j are essentially the solutions of the cubic equation (6.25)

but of the opposite sign. Therefore, they can be written as

λ2
0 =

1

3

(

b + C +
∆0

C

)

(5.24)

λ2
1 = M1 + M2i, (5.25)

λ2
2 = M1 −M2i, (5.26)

where

M1 =
1

3

(

b− C

2
− ∆0

2C

)

(5.27)

M2 =
1

3

√
3

2

[

C − ∆0

C

]

. (5.28)

Since the quantities λ2
1 and λ2

2 are complex conjugate, so are their
roots. We can, therefore, write

λ1 = λ + iµ, (5.29)

λ2 = λ− iµ, (5.30)

where

λ =
1√
2

[

√

M2
1 + M2

2 + M1

]1/2

(5.31)

µ =
signum(M2)√

2

[

√

M2
1 + M2

2 −M1

]1/2

. (5.32)

The function D(k) can now be written in a factorized form

D(k) = (k2 + λ2
0)(k2 + λ2

1)(k2 + λ2
2) (5.33)

= (k + iλ0)(k − iλ0)(k + iλ1)(k − iλ1)(k + iλ2)(k − iλ2).

The real solutions for the bicubic equation are readily found from
Eq. (5.22) and equal ±λ0, where

λ0 =

√

1

3

(

b + C +
∆0

C

)

. (5.34)
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From Eq. (5.10), the expression for the pair correlation function is

h(r) = − 1

2πρ

(

H0
exp(−λ0r)

r
+ [H1 cos (µr) + H2 sin (µr)]

exp(−λr)

r

)

,

(5.35)

H0 =
1

2 [λ4
0 − 2λ2

0(λ2 − µ2) + (λ2 + µ2)2]

3
∑

i=1

κ
2
i (α2

j − λ2
0)(α2

k − λ2
0),

(5.36)

H1 =
1

8µ2λ2 + 2λ̄2
0

2

3
∑

i=1

κ
2
i

[

−ᾱ2
j ᾱ

2
k + λ̄2

0(ᾱ2
j + ᾱ2

k) + 4µ2λ2
]

, (5.37)

H2 =
1

16µ3λ3 + 4µλλ̄2
0

2

3
∑

i=1

κ
2
i

[

4µ2λ2(ᾱ2
j + ᾱ2

k) + λ̄2
0(ᾱ2

j ᾱ
2
k − 4µ2λ2)

]

,

(5.38)

where j, k ∈ {1, 2, 3} with i 6= j 6= k, and we use the bar to denote
shifted quantities ¯(...) = (...− λ2 + µ2).

Equation (5.35) tells us that the quantities λ0, λ and µ have the
meaning of parameters that characterize the screening of interaction with
λ0 and λ responsible for the decaying and µ responsible for the oscillatory
parts of the interaction. We note that for the values of the pair potential
considered in this paper, the quantities λ0, λ and µ are real numbers. In
addition, λ0 and λ are positive.

In the Gaussian approximation, the radial distribution function (RDF)
g(r) can be written as

g(r) = 1 + h(r). (5.39)

From Eq. (5.35) one can see that the function g(r) diverges when r → 0.
As we discussed in our previous papers [10, 11], this behavior can be
corrected by introducing exponential approximation for the RDF in the
form

gexp(r) = exp [h(r)] . (5.40)

In Figures 8-11 we compare numerical results for the pair distribu-
tion function calculated from Equations (5.39) and (5.40) with computer
simulations data. The plots are presented for Models M1 and M2 at dif-
ferent densities and temperatures. One can see that the results of the the-
ory are in qualitative agreement with the simulations while quantitative
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agreement improves as the temperature rises. We also note the correct
behavior of the exponential approximation (5.40) at small distances in
contrast to the non-physical behavior of the initial approximation (5.39).
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Figure 8. Pair distribution function for Model M1. The blue solid lines
are given by Eq. (5.39), the red dashed lines correspond to approximation
(5.40), and the black solid curves are calculated from the MC simulations
data.
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Figure 9. Same as in Figure 8 but at higher temperatures.

5.3. The structure factor and phase coexistence curves

The static structure factor characterizes the microphase structuring dis-
played by the system. S(k) is given by the expression

S(k) =
1

1 − ρc̃(k)
, (5.41)
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Figure 10. Same as in Figure 8 but for ρ = 0.50.
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Figure 11. Same as in Figure 10 but at higher temperatures.

where c̃(k) is the Fourier transform of the direct pair correlation function
c(r) of the bulk fluid. In the random phase approximation,

c̃(k) = −βν(k), (5.42)

where ν(k) is given by Eq. (5.5).
The λ-line is defined as the locus of points in the phase diagram

for which the static structure factor S(k) diverges at a particular wave
number [24]. We take the λ-line to indicate that the model predicts a
phase transition to a modulated inhomogeneous phase. When the fluid
is in the homogeneous phase, the denominator 1 − ρc̃(k) on the RHS of
expression (5.41) takes on positive values. As we lower the temperature,
the S(k) curve shifts downward and at certain values of the density be-
comes equal to zero. Therefore, the λ-line can be found from the solution
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of the system of equations

ρc̃(k, {ρ, T }) = 1, (5.43)

∂c̃(k, {ρ, T })

∂k
= 0. (5.44)

For the function c̃(k) in the form (5.42), the system (5.43)-(5.44) amounts
to the following equations

(k2 + λ2
1)(k2 + λ2

2) = 0, (5.45)

3
∑

l=1

κ
2
l (k2 + α2

m)2(k2 + α2
n)2 = 0, (5.46)

where m,n ∈ {1, 2, 3} and l 6= m 6= n.
Due to the fact that in the Equations (5.45)-(5.46) the density and

the temperature are present only in the form of the product βρ, the
solution of this system comes out as a linear equation βρ = const. This
means that in this case the λ-line is a straight line. In Figure 12 we show
the respective result for the model M1, while for the model M2 the
solution lies outside of a reasonable range of density and temperature
values. We attribute the non-physical behavior of these results to the
weakness of the approximation employed.
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0

2

4

6

8

10

T

r

Figure 12. λ-line for model M1 calculated from the direct correlation
function given by Eq. (5.42).

Nevertheless, one can show that the model potential (2.1) does, in
fact, describe the possibility of the phase transition to a mesoscopically
inhomogeneous structure.

Whereas the model of the fluid considered here is formally soft, it can
effectively be presented as a system of particles with a hard core [20,21].
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One way to determine the corresponding hard core diameter σ is to use
the distance at which the pair potential (2.1) equals the thermal energy
kBT with an arbitrary factor ζ [20], i.e.

ν(r) − ζT = 0. (5.47)

Another way to determine σ is by employing the Barker-Henderson for-
mula [23]

σBH =

∫ σ

0

dr
(

1 − e−βν(r)
)

, ν(σ) = 0. (5.48)

It is reasonable to presume that the value of the effective diameter
should stem from the condition that two particles cannot overlap beyond
the distance σ, i.e. the distance where the value of the radial distribu-
tion function is close to zero. In Figures (13) and (14) we show different
estimations of the effective hard core diameter by employing expression
(5.47) at ζ = 1 and ζ = 4 as well as the Barker-Henderson recipe (5.48).
We analyze the curves of the radial distribution functions given by Equa-
tions (5.39) and (5.40) relative to different σ in order to determine the
maximum distance, at which the RDF takes on a value close to zero.
One can infer that the best approximation corresponds to expression
(5.47) with ζ ≈ 4. We, therefore, find the value of the effective hard core
diameter from the solution of the following equation

ν(r) − 4T = 0. (5.49)

Hence, in the framework of the random phase approximation the
direct correlation function can be presented as the sum of two parts

c̃(k) = c̃HS(k) + c̃3Y (k). (5.50)

One part is the effective hard core contribution [22]

c̃HS = −4π

q3

(

a1 [sin q − q cos q] +
6ηa2
q

[

2q sin q + (2 − q2) cos q − 2
]

(5.51)

+
ηa1
2q3

[

4q(q2 − 6) sin q − (24 − 12q2 + q4) cos q + 24
]

)

,

where q = kD is a dimensionless wave number, η = ρπσ3/6 is the packing
fraction, and

a1 =
(1 + 2η)2

(1 − η)4
, a2 = − (1 + η/2)2

(1 − η)4
. (5.52)
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Figure 13. Estimations of the effective hard core diameter for model
M1. The green vertical lines correspond to expressions (5.48) and (5.47)
at ζ = 1 and ζ = 4, respectively. The blue solid lines depict the radial
distribution function given by Eq. (5.39), the red dashed lines correspond
to approximation (5.40), and the black solid curves come from the MC
simulations data.

The other part of the direct correlation function comes from the long-
range potential and can be calculated as

c̃3Y (k) = −4π

k

∫ ∞

σ

r sin(kr)βν(r)dr (5.53)

= −4πβ

3
∑

l=1

Ale
−αlσ

[

{k cos kσ + αl sin kσ}{α2
mα2

n + k2(α2
m + α2

n) + k3}
]

,

where m,n ∈ {1, 2, 3} and l 6= m 6= n.
In Figure (4), left panel, we show the structure factors for models
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Figure 14. Same as in Figure (13) but for model M2.
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M1 and M2 with an effective hard core diameter determined from the
equation (5.49). One can see distinct pre-peaks signaling the presence of
mesoscopic ordering in the system.

On the right panel of Figure (4) we show the respective λ-lines for
models M1 and M2. Both curves have correct shapes, which was not the
case when equations (5.45)-(5.46) were considered. We conclude that a
correct description of inhomogeneous phases requires one to take into
account the excluded volume effects, models with a soft core not being
sufficiently accurate. At the same time, the homogeneous phase can be
studied without considering an effective hard core model. Having the
knowledge of the location of the regions on the phase diagram where
there is no micro-segregation and the fluid is uniform, we can safely
apply the expressions for the structural properties derived from the field-
theoretical approach by substituting the values of the density and the
temperature well above the λ-lines.
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Figure 15. Left: structure factors for models M1 and M2 at ρ = 0.25, T =
10. Right: λ-lines for models M1 and M2.

In this context, another point to consider is related to the vapor-
liquid phase separation curves. One way to determine the location of the
critical region is to construct the spinodals from the condition

ρc̃(k = 0, {ρ, T }) = 1 (5.54)

and see where the critical point lies with respect to the λ-lines. However,
the model (5.50) yields no solutions for equation (5.54) for either M1
or M2. This means that the model fluid studied in this paper does not
exhibit vapor-liquid phase transition.
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6. Density profiles at a hard wall

In this section we study a three-Yukawa fluid with competing interactions
in the vicinity of a hard wall. The potential of interaction between the
wall and a particle is taken to be infinite when the distance between
them is negative and zero elsewhere.

As expression (4.9) contains the field ρMF (r1), one can readily see
that in the framework of the FT formalism spatially structured systems
can be examined even in the framework of the simplest mean field ap-
proximation.

From the mean field condition (4.7) we derive the following equation

ln
ρ(r1)

ρb
+ V1(r1) + V2(r1) + V3(r1) = λ (6.1)

where potentials Vi(r1) are defined as

Vi(r1) = β

∫

ρ(r2)
Ai

r
exp(−αir)dr2. (6.2)

We put

λ ≡ V1b + V2b + V3b, (6.3)

where Vib are the values of potentials Vi(r1) in the bulk

Vib =
κ
2
i

α2
i

, (6.4)

κ
2
i ≡ 4πρbβAi, and we denote the density of the fluid in the bulk by

ρb to distinguish it from the distance-dependent density ρ(z) within the
interface between the wall and the bulk region.

The gradient of Eq. (6.1) gives

∇ρ(r)

ρ(r)
−E1(r) −E2(r) −E3(r) = 0, (6.5)

where we define an equivalent of the electric field by

Ei(r1) ≡ −∇Vi(r1); (6.6)

Due to the properties of the Yukawa potential we can write

(

△− α2
i

)

Vi(r) = −4πβAiρ(r). (6.7)
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Given the translational invariance of the system in the directions par-
allel to the wall, all the distance-dependent functions in the equations
(6.5)-(6.7) are essentially functions of the distance z in the direction per-
pendicular to the wall. In consequence, from these equations we obtain
a set of seven differential equations with seven unknown functions ρ(z),
E1(z), E2(z), E3(z), V1(z), V2(z), V3(z):

∂ρ(z)

∂z
= ρ(z) [E1(z) + E2(z) + E3(z)] , (6.8)

∂Vi(z)

∂z
= −Ei(z), (6.9)

∂Ei(z)

∂z
= −α2

iVi(z) +
κ
2
i

ρb
ρ(z). (6.10)

From Eq. (6.1) we have the following equation for the density profile

ρ(z) = ρb exp
(

− [V1(z) − V1b] − [V2(z) − V2b] − [V3(z) − V3b]
)

. (6.11)

Equation (6.11) is an integral equation of the Euler-Lagrange type.
Numerical solution of this equation provides the mean field approxima-
tion for the density profile of the fluid.

6.1. Analytical expression for the density profile

The density profile can also be estimated in an explicit analytical form.
To this end, we approximate the exponent function in Eq. (6.11) as

ρ(z) = ρb
(

1 − [V1(z) − V1b] − [V2(z) − V2b] − [V3(z) − V3b]
)

, (6.12)

which leads to a linearized system of equations

ρ
′

(z) = ρb [E1(z) + E2(z) + E3(z)] , (6.13)

V
′

i (z) = −Ei(z), (6.14)

E
′

i(z) = −α2
i Vi(z) +

κ
2
i

ρb
ρ(z). (6.15)

In turn, this system can be reduced to a system of three second-order
differential equations

E
′′

1 (z) = E1(z)
(

κ
2
1 + α2

1

)

+ [E2(z) + E3(z)]κ2
1 ; (6.16)

E
′′

2 (z) = [E1(z) + E3(z)]κ2
2 + E2(z)

(

α2
2 + κ

2
2

)

; (6.17)

E
′′

3 (z) = [E1(z) + E2(z)]κ2
3 + E3(z)

(

α2
3 + κ

2
3

)

, (6.18)
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or in the matrix form

E
′′

= AE, (6.19)

where

E =





E1(z)
E2(z)
E3(z)



 , A =





(

κ
2
1 + α2

1

)

κ
2
1 κ

2
1

κ
2
2

(

α2
2 + κ

2
2

)

κ
2
2

κ
2
3 κ

2
3

(

α2
3 + κ

2
3

)





(6.20)

Matrix A can be presented in the diagonal form as

A = PDP
−1 (6.21)

where

D =





Λ0 0 0
0 Λ1 0
0 0 Λ2



 . (6.22)

The coefficients Λi are the eigenvalues of the matrix A. Denoting the
identity matrix as I, we can find these eigenvalues as the roots of the
characteristic polynomial of A, i.e. from the equation

det (A− ΛI) = 0. (6.23)

In our case, this reduces to solving the equation

Λ3 − Λ2(κ̃2
1 + κ̃

2
2 + κ̃

2
3) (6.24)

+Λ
[

κ̃
2
1κ̃

2
2 + κ̃

2
1κ̃

2
3 + κ̃

2
2κ̃

2
3 − κ

2
1κ

2
2 − κ

2
1κ

2
3 − κ

2
2κ

2
3

]

−κ̃
2
1

[

κ̃
2
2κ̃

2
3 − κ

2
2κ

2
3

]

+ κ
2
1κ

2
2κ̃

2
3 + κ

2
1κ

2
3κ̃

2
2 − 2κ2

1κ
2
2κ

2
3 = 0,

where κ̃
2
i = κ

2
i + α2

i .
Equation (6.24) can be presented as

Λ3 − bΛ2 + cΛ − d = 0, (6.25)

where the coefficients b, c, and d are given by expressions (5.13)-(5.15).
Comparing polynomials (6.25) and (5.11), we note that the coeffi-

cients in front of the variables of the same powers are identical by the
absolute value but alternate their signs. One can show, that in such a
case the roots of the two polynomials are equal by the absolute value but
have opposite signs. Hence, due to the definitions (5.23), we can readily
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see that parameters λ2
0, λ

2
1, and λ2

2, given by equations (5.24)-(5.25), are
also the three eigenvalues of the matrix A.

As a result, the general solution for E1(z), for instance, is

E1(z) = c̃10e
λ0z + c10e

−λ0z + C̃1e
(λ+µi)z + C1e

(−λ+µi)z + C̃2e
(λ−µi)z

(6.26)

+C2e
(−λ−µi)z = c10e

−λ0z + C1e
(−λ+µi)z + C2e

(−λ−µi)z ,

where we leave only the terms with negative λ0z and λz in the exponents
due to the fact that λ0 and λ are positive and the function E(z) vanishes
in the bulk.

For the field E1(z) to have a physical meaning, the coefficients C1

and C2 must be complex conjugate as well. From the system of equations
(6.16) we can tell that the functions E2(z) and E3(z) are of a form similar
to that of (6.26). We can therefore write the functions Ei(z) as

E1(z) = c10e
−λ0z + (r11 + r12i) e

(−λ+µi)z + (r11 − ri) e(−λ−µi)z

(6.27)

E2(z) = c20e
−λ0z + (r21 + r22i) e

(−λ+µi)z + (r21 − r22i) e
(−λ−µi)z

(6.28)

E3(z) = c30e
−λ0z + (r31 + r32i) e

(−λ+µi)z + (r31 − r32i) e
(−λ−µi)z

(6.29)

Because the system (6.16) is homogeneous, we essentially have three
unknown coefficients, for instance c10, r11, r12, and we can use any pair
of equations (6.16) to express the rest of the coefficients in terms of these
unknowns. Using expressions (6.27) and equating the real and the imag-
inary parts of the coefficients in front of the same z-dependent functions
on the LHS and RHS of equations (6.16), we obtain two system of equa-
tions - one for the coefficients in front of the functions exp[(−λ ± µi)z]
and one for the function exp[−λ0z]. In the first case we have the following
equations

κ̄2
1r11 + 2λµr12 − κ

2
1r21 − κ

2
1r31 = 0 (6.30)

κ̄2
1r12 − 2λµr11 − κ

2
1r22 − κ

2
1r32 = 0 (6.31)

κ̄2
2r21 + 2λµr22 − κ

2
2r11 − κ

2
2r31 = 0 (6.32)

κ̄2
2r22 − 2λµr21 − κ

2
2r12 − κ

2
2r32 = 0 (6.33)

κ̄2
3r31 + 2λµr32 − κ

2
3r11 − κ

2
3r21 = 0 (6.34)

κ̄2
3r32 − 2λµr31 − κ

2
3r12 − κ

2
3r22 = 0, (6.35)
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where κ̄2
j = λ2 − µ2 − α2

j − κ
2
j .

We can pick any two pairs of these equations and the solution of this
system will be the same. Choosing, for instance, the first two pairs, it is
convenient to present coefficients r21, r22, r31, r32 in terms of coefficients
r11 and r12 as

rlm = K11
lmr11 + K12

lmr12, (6.36)

where

K11
21 =

(

1 +
κ̄2

1

κ
2

1

+ (2λµ)2

κ
2

1[κ̄2

2
+κ

2

2]

)

(

1 +
κ̄2

2

κ
2

2

+ (2λµ)2

κ
2

2[κ̄2

2
+κ

2

2]

) (6.37)

K12
21 =

(

2λµ
κ

2

1

− 2λµ(κ̄2

1
+κ

2

1)
(κ̄2

2
+κ

2

2)κ2

1

)

(

1 +
κ̄2

2

κ
2

2

+ (2λµ)2

κ
2

2[κ̄2

2
+κ

2

2]

) (6.38)

K11
22 =

κ
2
2

κ2
2 + κ̄2

2

(

−2λµ

κ2
1

+
2λµ

κ2
2

K11
21

)

(6.39)

K12
22 =

κ
2
2

κ2
2 + κ̄2

2

([

1 +
κ̄2
1

κ2
1

]

+
2λµ

κ2
2

K12
21

)

(6.40)

K11
31 =

1

κ2
2

(

−κ
2
2 + κ̄2

2K
11
21 + 2λµK11

22

)

(6.41)

K12
31 =

1

κ2
2

(

κ̄2
2K

12
21 + 2λµK12

22

)

(6.42)

K11
32 =

1

κ2
2

(

κ̄2
2K

11
22 − 2λµK11

21

)

(6.43)

K12
32 =

1

κ2
2

(

−κ
2
2 + κ̄2

2K
12
22 − 2λµK12

21

)

(6.44)

(6.45)

For the second system of equations we have three equations

λ2
0c10 =

(

α2
1 + κ

2
1

)

c10 + κ
2
1 (c20 + c30) (6.46)

λ2
0c20 =

(

α2
2 + κ

2
2

)

c20 + κ
2
2 (c10 + c30) (6.47)

λ2
0c30 =

(

α2
3 + κ

2
3

)

c30 + κ
2
3 (c20 + c10) . (6.48)

Choosing any two of these equations, and due to the fact the determinant
of the homogeneous system is zero, we can express the coefficients c20
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and c30 in terms of c10 as

c20 = K20c10, c30 = K30c10., (6.49)

K20 =
(λ2

0 − α2
1)κ2

2

(λ2
0 − α2

2)κ2
1

(6.50)

K30 =
(λ2

0 − α2
1)

κ2
1(λ2

0 − α2
2)

(

λ2
0 − α2

2 − κ
2
2

)

− 1. (6.51)

The potentials Vi(z) then have the form

Vi(z) = Vib + r̄i0e
−λ0z + e−λz [(λr̄i1 − µr̄i2) cosµz − (µr̄i1 + λr̄i2) sinµz] ,

(6.52)

where r̄i0 = −ci0/λ0, r̄ij = 2rij/(λ2 + µ2), i = 1, 2, 3, j = 1, 2.
In our earlier work [12] we showed that in the framework of the mean

field approximation of the field theory formalism, for a multi-Yukawa
fluid the so-called contact theorem [25,26] holds true. According to this
theorem, the density of the fluid at the wall is determined by the pressure
of the fluid in the bulk, i.e.

βP = ρ(0+), (6.53)

where P is the pressure within the mean field approximation:

βP = ρb

(

1 +
κ
2
1

2α2
1

+
κ
2
2

2α2
2

+
κ
2
3

2α2
3

)

. (6.54)

The unknown coefficients r̄10, r̄11 and r̄12 can then be found from the
boundary conditions given by the contact theorem (6.53). Setting z = 0
in Eq. (6.12), we obtain

Vib − Vi(0) =
κ
2
i

2α2
i

, (6.55)

which results in a system of three equations

− κ
2
1

2α2
1

= r̄10 + λr̄11 − µr̄12, (6.56)

− κ
2
2

2α2
2

= r̄20 + λr̄21 − µr̄22, (6.57)

− κ
2
3

2α2
3

= r̄30 + λr̄31 − µr̄32. (6.58)
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The solution of this system is

r̄11 =
− κ

2

3

2α2

3

+
κ

2

1

2α2

1

K30 −A
[

µK30 + λK12
31 − µK12

32

]

−λK30 + λK11
31 − µK11

32 −B [µK30 + λK12
31 − µK12

32 ]
(6.59)

r̄12 = A−Br̄11 (6.60)

r̄10 = − κ
2
1

2α2
1

− λr̄11 + µr̄12 = − κ
2
1

2α2
1

+ µA− [λ + µB] r̄11, (6.61)

where

A =
1

[µK20 + λK12
21 − µK12

22 ]

[

− κ
2
2

2α2
2

+
κ
2
1

2α2
1

K20

]

, (6.62)

B =
1

[µK20 + λK12
21 − µK12

22 ]

[

−λK20 + λK11
21 − µK11

22

]

. (6.63)

Due to Eq. (6.12), the final expression for the linearized density profile
is

ρ(z)

ρb
= 1 − [r̄10 + r̄20 + r̄30] e−λ0z (6.64)

− e−λz

[

{λ (r̄11 + r̄21 + r̄31) − µ (r̄12 + r̄22 + r̄32)} cosµz

− {µ (r̄11 + r̄21 + r̄31) + λ (r̄12 + r̄22 + r̄32)} sinµz

]

.

As was the case with the pair correlation function (5.35), the function
on the RHS of Eq. (6.64) is defined by parameters λ0, λ, and µ that shape
the exponentially damped oscillatory behavior of the profile.

In Figures 16-23 we display density profile curves provided by the nu-
merical solution of the mean field equation (6.12) (MF), the analytical
expression (6.64) corresponding to the linearized mean field approxima-
tion (LMF), and test these results against Monte Carlo simulations data
(MC). Due to the fact that the numerical solution requires the use of a
cutoff radius, for comparison purposes we also present two estimations
for the linearized profile with and without the respective value of that
cutoff.

The results prove that theoretical predictions for the profile agree
with the simulations very well. Moreover, the explicit analytical estimate
(6.64) reproduces MC data better than the mean field solution. At high
densities the agreement is the best for the first peak and deteriorates at
distances farther away from the wall. In all the cases, as the temperature
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Figure 16. Density profiles for the Model M1. The dotted lines correspond
to MC simulations; the blue solid lines come from the mean field solution
(6.12); the dashed red and green lines correspond to analytical expression
(6.64) with and without the cutoff radius, respectively.
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Figure 17. Same as in Figure (16) at higher temperatures.

rises the agreement between the theory and the simulations improves.
Also, one can note that for all the densities and temperatures considered
the theory reproduces very well the locations of the respective minima
and maxima of the profile. For the Model M2 we observe significant
discrepancy between the contact values of the density. This mismatch
can likely be corrected by going beyond the mean field approximation
and taking into account fluctuation effects as was done in our earlier
study on a two-Yukawa fluid [10].

The behavior of the density profile is characterized by the split of
the first maximum which leads to the formation of a distinct bi-layer
close to the wall. We took note of this effect earlier in the Computer
Simulations section as it was present also in the mesostructured systems
we considered. The formation of the double peak can be explained by the
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Figure 18. Same as in Figure (16) for higher densities and temperatures.
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Figure 19. Same as in Figure (18).

attractive part of the SALR interaction potential as no similar behavior
had been observed in the case of a 2Y fluid at a hard wall [10].

7. Conclusions

A fluid interacting with a three-Yukawa (3Y) potential was studied in
the bulk and in the vicinity of a hard wall. The amplitudes and the
ranges of the respective Yukawa terms were chosen so as to reproduce the
short-range attraction and long-range repulsion (SALR) between parti-
cles, thus offering a different model of a system with competing inter-
actions. A notable feature of this potential is the softness of the core,
which describes the possibility of partial overlap between particles.

Two sets of parameter values for the three-Yukawa potential were con-
sidered to construct a SALR potential. A series of Monte-Carlo (MC) and
Molecular Dynamics (MD) computer simulations across a wide range of
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Figure 20. Same as in Figure (16) but for model M2.
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Figure 21. Same as in Figure (20).

temperatures and densities were performed. The results show that the
model proposed can describe spontaneous appearance in the system of
various mesostructures including lamellar and gyroidal phases, hexago-
nally packed cylindrical phases, cubically ordered and disordered clus-
ters formed by particles or voids. Furthermore, we observed that these
self-assembly effects become more pronounced when the fluid is confined
between two inert walls, i.e. close to the walls cluster formation can occur
at temperatures higher than those required for micro-segregation in the
bulk. As the temperature increases, the clusters vanish, though distinct
inhomogeneuity near the interface still persists.

A classical field theory was subsequently applied to describe the
micro-structure and thermodynamics of a 3Y fluid at high temperatures
and reproduce the density profiles obtained from our simulations. As a
first step, we investigated the mesoscopically homogeneous phase in the
bulk and close to a hard wall.

For the bulk region, a bicubic equation for generalized screening pa-
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Figure 22. Same as in Figure (20) at higher densities.
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Figure 23. Same as in Figure (22).

rameters was derived and solved analytically. Based on these results,
explicit analytical expressions for the radial distribution function were
derived and compared to the MC data. Attempts to construct the re-
spective phase diagram revealed that description of mesoscopic phases
requires one to take into account excluded volume effects while a purely
soft model in the random phase approximation leads to non-physical
results. The structure factor was then calculated by introducing an ef-
fective hard core radius characteristic of the system. The λ-lines were
subsequently constructed and phase behavior discussed. The results in-
dicate that the model does indeed describe the possibility of spontaneous
emergence of mesostructured phases in the system. Having the knowledge
of the phase regions where the fluid is homogeneous, we therefore deter-
mined the conditions of applicability of the expressions for the structural
properties derived from the field-theoretical approach. To this end, one
should substitute the values of the density and the temperature above
the λ-lines found. The location of these applicability regions is also sup-
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ported by computer simulations data.
The microstructure of a 3Y-fluid in the vicinity of a hard wall was

further investigated. In the framework of the mean field approximation
an integral equation of the Euler-Lagrange type was obtained for the
density profile. Linearization of this equation led to a system of second-
order differential equations which were solved using the contact theorem
as a boundary condition. The solution of these equations led to explicit
analytical expressions for the density profile, which proved to be in very
good agreement with the simulations data. Close to the wall we observed
a characteristic split of the first maximum of the density profile. We
relate the presence of this bilayer to the competing nature of the pair
potential between particles, because this specific behavior had not been
observed earlier in a simple attractive two-Yukawa fluid. The agreement
between theoretical predictions for the profile and the MD simulations
data improves with increasing temperature.
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