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Amnorarnis. [IpoanasizoBano 1BOCOPTHY peakIiitHo-1udy3iitHy cucremy,
[0 BKJIFOYAE peakilito 3axomienass A + B — A, a Takoxk peaxiiil Koary-
nsnii/amirisii A + A — (A, 0), 1e yacTuHKE 060X COPTIB 3/IHCHIOITH
nonpoTu Jlesi 3 kepytounm mnapamerpom 0 < o < 2. I'ycruna, a Takox
KopeJistiiina (GyHKIA g 9acTUHOK-MimeHeit B y rTaxkiit 3amadi, sk
BiJTOMO, MaIOTh CKEWIIHTOBY IMOBEJIIHKY 3 HETPUBIAJIHLHUMHI yHIBEPCAIb-
HAMW [TOKa3HUKAaMU IpU BAMIpHOCTI mpocTtopy d < d.. 3acTOCOBYIOUH
dopmaizM peHOpMAJTI3aIHOT TPYIIH, i MOKA3HIKN PO3PaxXOBaHi y BU-
majky 1motboTiB JleBi Hmkde kputwaHol BuMipHOocTi d. = 0. Takox
[IPOBEJIEHO YHCEJIbHE MOJIE/IIOBAHHS IIPOIECY HA OJHOBUMIDHOMY JIaH-
mrokKy. OTpuMani KiJbKIiCHI OIIHKY OKA3HUKA 3aracaHHs TYCTUHH Iac-
TUHOK B 100pe y3ro/iKyoThCs 3 aHATITUIHUME PE3Y/IbTATAME.

Survival in two-species reaction-superdiffusion system: Renor-
malization group treatment and numerical simulations

D. Shapoval, V. Blavatska, M. Dudka

Abstract. We analyze the two-species reaction-diffusion system includ-
ing trapping reaction A + B — A as well as coagulation/annihilation
reactions A+ A — (A,0) where particles of both species are performing
Lévy flights with control parameter 0 < o < 2. The density as well as
the correlation function for target particles B in such problem are known
to scale with nontrivial universal exponents at space dimension d < d..
Applying the renormalization group formalism we calculate these expo-
nents in a case of the Lévy flights below the critical dimension d. = o.
The numerical simulations of the process on a one-dimensional chain are
performed as well. Obtained quantitative estimates for the decay expo-
nent of the density of survived particles B are in a good agreement with
the analytical results.
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1. Introduction

Reaction-diffusion models are exploited to describe the peculiarities of
a wide range of non-equilibrium systems of many interacting agents in
such various fields as physics, chemistry, biology, ecology, sociology, and
economics [1-5]. Of special interest are the systems possessing reactions
of trapping type A+ B — A, which are widespread in nature: one should
mention predator-pray ecological systems [6], binding of proteins systems
[7], quenching of localized excitations [8] as examples.

If the target particles B are immobile in the medium containing dif-
fusive traps A, such a problem is called target problem in the literature.
Reciprocal problem, when traps A are static and only target particles B
diffuse, is known as trapping problem (see e. g. reviews [9]). While the
former problem possesses exact solution for survival probability of tar-
get particles within the frames of Smoluchowski approximation [10] (for
original Smoluchowski’ work see [11]), exact results for the latter case
can be obtained only in limiting cases (see e. g. review in [12]).

The case when both particles A and B are allowed to diffuse is more
interesting and is closer to reality. Studies of asymptotic decay of survival
probability demonstrate nontrivial correlations between target particles
and traps for spatial dimensions d < 2, which invalidate the rate equation
description [13]. The space dimension d. = 2 is known to be the critical
one for the large variety of reaction-diffusion systems with irreversible re-
actions, below which evolution on a long time scale is diffusion-controlled
(see e. g. [5]).

Impact of fluctuations in reaction-diffusion systems for d < d. has
been explored using several methods, in particular: Smoluchowski-type
approximations [14, 15], many-particles density formalism [16], weakly
non-ideal Bose gas approximation [15,17] as well as field-theoretic renor-
malization group (RG) approach [5,18,19]. Among them, the RG tech-
nique offers powerful methods to analyse systematically the large-time
asymptotic behaviour of reaction-diffusion models.

In the present paper, we apply RG methods to analyze the problem of
particles’ survival in a media with mobile traps in a diffusion-controlled
regime, represented by two-species reaction-diffusion system:

A4 A o A, vxflth probat?l%lty P (coalesc?n.ce),.
0, with probability 1 — p (annihilation),
A+ B — A (trapping), (1.1)

where target particles (B) are absorbed by traps (A particles) and the
trap particles may coagulate or mutually annihilate. “Target problem”
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(when B particles are static) in this case for d = 1 is equivalent to the
problem of estimation of amount of spins not flipped up to time ¢ in the
g-state Potts model with zero temperature Glauber dynamics, where
qg=1—1/(1-p) [20]. When particles of both species can diffuse, decay
of B particle density for the case p =1 in d = 1 is equivalent to survival
probability of the three vicious walker problem [21,22]. RG studies have
shown that B particle density decays [24,25] with nontrivial universal
exponent 0, which is dependent on dimension d, trap reaction parameter
p, and the ratio of diffusion constants §. Recently, it was demonstrated
by RG approach that correlation function of B particles also has scaling
behavior with universal exponent ¢, found to be dependent on d and p in
the first nontrivial approximation [25]. Numerical calculations for cases
d =1 and d = 2 corroborate RG theory outcome for model (1.1) [26].

Although ordinary diffusion is usually considered in non-equilibrium
models, the complex structure of some systems may lead to the non-
Markovian behaviour (see e. g. [27]), violating the law of linear growth
of mean square displacement with time ¢, so that

() ~ o (1.2)

with a # 1 (while a = 1 for normal diffusion). Systems with subdiffusive
motion (0 < a < 1) of traps and/or of target particles are intensively
considered in the literature (see Ref. [12]). Less attention was paid to
study the trapping reactions in system with anomalous superdiffusion.
The latter can be modeled exploting the idea of Lévy flights represented
by random walks with discrete jump lengths obeying the probability
distribution with long tails. In each time step, the particles’ jump of
length r is chosen from the Lévy distribution

pr(r) ~pdm (1.3)

with the control parameter 0 < o < 2, and the spatial dimension d *. In
this case, the mean square displacement (1.2) grows with a = 2/0.
Lévy flights have been widely applied in description of many pro-
cesses realized in nature [31,32] including nonlinear dynamics, in par-
ticular, chaotic diffusion in Josephson junctions [33], streamline trans-
port properties [34], the dynamics of particles in periodic potentials [35]
or turbulent flow [36]. Furthermore, such superdiffusive random process

1 As discussed in the literature, the Lévy flight statistics may lead to divergent
mean square displacement (an infinite velocity), which is unphysical. In contrast, in
model of anomalous diffusion called Lévy walk, each the discrete time to make a jump
of some size is taken proportional to this size and particles have a finite velocity. (for
more details see [28-30]).

ICMP-22-01E 3

have been used to describe the biological systems, in particular anoma-
lous diffusion in living polymers [37], as well as the diffusion of DNA-
binding proteins [38], long-range spreading of epigenetic marks along
the genome [39]. Lévy flights have been used to describe laser cooling
of cold atoms [40] and the spectral fluctuations in random lasers [41]
or light transport in optical materials with impurities (so-called Lévy
glasses) [42], in optimization the search strategies [43]. In analogy with
usual Lévy flights the “temporal” Lévy flights were introduced, with mo-
tion of particles characterized by algebraically distributed waiting times.
Such temporal Lévy flights can lead to subdiffusion [44,45]. We will con-
sider a model (1.1) with the anomalous diffusion, which is modeled by
super-diffusing Lévy flying particles, i.e., in each time step particles’
movement is chosen from the Lévy distribution (1.3).

Field-theoretical renormalization group technique has been applied in
a variety of reaction-diffusion models with Lévy flights including single-
species annihilation reaction [46], branching and annihilating models
[47], anomalous directed percolation [44,48,49], vicious walkers [50] and
demonstrated that in such cases the upper critical dimension is deter-
mined by the control parameter for the Lévy distribution, o.

The first attempts to study the model (1.1) with Levy flights in a
regime far below the critical dimension, which is d. = o, have been
performed in Ref. [51]. The case o < 2 was considered, that allowed to
neglect terms related to the ordinary diffusion, that appeared in a field-
theoretical representation. In our paper, we exploit the same limit and
calculate the universal exponents characterising long-time asymptotic
scaling behavior of density and correlation function for B particles.

The paper is outlined as follows: in Sec. 2 we introduce the field
theory for our model with constituent elements of the corresponding
Feynman diagrams. In Sec. 3 we describe application of RG to find ex-
ponents governing long-time behavior of density and correlation function
for B particles. In Sec. 4 we present results for these quantities. In Sec. 5
we present results of numerical simulations of our model on the one-
dimensional lattice and compare them with the theoretical estimates.
Finally, we summarize our study by conclusions in Sec. 6. In the Ap-
pendix A we briefly describe Smoluchowski approximation for our model,
while details concerning the one-loop contribution to analyzed quantities
are presented in the Appendix B.
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2. Field-theoretical description

In order to study long-time scaling behavior of observables in reaction-
diffusion models, it is standard now to appeal to well-grounded RG meth-
ods [5,18,19]. It is applied for the effective action obtained within the field
theory representation. Using standard technique [18,52, 53], this repre-
sentation can be obtained mapping master equations to effective theory.
Master equation for our model is presented in following subsection.

2.1. Master equation

Let us consider that our traps (A particles) and targets (B particles) may
occupy sites of a d-dimensional hypercubic lattice. The particles of both
species hop from one site to another due to the Lévy distribution (1.3).
At a rate A two A particles at the same site may annihilate each other
or coagulate together, reducing the number of A particles, moreover, an
A particle may absorb B particle meeting it at the same site at a rate
A (1.1).

We describe such two-species reaction-diffusion model in terms of the
master equation for temporal probability distribution P({n4}; {n®}) of
a conﬁguration characterized by sets of occupation numbers {n?} =

co,ni ... for traps A and {nB} = ... nB... for target particles B,
i = 1 N, with Y, n# = NA()andZn = Npg(t). Change of
temporal probability distribution can be decomposed into contributions
coming from Lévy flights transport, coagulation, annihilation and trap-
ping reactions separately:

P({n"}:{n"}) _ 9P({n};{n"}) P({n"}: {n"})

dt B ot L ot A
P({n}; {n"}) P({n"}; {n"})
ot c ot T 1)

The first term in the r.h.s. terms of Eq. (2.1) is a change of the probabil-
ity distribution P({n?},{n®}) at jumps of the particles between sites,
while the second and third terms present a change of P({n"},{n?}) at
the annihilation and coagulation reactions, the last one gives a change
of P({n?},{nP}) at the trapping reactions. Master equation for Lévy
jumps of particles between sites j and ¢ can be written in the following
form

OP({n*}; {nF}))| _
ot .
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i
—n P({n*}; {(n?})]
+ ZﬁL(rij)DOB [(nf—l—l)P({nA}; RV niB—l, ce nf—i—l, o)
i#]
—nPP({n"}; {n®})], (2.2)
with pr(r) given by Eq. (1.3), Doa and Dgp are transport (diffusion)
constants for traps and target particles respectively, summation is over

all pairs 7 and j. Annihilation and a coagulation reactions is described
by following master equations

oP({n’}: {n"})

= )l\_g Z [(”?+2)(n{4+1)P(. onl42, o {nP))

ot
—nA< —1)P({n"}; {nB}ﬂ (2:3)
TLA s n
% Z[ nfP(onf 1, {nP})

—nA< — 1)P({n"}; {nB}ﬂ (2.4)

where annihilation reaction rate is Ay = (1—p)A and coagulation reaction
rate Ao = pA. Last term in (2.1) concerning trapping reaction obeys
following master equation:

OP({n"Y}; n?})
ot

_le{ (nB+1)P(.. . nd, . . 0B,
T

— P P({n"}; (n"})] (2.5)

Master equation (2.1) with (2.2)-(2.5) describes the microscopic be-
havior of our system and can be mapped to a field theory using standard
technique [18,52,53]. We present this theory in next section.

2.2. Field theory

Mapping of the master equation to the field theory is performed within
standard technique representing it in terms of the second-quantized bo-
sonic operators in Fock space and then constructing path-integral Doi-
Peliti representation for coherent state basis of resulting non-Hermitian




6 IIpenpunt

problem [52,53] (see also [5,18]). While transformation of term (2.2) for
ordinary diffusion case (|r;;| = 1) leads to the action for model with
terms D,4V? and D,5V?, where diffusion constants D, and D,p are
related to Dpa and Dyp correspondingly, the field theory action of our
model with Lévy flights instead such terms has

DoaV? = DoaV? +DaV°, D,gV?— D,gV?+ DpV°,  (2.6)

for details see e.g. [48]. V7 is a symbolic notation of the operator defined
by its action in momentum space [46]:

Ve = k|7, (2.7)

As was already noted [46,51], the normal diffusion terms ~ V? are irrel-
evant for the case o < 2 and therefore can be dropped out from the field
theoretical description. Note, however, to describe the behaviour near
o — 2, both terms (for normal diffusion and for anomalous diffusion)
must be taking into account.

As a final result of Doi-Peliti procedure an effective field theory de-
scribing behavior of the two-species reaction-diffusion model (1.1) with
Lévy flights for its action we use [51]:

S = /dda:dt{&((?t—V")a—l—l_)(at—(svg)b
+  Xaa® + Aa*a® + X' Qbab + X'abab + (aag + bbo) 4 (t)}, (2.8)

where 6 = D4/Dp, a and b are complex fields corresponding to A and
B particles, while response fields @ and b play the same role as auxiliary
fields in Martin-Siggia-Rose approach for critical dynamics [5]. The first
line of (2.8) describes an anomalous diffusion movement of particles,
while the second one (without the last term) corresponds to the reactions.
Value Q = 1/(2 — p) appears first at annihilation/coalescence term aa?
since coagulation and annihilation contribute to it as 2A g4+ Ao = (2—p) A,
after proper rescaling (a — Qa, @ — a/Q, ag — Qag [24,25]) we finally
got it at trapping reaction term bab. Last term of (2.8) corresponds to
Poissonian initial conditions at ¢ = 0 with an average densities ay and by.
Simple power counting on (2.8) reveals that the upper critical dimension,
below which fluctuations effects become important, is d. = o.

The averages of an observable O within the field theory with action
(2.8) can be calculated via functional integral

<O(t)>zN’l/D[a,b,d,B]O(a(t),b(t))e’S, N:/D[a,b,a,é]as.
(2.9)
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Figure 1: Building blocks for Feynman digramms of theory with action
(2.8): propagators (left column) and vertices.

We are interested in the mean density of target particles (b(t)) as well
as in the correlation function

(b(r, )b (0, 1)) — (b(#))*
(b(t))* '

We consider that density of B particles for large ¢ scales as

éBB(T,t) =

(b(t)) ~ 9. (2.10)
while correlation function scales as
Cpp(r,t) ~t?f(r/t*/7). (2.11)

Calculating observables by standard methods of perturbation theory
we develop perturbative expansions in powers of coupling constants A, A’
and express them in form of Feynman diagrams using building element
listed in Fig.1. The standard way is to group diagrams for each calculated
quantity according to number of loops. There is infinitive number of
diagrams at each loop level. There the tree-level (without loop) diagrams
are of importance to get mean-field densities and dressed propagators.
The infinite sums of tree level diagrams for densities (a(t)), (b(t))s- are
obtained from Dyson equations (see Fig. 2 for graphical representation)
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Figure 2: Diagrammatic representation of the Dyson equation for the
tree-level densities (a(t))+ and (b(t))s (upper two lines), as well as the
dressed propagators Gt and GEP (lower two lines).

resulting in

@ = T
OO = e (212

In turn, the dressed propagators obtained via Dyson equations (see Fig. 2
for graphical representation) read as:

)

1+ Mgty | ok (t2=t1)
1+ )\aotz

QN /2
1+ Aaoty / =0k (t2—t1)
1+ )\aotz ’

GaA (E t2,t1) =O(ty — t1) <

et (15 t2at1) =0t —t) < (2.13)
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Figure 3: Tree-level diagrams for the correlation function Czp.

where ©(z) is the Heaviside step function.
Tree level diagrams for Cpp are shown in Fig. 3

3. Renormalization

Diagrams containing loops appear to be divergent below d. = o for large
time limit ¢ — oo. These divergencies can be handled by proper renor-
malization of couplings A and \'. It appears that all vertices in the action
(2.8) renormalize identically, that leads infinite diagrammatic series for
vertex renormalization to be obtained via Bethe-Salpeter equation and
to result in:

- A A\
Ar(k=0,s) = = = , 3.1
a{ ) 1+ AL(k=0,s) 1+ ACiT(e/a)s—c/o (3.1)
Nl = 0,5 - e G:2)

= 75 = — — , .

& L+ NI(k=0,5) 1+ NCal(c/o)s </
with e = 0 — d and
4 I'(d/o)

Cy 24/ (4m)420(d/2) o’ (3.3)

(1+0)4/e (4m)4/2T(d/2) o

Quantities I (k, s) and I5(k,s) in denominators of Eqs. (3.1) and (3.2)
are the Laplace transforms of the one-loop integrals

g dklde a 7kat 7kat
Il(k,t):2/W6(k—k1—k2)€ e ™27,

. dkydks - s sue
b(k,t):/#é(k—kl—kg)e kte—ok3t

where §(...) stands for Dirac delta-function.
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Using standard methods we introduce normalization scale x and de-
fine the dimensionless coupling constants go = Ax~¢ and g, = Nk~ at
s =K%, k =0 [46]. From (3.1) and (3.2) we get:

gJo ’ 96
SR [ — SR — 3.5
71K go/g IR =15 g/g, (3:5)
where the fixed points g, and g’:
-1 1 o/2 2
g« = [CiT(e/o)]” = 5(47‘1’) T(o/2)e+ O(), (3.6)
oo = [CT(efo)] ™ = SUm (14 6 (0/2)e + O(P). (37)

Next we describe renormalization for the density and correlation
function of B particles, introducing renormalization factors Z; and Ze.
In particular, the bare density relates to the renormalized one via bp =
Zybr, where Zy, = Zy(gr, g) is chosen in a way that the expansions of
the renormalized density have no divergences in €. The renormalization
of correlation function is related to the square of the field associated with
the B particles, since the renormalization constant Z2 is not equivalent
to (Zy)? [25]. In the further calculations we work with the unscaled cor-
relation function, considering Cpp(7,t) = (b(7,t)b(0,t)) — (b(t))?, and,
for convenience, in the Fourier space CBB(E, t) = [diaCpp(7,t)e* at
zero external momenta k = 0. Taking into account scaling (2.11) we get

Cpp(k=0,t) ~ t$720+d/o, (3.8)

Therefore the bare correlation function relates to the renormalized one
via CEB = Zb2ég3, where Zb2 = Zb2 (thqé%)

Determining Z;, and Z;2, we may find the scaling exponents of the B
particle density and correlation function related to an anomalous dimen-
sions [25]. Our quantities of interest (density and correlation function)
must be independent of the choice of the normalization parameter s
therefore we use dimensional analysis and obtain the RG equations:

9 9 ) 0 ,
{otg — aOda_ao + ﬁ(gR)@ + B(QR)@ + ’Yb(gRagR)]
X bR (t7a07gRagg%;l€) = 07 (39)
0 0 9 , ,
{Ufg - aoda—a0 + ﬁ(gR)@ + B(9r) YA + Y2 (9R: 9R) — d}
X CgB (tu aOugRag;%; KJ) = 07 (310)

ICMP-22-01E 11

with S-functions defined as,

Ogr € 9
— G99 _ < 3.11
B(gr) S €9R + 7 IR (3.11)
Y € 2
Blor) = rot = —cgr+ g—,géz : (3.12)

Fixed points of S-functions above are given by (3.6) and (3.7) respec-
tively, they are stable for d < d. = o. v-functions in (3.9) and (3.10)
define the anomalous dimensions when calculated the fixed points g,
and ¢’:

0
W(9r: 9r) = K- 2, (3.13)

9
V2 (98, 9R) = Fg-In Zpe. (3.14)

Solving Egs. (3.9) and (3.10) by the method of characteristics, we
find the following asymptotic solutions:

bR (ta a0, 9R, gg%a K:) ~ (K’Ut)i’yg/gbR (K’igv a’O(KUt)d/Uv gRa g;%7 K’) )
(3.15)

OEB (t7 ao; YR, g;%; '%) ~ (’igt)d/077;2 /UégB (Kﬁg’ ao(’igt)d/ga JR, f];g, K) s

(3.16)

where v = (94, 9%), V2 = M2(9+,9%), gr and g are the running
couplings, which go at ¢ — oo to the fixed values g. and ¢,. As follows,
the asymptotic time dependence of the bare density and bare correlation
function is determined by the renormalized ag and by the anomalous
dimensions 7, and ;. correspondingly (similarly as in [25]).

Next, we consider the results for the B particle density and correla-
tion function, taking into account the one-loop contributions.

4. Results of renormalization

4.1. The B particle density

Results for one-loop diagram contributing to density of B particles are
presented in Appendix B.1. Expanding them in powers of €, then col-
lecting contributions divergent at ¢ — 0 and combining with tree-level
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result we get

e s e (2,80 )y

where we have introduced z = XN /A = g4/go. A(z) and B(z) in (4.1)
read:

B T'(d/o) z 2
A =200 sy (o~ 307

B 1 T(d/o) 5 2z Qz
B(z) = Q2 (47472 T(d/2) <2d/o—1 DG + (1+ o)1 f(5)>

with

f(0)=1+25|In 2 ), +(1-6°) |Li -1y _ (4.3)
- 5+ 1 \ov1) 6]
where Lis(...) is the dilogarithm function. Function f(0) has the same
form is in the case with ordinary diffusion [24,25]. The contribution
proportional to 1/€2 in (4.1) can be neglected since we are interested by
behaviour at the fixed point, where:
d/o
g 140

Therefore A(z) vanishes at z — z*, since it is proportional to o (z —2*).

Considering the contribution under renormalization proportional to
1/e, we expand B(z) in powers of z — z*, leave only the leading terms we
get:

1

BE = et )

[BQ1+6)+Q*(1+6)>f(5)] +O(e,z—2%).
(4.5)
Next, we apply standard steps substitutingt — =7, ag — ao(m"t)d/",
A = K°Go = k°(gr + 9% /9« + ...) in Eq. (4.1) and expanding obtained
expression in powers of the renormalized couplings gr and g%. We find
the following expression for the bare density in the linear order for the
renormalized constants:
bo B(z*)

1+ gR—gngq+... : (4.6)

b =
B laognt/o)Rnlon e
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As can be seen from the expansion (4.6), it is necessary to renormalize
the field due to the appearance of the term proportional to 1/e, which
allows to identify the renormalization constant Z;. Therefore in the linear
order to the renormalized couplings gr and gj and 1/e constant Z, is
written as:

B(z*
Zy=1+ (6 )gR—gQg}pL..., (4.7)
and consequently from (4.7) we obtain
2Q
= —B(z* — g}, 4.8
R ()9r+ e ) 9% (48)

Calculated at the fixed point values g, and g, (3.6) and (3.7), it gives
us the following result

L/1+6) 1/1+6)°
x| - 5
ke l2 <2—p>+2<2—p> 70)
where we have used @ = 1/(2 — p). Comparing the obtained anomalous
dimension (4.9) for the two-species reaction-diffusion system with Lévy
flights to the result for the short-range diffusion hops, we find exactly the
same exponent resulting from the renormalization of the field associated

with the B particles up to value of € [25].
And finally, the renormalized density has the following behavior:

e+ O (62) , (4.9)

br = Z, 'bp ~ 749 0/ = =0 (4.10)

where the first term dQz* /o with fixed point value (4.4) corresponds to
the Smoluchowski exponent (for description of this approximation for our
model see Appendix A, for Smoluchowski approximation prediction for 6
see (1.6)), while the second term is a result of the renormalization of the
field associated with the B particles. Therefore we have the expression
for € in the first order in € = 0 — d:

(4.11)

Note that o in the denominator in (4.11) leads to increasing 6 with
decreasing of o, therefore to slower decay of density (b) for Lévy flight
distribution with larger probability for long hops, see Fig. 4. Moreover,
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5=Dgl D,

Figure 4: The B particles density decay exponent # as a function of the
diffusion constants ratio § = Dp/D 4 in the one-dimensional case d = 1.
The upper set of curves (thick) correspond to A+ A — A (coalescence),
while the lower ones (thin) correspond to A + A — 0 (annihilation),
respectively. Solid curves are plotted for ¢ = 1.1 and the dashed ones
are plotted for o = 1.5, while the dotted curves is a result for the case
of the diffusion hops [25].

comparing (4.11) with result for ordinary diffusion [25] we can see that
our result (4.11) can be obtained from [25] with substitution deg =
2d/o instead d. Since we consider o < 2 it leads to the conclusion that
in system where both traps and target particles perform Lévy flight,
probability for B particles to survive is larger.

Higher survival probability for B particles in the case of Lévy flights
in comparison with that for ordinary transitions can be comprehended as
a result of a direct consequence of optimization of encounter rate in Lévy
flight process. Indeed, let us evaluate the probability for two randomly
walking particles A and B to meet after performing t steps, if initially
they are separated by distance Ly = [y on an one-dimensional lattice. At
a time t, each particle performs a jump to the left or to the right with
probability 1/2. This can result either in increasing the distance between
them (L; = L1 + 2 if two particles jump in opposite direction), in
decreasing distance between them (L; = L;—1 — 2 if both are jumping
towards each other), or keeping the same distance (L; = Ly if both
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Levy flight, 0=1.5 @
Levy flight, 0=1.3 A
0.2 f Levy flight, 0=1.1 7

p(t)

Figure 5: An estimate for the probability for two particles, initially sep-
arated by distance [y = 10 on the one-dimensional lattice, to to meet
at time t. The cases, when two particles are performing simple random
walks and Lévy flights with exponents 0 = 1.1, 0 = 1.3 and 0 = 1.5 are
shown.

are going to the left or right simultaneously). The probabilities of these
three cases are thus correspondingly py = p— = 1/4, po = 1/2. Let us
denote by ¢4, t_ and ty the number of times, when particles perform
the mutual jumps of each those three types, so that t =t +t_ + to.
The particles meet, if distance between them L; = 0, thus resulting in
condition: ly + 2t; — 2t_ = 0.The probability, that particles will meet
after ¢ steps thus is given by

Pltet) = S —t!t+ —t)! G) G) @)

l
with ¢_ = 50 ity (4.12)

Finally, performing the sum over ¢ in the last equation, we obtain the
probability p(t) for two random walkers, presented in Fig. 5 for the case
lop = 10. Let us generalize this expression for the case, when both parti-
cles are performing Lévy flight. The averaged length [,, of each jump can
be estimated on the basis of truncated Lévy flights [54,55]. Thus, follow-
ing the ideas developed above for simplified random walks, the increase
of the distance between them in the case when both particles jump in
opposite direction is (L; = L;_1 4 2l,y, and correspondingly the decrease
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of distance for particles jumping towards each other is Ly = L1 — 21,y .
As a result, this leads to substituting Iy by lp/lay in expression (4.12). For
example, using ly.x = 15000, we obtain from distribution of truncated
Lévy flights: loy(0 = 1.5) = 1.94, loy(0 = 1.3) = 2.61, loy(oc = 1.1) =
4.33. The corresponding estimates are presented in Fig. 5. The position
of maximum of P(t) is shifted towards the smaller ¢ values with decreas-
ing the parameter o, which clearly supports the intuitive understanding
of increasing the encountering rate for particles performing Lévy flight
as compared with ordinary random walks.

4.2. The B particle correlation function

The tree-level diagrams (see Fig. 3) together with the one-loop diagrams
(see the Appendix B.2) lead to the following result for the bare B particle
correlation function in the large ag limit:

CEp = %M [1 +\e/e <%§Z> + C(:’) + .. ﬂ . (4.13)

where h(Q) = Q(1 — 2Q/3). We can omit contribution proportional to
1/€? with the same reason as for the density, while collecting the terms
proportional to 1/e from (2.5) — (2.8) in the Appendix B.2 we get

o 2 9—13Q i i
C(z") = @)1 2) [—3(3_2@} +2B(2*) 4+ O (e, 2 — 2¥) . (4.14)

Then we repeat steps we performed for the density in order to find the
renormalization constant Zp» with result

Zye =1+ (C(:*) - gi> gr+2 (gi’ - Q) Jr- (4.15)

* * *

Therefore from (3.14) we have:

2

= (66 + im0 G (9 1) )

(4.1

Finally, 742 at the fixed points g, and ¢, defined in eqgs. (3.6) and (3.7)
and @ = 1/(2 — p) gives us the following result

i 7 146  [146\°

e+ 0 (). (417
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Figure 6: The B particles correlation function exponent ¢ as a function
of p in the one-dimensional case d = 1. Solid curve is plotted for o = 1.1
and the dashed one is plotted for ¢ = 1.5, while the dotted curve is a
result for the case of the diffusion hops [25].

Therefore the renormalized B particle correlation function has the fol-
lowing leading behavior with time:

CBL(k = 0) ~ t3/0-2dQ=" /o2 /o (4.18)

Comparing obtained behaviour (4.18) with scaling (3.8) we find that the
exponent ¢ reads as:

2/, 1., 7
o=2 (- 3i) = g0 @)

Inverse dependence of the result (4.19) on o (see also Fig. 6) shows
that in system with Lévy flights characterizing by smaller value of o,
B particles are more correlated in time, that in system with larger pa-
rameter of Lévy flights. As a consequence we see that in a system with
ordinary diffusion target particles in time are less correlated than in a
system with Lévy flights. Moreover similarly as in the case of exponent
for density decay comparing (4.19) with result for ordinary diffusion [25]
we can see that it can be obtained from ¢ for ordinary diffusion substi-
tuting d by deg = 2d/0o.
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5. Numerical results for the one-dimensional case

In this section we complete our analytical finding of density decay expo-
nent for B particles by estimate obtained from numerical simulations.

To analyze the peculiarities of the two-species reaction-diffusion sys-
tem within the frames of computer simulations, we start with discrete
representation of a model based on an one-dimensional lattice (chain)
containing N = 10° sites. At each discrete moment of time time ¢, the
labels n4(4,t) and np(i,t) are prescribed to ith site, which equal n when
the site contains n particles of the type A or B respectively, or 0 other-
wise. Densities of A and B particles are thus given by:

a(t) = % S nalist), b(t) = %an(i,t). (5.1)

At the moment ¢t = 0, we set a(0) = b(0) = 0.1 as initial densities of
particles A and B, settled on randomly chosen sites.

We apply the synchronous version of cellular automaton updating
algorithm, where one time step implies a sweep throughout the whole
system. The time update ¢ — 1 — ¢ consists of two steps. At a first step,
we check the state of each ith site. If it contains a particle (ng(i,t) > 0
with C' = { A, B}), the particle makes a jump of the length [ to the right
or to the left with [ obeying a Lévy statistics. As a result of such jump,
one has na(i,t) =ne(i,t —1)—land nc(i £1,t) =nc(i £ 1,t — 1)+ 1.
Note that since the system under consideration is finite, a cut-off lax
of the maximal length of a jump is introduced, so that the lengths are
taken from distribution function in a form

|~ (d+o)

Sl (= (do) (52)

p(l) =

which corresponds to the so-called truncated Lévy flights [54, 55]. By
tuning the parameter l,,,x, we observe a crossover from an asymptotic
regime of ordinary diffusion (at lnax < T') towards Lévy statistics. Note
also, that when the A and B diffusion constants are equal (6 = 1), the
particles of both types jump simultaneously at each moment of time
t. Otherwise, the particles with smaller diffusion constants skip some
time moments. For example, in the case § = 2 diffusion coefficient of B
particles is two times larger and they jump two times faster comparing
to A particles. It can be realized in a way, that at even values of ¢t both A
and B are making jumps, whereas at odd values of ¢ only B are jumping
and A are staying at the same positions they occupied at time ¢t — 1.
At the second step of time update, the reaction rules are applied:
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o if n4(i,t) =1 and np(i,t) > 1, then ng(i, t) = np(i,t) — 1;

o if na(i,t) = 2, then na(i,t) = 1 with probability p (coalescence)
or na(i,t) = 0 with probability 1 — p (annihilation).

The ensemble averaging ((...)) are performed over 1000 replicas.

On Fig. 7 we present results for the time dynamics of (b(t)) for o = 1.1
at various parameter [,,x. The estimates for critical exponent 6 are ob-
tained by linear least-square fitting to the form (2.10) with varying lower
cutoff for the number of time steps; the sum of squares of normalized
deviation from the regression line divided by the number of degrees of
freedom served as a test of the goodness of fit. At [;,.x = 1, we restore the
known result for f(p = 0) = 0.5 of ordinary diffusion. As one can imme-
diately observe from the Fig. 7, increasing of the maximum jump length
causes the density of survived particles to decrease faster. To obtain the
estimates for the exponents 6 in the case of Lévy statistics, we exploited
the values lax = 15000. Our data for € as function of coalescence prob-
ability p at various parameters o and ¢ are presented correspondingly
on Figs. 8 and 9 in comparison of corresponding analytical results. At
each fixed value of coalescence probability p, the exponents increase with
increasing the parameter o. Let us recall, that the smaller is o, the larger

10 T T
L Imax=1
9 B R X~

>eOmd

In <b(t)>

In (t)

Figure 7: Averaged concentration of B particles as a function of ¢ in the
double logarithmic scale at fixed parameters § = 1, 0 = 1.1 and coales-
cence probability p = 0 at various l,.x. A crossover from an asymptotic
regime of ordinary diffusion (at lpmax = 1) towards Lévy statistics is
observed.
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Figure 8: Critical exponent 6 as function of coalescence probability p at
6 = 1 and various o. Lines: RG results, symbols: results of numerical
simulations.

Figure 9: Critical exponent 6 as a function of coalescence probability p
at 0 = 1.1 and various §. Lines: RG results, symbols: results of numerical
simulations.
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is the probability for very long jumps to occur and thus, this qualita-
tively leads to faster decrease of the density of survived particles. Let
us also note, that our numerical and analytical results are in a proper
coincidence. The best agreement between analytical and numerical es-
timates is obtained for the case 6 = 1 (see Fig. 9) similarly as it was
observed in the case with ordinary diffusion [25]. Therefore our numer-
ical results support analytical predictions of RG theory for asymptotic
scaling behaviour of density of surviving Lévy flyers.

6. Conclusions

In the present paper we have studied the large time behaviour of density
and correlation function of surviving particles in two-species reaction-
diffusion system described by coupled reactions A + A — (0, A) and
A+ B — A where both species perform superdiffusion motion, modeled
by Lévy flights. We considered our system in a diffusion-controlled regime
occurring for space dimensions d < d., where fluctuations are dominant.
In this regime the scaling of density and correlation function of surviv-
ing particles with time is characterized by nontrivial universal exponents.
We have worked with the field-theoretical representation of our model
obtained by mapping master equation to the field theory and neglect-
ing terms describing ordinary diffusion. For systems with Lévy flights,
the critical dimension is determined by control parameter of long-range
hops decay: d. = 0. Applying RG methods, we have calculated universal
exponents for the scaling behaviour of density and correlation function
up to the first order in deviation from the critical dimension € = o — d.
Our analytical outcome reveals that at least in the one-loop approxi-
mations such exponents for a case with Lévy flights can be obtained
from expressions of their counterparts for ordinary diffusion case simply
by substituting of the space dimension d by an effective dimension that
scales with Lévy flight control parameter: deg = 2d/o. This is similar
to the picture observed for the critical behaviour of systems with long-
range interactions, where a hypothesis was proposed: long-range critical
exponents can be obtained from expressions for short-range critical ex-
ponents using instead space dimension d an effective one expressed via
d itself and parameter of long-range interaction decay (for details see
e.g. [56,57]).

We have performed also numerical simulations of the considered pro-
cess, applying the synchronous version of cellular automaton updating
algorithm. Our numerical estimates for decay exponent of surviving par-
ticles’ density corroborate analytical predictions for this exponent. In
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particular, they show that probability of target particle is higher in pro-
cess with Lévy flights comparing with process with ordinary diffusion.
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A. Smoluchowski approximation

As we have already mentioned in the Introduction one of the methods
widely used to study fluctuation effects in different reaction-diffusion
systems for dimensions below and at the critical one (d < d.) is Smolu-
chowski theory [10,11]. The main idea of the Smoluchowski approach is
to relate reaction rates to diffusion ones assuming that particles interact
with each other within a fixed distance (see e. g. [14, 23,24, 58]). For
several simple reaction-diffusion models, this approach predicts the cor-
rect decay exponents (for instance, annihilation reaction [11]), but one
does not allow quantitatively calculating the amplitudes yet. Here we
briefly discuss Smoluchowski approximation for our two-species reaction-
diffusion model (1.1) in the case when particles move according to Lévy
flights. In the Smoluchowski theory, the particles may instantaneously
interact with each other within a fixed distance and, thus, the reactions
rates A and )\ are replaced by their effective counterparts related to the
diffusion of the particles. Using the first return probabilities for Lévy
flights we can get for dimensions d < d. = o

A = const x ¢t/ (1.1)

d/o
1
const x 1+9 /o=t (1.2)
2

where § = D4/Dp in our case with transport constants D4 and Dp
associated with Lévy flights of particles. Substituting such results into
rate equations of mean densities (a) and (b) for our system

)\/

% = —Ma)?, (1.3)
ob) /
o = 20X (b){a), (1.4)

and solving them with respect to the mean density of B particles we get
the following behavior for d < o:

(byg ~t7 s, (1.5)
with
2d  [1+6\Y°

Despite the acceptability and convenience of this theory, such an
approach may predict erroneous results for a more complex system. In
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particular, Smoluchowski theory does not allow obtaining the correct
exponents for the mixed reactions (for more details, see [18]). Moreover,
one gives incorrect results for well-known exactly solvable models (see e.

g. [59]).

B. One Loop Contributions

B.1. Contributions for density (b)

Here we present results for one-loop contributions to density of B parti-
cles. Diagram representations are given in Fig. 10. Results of calculation
for these diagrams in the limit ag — oo are follows

(a) _ )\I2Qb0 F(d/O’) e/o 2 02 (2 1)
= Naon) @ @n)iPT (/D) (Lt 0¥ (e + o) :
B N Qbo I'(d/o) reo 8 ot
(b) =~ G @A @myaera) | " 5a7 et et 2P
O XQ I'(d/o) o 1 f(5)
(©) = XAV~ (dm)a/2T(d)2) t/ 1+ 0)do1 ( ; +O(6)>’
(2.3)

with f(9) given by (4.3). Results for the first two diagrams were obtained
in [51], for the third diagram we have calculated the leading contribution
at e — 0.

Figure 10: Diagrams presenting one-loop contributions to the mean-field
density (b(t))

B.2. Contributions for correlation function Cgp

Here we present the contributions to Cp (k= 0) at one loop. All possible
diagrams of six topology classes are presented schematically in Fig. 11
(see also [25]). Results of the calculation of poles in € = 0 — d can be
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ﬁ%ﬁ

Figure 11: One-loop corrections to the correlation function with six topol-
ogy classes of the diagrams (without distinguishing between A and B
lines), where three-point vertex are shown by empty triangles, while four-
point vertices are shown by filled rectangles. For more details see [25]

presented in the following form:

1 T B2ON 2 6
( /0) OQ tl—l—e/o ZE(276,U)

~1—loop k= —
Cpp (k= 0) = 5005072 T(a/2) (agh) 2@V /A

(2.4)

where F; are all possible contributions to Cgp (k = 0) from the diagrams
of six topology classes with shortening z = \'/\:

F o= ( 1+6) ! (2.5)
B = 6an<1i5 1>6i2

- (6 —8Q +24Qz + 3Q%2f () — 1Q+ 5) % (2.6)
B — (6_%4Q+—6z+8Qz—i—11—EC§z2—10Q2z2> % 27)
F = 6an<1—%) <1i5—1>§2

+ ( 6 + @ +6Qz — 20Q%z + (3Q%2% — 4Q%2%) f (6)

o 22 goa0) o
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with f(0) defined in Eq. (4.3) and F5 = 0 and Fg = 0 since there is no
poles in € for these diagram classes.
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