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1 Preprint1. IntroductionIn the past twenty years many successful studies have been made of thedynamical properties of classical 
uids. Special attention has been paidto hard-sphere and Lennard-Jones 
uids as the most simple models ofrealistic liquids. The various methods have been developed with the aimto investigate the time-correlation functions (TCFs), the collective modespectrum and the generalized transport coe�cients (see, for instance, [1{3]). The subject of special interest was the studies of lower-order TCFs,namely, the density-density, the density-energy and the energy-energyTCFs as well as the transverse momentum-momentum TCF, becausethese TCFs allow a unique determination of the generalized transportcoe�cients. The most studied of them is the density-density TCF whichcan be observed by scattering experiments. The all other TCFs notedabove were considered mainly in connection with computer experiments.Among the most used methods of theoretical investigation of thedynamical properties of simple 
uids the following main ones may benoted: (i) the method of kinetic equations [2{4]; (ii) approaches basedon the sum rules [5] or the linear response theory [7]; (iii) the formalismof memory functions including so-called method of k- and t-dependentmemory functions (hydrodynamic description [1{3], di�erent modi�ca-tions of viscoelastic theory [1,6], the generalized mode approach [8{11],etc.); (iv) the mode-coupling theory of 
uids [12]; (v) the methods ofcomputer simulations [13,14]. The most part of these methods obtainedalso a wide application for studying of complex 
uids such as molecu-lar 
uids with internal structure, mixtures, suspensions etc. However, asfar as we can judge a lot of problems remain to be solved yet even inthe case of simple liquids. Some of them can be formulated as follows:What is relation between various methods? What is the range of theirapplications? In which a way the memory functions should be modi�edfor description of intermediate range of wave-vector k and frequency !?These questions could be supplemented with other ones related to thetheoretical foundations of the non-equilibrium statistical theory of 
uids.To recognize all these problems it is necessary to reconsider the theoryof 
uids from very beginning in such a way that the results would bepresented in the enough general form for the subsequent analysis of themethods noted above (or at least some of them) on this basis. From theother side, the formulation of the theory have to be rather simple inorder to be applied for calculations of the dynamic quantities such asgeneralized transport coe�cients for instance. To develop of such view-point is the goal of our study. In this paper some general results of the
ICMP-96-02E 2non-equilibrium statistical theory of simple 
uids are presented. We usedin our study the non-equilibrium statistical operator method in the formproposed by Zubarev [15,16]. Some �ndings (see, for instance [17{19]) ofthe next development of this method are also applied in our study.The outline of this paper is as follows. In Sec.2 the general ideas ofnonequilibrium statistical operator method are formulated, the solutionof Liouville equation for arbitrary set of dynamic variables is found, andthe generalized transport equations are derived. A weak nonequilibriumcase is considered in Sec.3, and the equations of linear relaxation theoryin matrix form are derived. The problem of the dynamic variables choiceis discussed in Sec.4. Here too one of the most general case when theset of dynamic variables besides the hydrodynamic variables includestheir derivatives up to order s is considered, and the recurrent relationsfor memory functions of 
uids are derived. A discussion and concludingremarks are given in Sec.5.2. Method of nonequilibrium statistical operator:General relations2.1. Liouville equation with boundary conditionsThe nonequilibrium state of a system is described by the nonequi-librium statistical operator �(xN ; t) which is a solution of the Liouvilleequation@@t�(xN ; t) + i^L�(xN ; t) = 0; (2.1)where i^L is the Liouville operator, and xN = fr;pgN . For a simpleclassical 
uid with the HamiltonianH = NXf=1 p2f2m + 12Xf 6=l V (jrflj); (2.2)the Liouville operator isi^L = NXf=1 pfm @@rf � 12Xf 6=l @@rf V (jrflj)( @@pf � @@pl ); (2.3)where V (jrflj) is a potential of interparticle interactions. As it usually isthe nonequilibrium statistical operator �(xN ; t) is normalized to unitySp �(xN ; t) = 1; (2.4)



3 Preprintwhere in the case of classical treatment of a 
uidSp (: : :) = Z ::: Z (drdp)NN !(2�h)3N (: : :):In order to determine the nonequilibrium statistical operator �(xN ; t)from the Liouville equation (2.1) which is reversible with respect to time,one has to pose the boundary conditions corresponding to the physicsof a system under consideration. In general case it can be done usingtwo fundamental ideas of Bogolubov. First, this is conception of quasi-averages according to which one can introduce the in�nitesimal sourcein the equation (2.1) which destroy its symmetry with respect of timeinversion. The term with in�nitesimal source should be tended to zero,the thermodynamic limit having been performed. In such a way onecan �nd the retarded (or advanced) solution of the Liouville equation.Second, it is the Bogolubov's idea about the hierarchy of relaxation timeswhich can be also presented as an abbreviate description hypothesis.From the physical point of view this means that a weak nonequilibriumstate of a system can be described via evolution of the most slowlyvarying dynamic variables. With respect to the dynamic properties bothof these physical principles were best used by Zubarev in his formulationof the nonequilibrium statistical operator method [15,16,20].With Zubarev's method of nonequilibrium statistical operator, theretarded solutions of the Liouville equation (2.1) can be obtained fromthe Liouville equation with an in�nitesimal source (� ! +0) which hasthe following form@@t�(xN ; t) + i^L�(xN ; t) = ��(�(xN ; t)� �q(xN ; t)); (2.5)where �q(xN ; t) is so-called quasi-equilibrium statistical operator.According to the hypothesis of an abbreviated description, in orderto �nd �q(xN ; t) we restrict ourselves a priori to a certain set of themost slowly physical quantities f ^P�g which are thought to determine thenonequilibrium state. Of course in general case this is an approximationwhose applicability depends on the choice of the dynamic variables andhas to be judged afterwards. The problem of a choice of the dynamicvariables is one of the most di�cult in nonequilibrium theory and willbe further discussed in more detail. Here, we assume that such variablesare the extensive quantities f ^P�g and � = 1; 2; : : : ;M .The quasi-equilibrium statistical operator �q(xN ; t) can be foundfrom the condition of the informational entropy extremum under theadditional constraint that the mean values of the dynamic variablesh ^P�itq = Spf ^P��q(xN ; t)g (2.6)
ICMP-96-02E 4are �xed with preserving the normalizationSp �q(xN ; t) = 1: (2.7)As a result, the quasi-equilibrium statistical operator �q(xN ; t) can bewritten in Gibbs-like form�q(xN ; t) = expf��(t)�X� ^P�F�(t)g = expf� ^S(t)g; (2.8)where�(t) = ln Sp expf�X� ^P�F�(t)g (2.9)is a corresponding quasi-equilibrium thermodynamic potential or, inother words, so-called Massieu-Planck functional. The operator ^S(t) is infact the entropy operator, since its mean value h ^S(t)it gives the nonequi-librium entropy of a system. We see in (2.8) and (2.9) that the depen-dence of �q(xN ; t) on time is given only via the time-dependent quantitiesfF�(t)g which are in fact the conjectured quantities to the set of dynamicvariables f ^P�g. The intensive quantities fF�(t)g can be found from theconditions of self-consistencyh ^P�itq = h ^P�it = Sp f ^P��(xN ; t)g; (2.10)which follow immediately from the condition@@thAit = hdAdt it: (2.11)when A = ^P�. For arbitrary quantity A, the equality (2.11) is satis�edin the sense of quasiaverages only when the limit � ! 0 is performedafter the thermodynamic limit.Since the dynamic variables have to describe the local propertiesof the system, they are depending on the space coordinate r (or k inthe case of the corresponding Fourier transforms). Hence, in the aboveand following expressions an integration over space coordinates has to bemade explicit together with a summation over index of dynamic variables�. Introducing the deviation��(xN ; t) = �(xN ; t)� �q(xN ; t);equation (2.5) can be rewritten in the formf @@t + i^L+ �g��(xN ; t) = �f @@t + i^Lg �q(xN ; t): (2.12)



5 PreprintSince the operator �q(xN ; t) depends on time only via F�(t) (or theconjectured quantities h ^P�it), one can introduce the projection operatorPq(t) according to the de�nition@@t�q(xN ; t) = �Pq(t) i^L�(xN ; t) (2.13)The operator Pq(t) is known as the Kawasaki-Gunton projection opera-tor [21] and acts on the statistical operators or their combinations. For�q(xN ; t) in the form (2.8), it has the following structurePq(t)(: : :) = f�q(xN ; t)�X� ��q(t)�h ^P�it h ^P�itg Sp (: : :) ++X� ��q(t)�h ^P�it Sp ^P�(: : :) (2.14)and possesses the following propertiesPq(t)�(t) = �q(t); Pq(t)�q(t) = �q(t):Finally, with the projector (2.14) the Liouville equation (2.12) takes theform f @@t+(1�Pq(t))i^L+�g ��(xN ; t) = �(1�Pq(t))i^L�q(xN ; t):(2.15)2.2. Nonequilibrium statistical operatorA formal solution of (2.15) for the nonequilibrium statistical oper-ator �(xN ; t) can be written as follows�(xN ; t) = �q(xN ; t)�� tZ�1 e��(t�t0)T (t; t0)(1�Pq(t0))i^L�q(xN ; t0)dt0 (2.16)whereTq(t; t0) = exp+f� tZt0 d�(1�Pq(�))i^Lg (2.17)is a generalized operator of time evolution with regard to projecting. Letus consider in (2.16) the action of Pq and i^L operators on the quasi-equilibrium statistical operator �q(xN ; t). Taking into account the prop-erties of the Liouville operator (2.3), the result of its action can be written
ICMP-96-02E 6in the form Pq(t)i^L�q(xN ; t) == �X� F�(t) 1Z0 d� [�q(xN ; t)]�P(t) �P� [�q(xN ; t)]1�� ; (2.18)where �P�� i^L ^P�: (2.19)The statistical operators are considered here as quantum ones for gen-erality. For deriving of the equation (2.18) we used the equalityPq 1Z0 d�(�q(xN ; t))� ^X (xN ) (�q(xN ; t))1�� == 1Z0 d�(�q(xN ; t))� (P ^X (xN )) (�q(xN ; t))1�� ; (2.20)where ^X (xN ) is an arbitrary dynamic quantity depending on coordinatesof phase space, and P is the generalized Mori projection operator de�nedas followsP(t)::: = h:::itq +X� �h:::itq�h ^P�it f ^P� � h ^P�itg (2.21)with propertiesP(t) P(t) = P(t); P(t) (1�P(t)) = 0; P(t) ^P� = ^P�:Contrary to the Kawasaki-Gunton projection operator, the Mori oper-ator (2.21) acts only on the dynamic variables (or dynamic operators).Finally, taking into account (2.16) and (2.18), the nonequilibrium statis-tical operator can be written in the form�(xN ; t) = �q(xN ; t) + tZ�1 dt0e��(t�t0)X� F�(t0)�� 1Z0 d� [�q(xN ; t0)]� T (t; t0)^I�(t0)[�q(xN ; t0)]1�� ; (2.22)



7 Preprintwhere^I�(t) = (1�P(t)) �P� (2.23)are the generalized 
uxes. The evolution operator T (t; t0) is now de�nedin terms of the Mori projection operator P(t), namelyT (t; t0) = exp+f� tZt0 d�(1�P(�)) i^Lg: (2.24)The nonequilibrium statistical operator (2.22) describes the nonequi-librium state of a liquid with the Hamiltonian (2.2) for the initial set ofdynamic variables f ^P�g. This operator is presented in the terms of thegeneralized dissipative 
uxes (2.23) describing transport phenomena. Inaccordance with the hypothesis of an abbreviated description of nonequi-librium state, �(xN ; t) is a functional of the observed physical quantitiesvarying in time (the mean values h ^P�it). Hence, using the solution (2.22)in order to obtain self-consistence description of nonequilibrium proper-ties, one should derive equations for them, i.e. the generalized transportequations.2.3. Nonlinear transport equationsTo obtain transport equations for average values h ^P�it, the equal-ities @@th ^P�it = h �P�it = h �P�itq + h(1�P(t)) �P�it (2.25)may be used. The equalities (2.25) follow directly from the de�nitionof the Mori operator de�nition (2.21). Performing the averaging in theright-hand side of (2.25) with the help of nonequilibrium statistical op-erator (2.22), the generalized transport equations can be found in theform @@th ^P�it = h �P�itq +X� tZ�1 dt0e��(t�t0)���(t; t0)F�(t0)dt0; (2.26)where ���(t; t0) == 1Z0 d� h^I�(t); ��q (xN ; t0) T (t; t0)^I�(t0)���q (xN ; t0)itq (2.27)
ICMP-96-02E 8are so-called generalized memory functions of the system or, in otherwords, the generalized transport kernels.Using the matrix notation the transport equations (2.26) can berewritten as follows@@th ^P it = h �P itq + tZ�1 dt0e��(t�t0)�(t; t0)( ^P ; ^P+)F (t0)dt0; (2.28)where � = jj��� jj, and ^P is a vector-column with elements f ^P�g.The transport equation system (2.26) for the chosen set of dynamicvariables ^P = f ^P�g corresponds of an abbreviated description of non-equilibrium behavior of a liquid and may be used to the study bothstrong and weak nonequilibrium states of the system. In general, this isa set of nonlinear equations. The intensive quantities F�(t) entering inthe quasi-equilibrium statistical operator �q(xN ; t) depend on averagesh ^P�it through equations of self-consistency (2.8). The last ones are de-termined from the system (2.26). Besides that, as the generalized mem-ory functions '��(t; t0) are unknown, the question about the solutionsof the system (2.26) may be considered only under condition that theapproximations for these functions should be based on analysis of theexpression (2.27) and the corresponding equations for the higher-ordermemory functions. However, it is well-known the restriction to the linearcase is a good approximation for transport phenomena in a 
uid, andthe nonlinear equations have to use only for special problems of nonequi-librium physics, for example for the description of dynamical behaviornear phase transition, which are not a subject of our study.For a weak non-equilibrium case, the transport equations (2.26) canbe essentially simpli�ed. Let us consider this case in more detail forderiving the linearized transport equations.3. Weak nonequilibrium case3.1. Linearized transport equationsThe behavior of the system near the equilibrium may be describedby set of the linear equations for deviations of macroscopic quantitiesh ^P�it from the equilibrium values h ^P�i0 = Sp f ^P��0(xN )g, where �0 isthe equilibrium statistical operator at temperature 1=�. Assuming thedeviations of intensive quantities �Fn(t) = Fn(t) � F 0n from their equi-librium values F 0n are small, the following expressions can be obtained



9 Preprintfrom (2.8)-(2.9):�(t) = �0 �X� h ^P�i0 �F�(t); (3.1)^S(t) = ^S0 �X� � ^P� �F�(t); (3.2)where�0 = ln Sp expf�X� ^P� F 0�g; (3.3)^S0 = �0 +X� ^P� F 0�; (3.4)and � ^P� = ^P� � h ^P�i0. The equilibrium statistical operator is�0 = expf��0 �X� ^P� F 0�g = expf� ^S0g: (3.5)From the de�nition of quasi-equilibrium statistical operator (2.8), in lin-ear approximation we obtain�q(t) = f1�X� 1Z0 d� � ^P�(�) �F�(t)g�0; (3.6)where� ^P�(�) = ��0� ^P����0 : (3.7)Using the self-consistency conditions (2.10), the relationship between thedeviations of intensive and extensive quantities can be found. In matrixform we have�h ^P it = �(� ^P ;� ^P+)�F+(t): (3.8)The static correlation function (A;B) in general case is de�ned as follows(A;B) = 1Z0 d�hA��0B���0 i0 = 1Z0 d�hAB(t = i�h��)i0: (3.9)
ICMP-96-02E 10In the case of classical treatment we obtain from (3.9) the usual de�nitionof static correlation function in form (A;B) = hABi0. As follows from(2.22), the linearized nonequilibrium statistical operator is��(t) = ��q(t) +X� tZ�1 dt0e�(t0�t)�F�(t0)�� 1Z0 d� ��0 T0(t� t0) (1�P)i^L ^P� �1��0 : (3.10)Using Fourier transformation for dependent on time functionsf(t) = Z d! ~f(!)exp(i!t);the expressions (3.6) and (3.10) can be rewritten in a matrix form asfollows�~�q(!) = � 1Z0 d� � ^P+(�)� ~F (!)�0; (3.11)�~�(!) = �~�q(!)++ 1Z0 d� ��0 1i! + �+ (1�P)i^L(1�P) �P+ �1��0 � ~F (!); (3.12)where � ^P+ is a transposed vector with the elements f� ^P�g and � ~F (!)is a vector-column with elements f� ~F�(!)g. The projection operator Pand the operator T0(t� t0) are given byP : : : = (: : : ;� ^P+)(� ^P ;� ^P+)�1� ^P ; (3.13)T0(t� t0) = expf�(t� t0)(1�P)i^Lg: (3.14)Using the linearized solution of the Liouville equation (3.12), it is easy toobtain the set of the linearized transport equations for the macroscopicquantities h� ^P itfi! � i
0 + ~'�(!)gh� ^P i! = 0 (3.15)wherei
0 = ( �P ;� ^P+) (� ^P ;� ^P+)�1 (3.16)



11 Preprintis a frequency matrix, and~'�(!) � ~'(�+ i!) == ((1�P) �P ; 1i! + �+ (1�P)i^L(1�P) �P+)��(� ^P ;� ^P+)�1 (3.17)is a matrix of the memory functions. The matrix equation (3.15) is theset of the linearized transport equations or, in other words, the equationsof the linear relaxation theory.3.2. Equilibrium time correlation functionsIt can be shown the equations for the equilibrium time correlationfunctions have the similar structure to (3.15). Really, a formal solutionof the Liouville equation (2.12) can be also written in the form�(xN ; t) = �q(xN ; t)�� tZ�1 dt0 e�(t0�t)�i^L(t�t0)f @@t0 + i^Lg�q(xN ; t0): (3.18)For a weak nonequilibrium case, performing Fourier transformation fordependent on time functions, we obtain�~�(!) = �~�q(!) ++ 1Z0 d� ��0 1i! + �+ i^Lf �P+ +i!� ^P+g�1��0 � ~F (!): (3.19)From the equations of self-consistency (2.10)Sp f� ^P [�~�(!)� �~�q(!)]g = 0;using the solution in the form (3.19), one �ndi!� ~F (!) = � 1(� ^P ;� ^P+)z (� ^P ; �P+)z� ~F (!) == f� 1(� ^P;� ^P+)z (� ^P ;� ^P+) + z g� ~F (!); (3.20)where(A;B+)z = (A; 1z + iLB+); (3.21)
ICMP-96-02E 12A;B = f ^P; �P g and z = i! + �, and (A;B+)z is the matrix of Laplacetransforms of the quantum-mechanical equilibrium time correlation func-tions (A;B+)(t) de�ned by(A;B+)(t) = 1Z0 d�hA��0expf�i^LtgB���0 i0: (3.22)Comparing of (3.15) with (3.20), and using of (3.8), it is easy to ob-tain the matrix equation for Laplace transforms of the time correlationfunctions (� ^P ;� ^P+)zf z � i
0 + ~'(z)g(� ^P ;� ^P+)z = (� ^P ;� ^P+): (3.23)Another result that follows immediately from such mathematical treat-ment and will be useful for subsequent calculations is the expression forthe matrix of memory functions~'(z) = �( �P ; �P+)z ��( �P ;� ^P+)z 1(� ^P ;� ^P+)z (� ^P ; �P+)z� 1(� ^P ;� ^P+) : (3.24)It is important to note that as follows from the de�nition (3.21), the timecorrelation functions under consideration can be expressed in terms ofthe retarded correlation Green functionsG(r)AB(t� t0) = �i�(t� t0) 1Z0 d� hA(t)��0B(t0)���0 i0; (3.25)where �(t) = 1 or 0 according to whether t > 0 or t > 0. In the case ofclassical treatment the expression (3.25) gives the de�nition of classicalcorrelation Green functions. The spectrum of collective modes can bedetermined from the equationDet j z � i
0 + ~'(z) j= 0; (3.26)which gives the poles of the regarded correlation Green functions con-structed on the set of dynamic variables f� ^P�g. It should be also stressedthat the matrix equation for the equilibrium time correlation functions(3.23) is in fact the exact equation. This statement can easily be provedusing the expressions for the frequency matrix (3.16) and the matrix ofmemory functions (3.24).



13 PreprintThe linearized transport equations (3.15), the equations for the equi-librium time correlation functions (3.23), and the equation for collectivemode spectrum (3.26) will be used as the basis for the next our study ofthe dynamic behavior of simple 
uids.4. Extended set of dynamic variables4.1. Introducing remarksAs it was noted before one of the most important problem of thenonequilibrium statistical theory of many-body systems is the correctchoice of the dynamic (macroscopic) variables which have to be the mostslowly ones. Frequently, the existence of slow variables can be traced backto conservation laws and, in the case of ordered systems, to continuousbroken symmetries. The associated dynamic variables are then the densi-ties of the conserved quantities as well as the order parameters. Howeverthe additional dynamic variables may be also included into the initialset f ^P�g. Let us discuss this problem with some examples.For the density-density time correlation function alone, many suc-cessful descriptions exist in the literature using the approximations forthe memory functions de�ned on the one variable (the density of parti-cles) [22], on the two variables (the densities of particles and momentum)[2,1], as well as on the three dynamic variables when the variable asso-ciated with the longitudinal component of the stress tensor is includedin addition [1,23]. As the modi�cation of such kind of theories the modecoupling theory of a 
uid may be recalled. Mode-coupling approach wasproposed by Kawasaki [24], and for a simple classical liquid it was laterdeveloped by G�otze et.al. [12] In this approach the binary and higher-order combinations of the densities of particles and momentum are alsoconsidered. On the basis of the approximations for the memory functionsin the form of two-mode decay integrals the closed equations for the timecorrelation functions have been derived. As it has been shown such ap-proach is especially very useful for description of liquid{glass transitionphenomena [25]. As will be seen later the methods noted above are infact the results of the same theory if the explicit expressions for the cor-responding memory functions are used. And the di�erent results for thedensity-density time correlation function (or the dynamic structure fac-tor) can be explained by the various approximations to have been usedin the calculations. Moreover, such theory can not give the correct hy-drodynamic equations in the limit k ! 0 because the 
uctuations of theenergy are neglected, and this means also that the generalized transport
ICMP-96-02E 14coe�cients can not be calculated correctly. Therefore, we may concludethat the all conserved variables should be considered from the very be-ginning if the consistent calculations of the time correlation functions aswell as the generalized transport coe�cients is the goal of the theory.Nonequilibrium thermodynamics is based on the using of the con-servation laws for the average values of physical quantities. Statisticalthermodynamics of non-equilibrium processes proceeds from the conser-vation laws directly for the dynamic variables, i.e. it regards them fromthe microscopic point of view. There are three conserved variables for asingle-component liquid, namely, the particle number density ^n(r), themomentum density ^J(r), and the energy density ^"(r). Their Fourier-transforms ^nk, ^Jk, ^"k can be de�ned as follows^nk = 1pN Xi eikri ; (4.1)^JL;Tk = 1pN Xi pL;Ti ; eikri ; (4.2)^"k = 1pN Xi � p2i2m + 12 Xj(j 6=i) V (jrij j)�eikri : (4.3)In expression (4.2), as it usually is, the index L denotes longitudinalcomponent, i.e. the component parallel to a vector of k, which can betaken to be parallel to the Oz axis, and index T denotes transversecomponent, i.e. perpendicular to k. In such case we can consider thevariables (4.1)-(4.3) as functions of the wave-number k only.It should be stressed that since the transverse component of the cur-rent density is independent of the other variables this variable may betreated separately from the longitudinal variables. From here on we con-sider the dynamic variables as classical ones, and this means that in ourcase (A;B) = hABi0.For the longitudinal 
uctuations the set of so-called orthogonal dy-namic variables can be introduced instead of the variables (4.1), (4.2)and (4.3). These variables are connected with the initial ones by lineartransformation and can be found with the help of Schmidt's orthogonal-ization procedure using the expression (3.9) as the de�nition of scalarproduct. Let us de�ne the vector column ^BL(k) with the components^BL�(k) = f^nk; ^JLk ; ^hkg, which are the orthogonal hydrodynamic variables,where^hk = ^"k � h^"k^n�ki0h^nk^n�ki�10 ^nk (4.4)



15 Preprintis the density of generalized enthalpy. For the transverse 
uctuationswe have one hydrodynamic variable only, namely ^BT (k) = ^JLk . Now,using general results (3.15), (3.23) and (3.26), it is easy to derive thecorresponding equations for ^P = ^BL;T [27]. In this case the transportequations for h ^BL;T it is known in the literature as the generalized hy-drodynamic equations which give in the hydrodynamic limit the Navier-Stokes equations, but in general form they are much more complicatedbecause of the k- and !-dependent coe�cients.>From comparison with results of the nonequilibrium thermodynam-ics the expressions for the generalized transport coe�cients via the hy-drodynamic memory functions can be found�(k; z) + 43�(k; z) = mnk2 'H;LJJ (k; z); (4.5)�(k; z) = nCV (k)Tk2 'HJh(k; z) = nmk2 'HhJ(k; z); (4.6)�(k; z) = nCV (k)k2 'Hhh(k; z); (4.7)�(k; z) = nmk2 'H;TJJ (k; z): (4.8)Here �(k; z), �(k; z) and �(k; z) are generalized bulk and shear viscosities,and thermal conductivity coe�cients, respectively. �(k; z) is a generalizedcoe�cient which describes the dynamical coupling between the stress andthe heat current and vanishes in the limit k ! 0. The memory functions'H�;�(k; z) are de�ned by (3.17) with ^P = ^BL;T .>From this point two main di�erent ways in which the generalizedhydrodynamic theory was developed for the description for intermedi-ate range of k and ! may be separated. The �rst one may be calledonce again as the method of k- and !-dependent memory functions inwhich the various approximations were used for the memory functions'H�;�(k; z) (see, for instance, [2,3,1]). The main future of the second ap-proach is an extension of the set of dynamic variables. As an examplethe microscopic viscoelastic theory of a liquid can be recalled. In earlyversion of this theory [1] the 
ux of momentum was included into theinitial set of dynamic variables, and the 
uctuation of energy (4.3) wasignored. Later the variable of energy density "k was also considered inthe scheme of the viscoelastic theory [6]. It is evident that the results ofviscoelastic theory can be reproduced from (3.15), (3.23) and (3.26) ifthe corresponding variables are chosen. As the another example of such
ICMP-96-02E 16kind of modi�cations the generalized mode approach can be noted [8{11]. In this approach using Markovian approximation for memory func-tions the general problem of dynamic theory reduced to the calculationof the generalized mode spectrum of a system, and the time correla-tion functions could be presented as a sum of partial terms related tothe corresponding collective mode. In �ve-mode approximation the �rstresults for Lennard-Jones liquid were obtained by de Schepper et. al.[9]. The seven-mode approximation for longitudinal 
uctuations and thethree-mode approximation for transverse 
uctuations have been studiedby Mryglod et. al. [10,11].4.2. Relations for the memory functionsIn order to compare between themselves the results of various approachesin which di�erent sets of dynamic variables are used, let us consider moregeneral case. We introduce the following notations^A0 = ^BL;T ; ^A1 = i^L ^BL;T0 ; : : : ;^Al = (i^L)l ^BL;T0 = i^L ^Al�1; : : : ; ^As = (i^L)s ^BL;T0 ; (4.9)where ^BL = f^n; ^BL0 g, ^BL0 = f ^JL; ^hg and ^BT = ^BT0 = ^JT . Contrary toRef. [18] where the similar problem was considered we have a case thatone from the variables, namely ^JLk , has the special property of beingboth a 
ux and a conserved variable, so that (i^L)l^n � (i^L)l�1 ^JL. Theset of the dynamical variables f ^A0; ^A1; : : : ; ^Asg will be considered asinitial one and includes 3+2s variables for the longitudinal 
uctuationsand 1 + s variables for the transverse 
uctuations.The orthogonalized dynamic variables constructed on (4.9) can befound with the help of the Schmidt's orthogonalization procedure withthe de�nition of scalar product in the form (3.9). As a result we have^Y0 = ^A0; ^Y1 = (1�P0) ^A1; : : : ;^Yl = (1�Pl�1)i^L ^Al�1 = (1�Pl�1) ^Al; : : : ;^Ys = (1�Ps�1) ^As; (4.10)whereP0 = �P0 = h: : : ^A+0 i0h ^A0 ^A+0 i�10 ^A0; (4.11)Pl = lXm=0�Pm; (4.12)�Pm = h: : : ^Y +m i0h ^Ym ^Y +m i�10 ^Ym; (4.13)



17 Preprintare Mori-like projection operators. Now the variables f ^Ylg possess thepropertiesh ^Y �l ^Y �l0 i0 = �ll0���h ^Y �l ^Y �l i0; (4.14)where �; � = fJ; "g for the longitudinal 
uctuations. It is easily seenthat the h ^Y �l ^Y �l0 i0 in (4.14) is proportional to ��� because of the di�erentsymmetrical properties ^JLk and ^"k under the time inversion.Using the general expressions obtained above and the properties ofMori projection operators, the frequency matrix (3.16) and the matrixof memory functions (3.17) can be calculated with ^P = f ^Y0; ^Y1; : : : ; ^Yng.For frequency matrix we havei
 = 0BBBBBB@ i
0 I��0 i
1 I 0��1 i
2 I: : : : : : : : :0 ��n�2 i
n�1 I��n�1 i
n
1CCCCCCAwherei
l = i
ll = hiL ^Yl ^Y +l i0h ^Yl ^Y +l i�10 ; (4.15)�l = i
l+1;l = hi^L^Yl+1 ^Y +l i0h ^Yl ^Y +l i�10 == �h ^Yl+1 ^Y +l+1i0h ^Yl ^Y +l i�10 ; (4.16)i
l�1;l = hi^L^Yl�1 ^Y +l i0h ^Yl ^Y +l i�10 = h ^Yl ^Y +l i0h ^Yl ^Y +l i�10 = I; (4.17)I is a unit matrix. All of other elements of the frequency matrix areequal zero. Moreover, as follows from the time reversal properties, forthe longitudinal 
uctuations i
l and �l are nondiagonal and diagonalmatrices, respectively. For the transverse 
uctuations we have i
l = 0.>From the de�nition of matrix of memory functions (3.17) and theequality (1�Ps)i^L ^P = (1�Ps)0BB@ i^L^Y0i^L^Y1: : :i^L^Ys 1CCA = 0BB@ 00: : :^Ys+1 1CCA

ICMP-96-02E 18it is seen that the matrix of memory functions has only one non-zeroblock, namely ~'(s) = 0BBBB@ 0 0 : : : 0 00 0 : : : 0 0: : :0 0 : : : 0 00 0 : : : 0 ~'s 1CCCCAwhere~'s(z) = h ^Ys+1 1z + (1�Ps)i^L ^Y +s+1i0h ^Ys ^Y +s i�10 : (4.18)The set of equations for h ^Yli! follows from (2.28) when^P = f ^Y0; ^Y1; : : : ; ^Ysg �i! � i
0�h�^Y0i! � h�^Y1i! = 0;�0h�^Y0i! + �i! � i
1�h�^Y1i! � h�^Y2i! = 0;::::::::::::::::::::: (4.19)�s�2h�^Ys�2i! + �i! � i
s�1�h�^Ys�1i! � h�^Ysi! = 0;�s�1h�^Ys�1i! + �i! � i
s + ~'s(z)�h�^Ysi! = 0:Solving the last equation with respect to h�^Ysi! and excluding thisvariable from Eqs. (4.19) we obtain the transport equations for ^P =f ^Y0; ^Y1; : : : ; ^Ys�1g with the memory functions ~'s�1(z) in the form~'s�1(z) = �zI � i
s + ~'s(z)��1�s�1: (4.20)The recurrent relations (4.20) give the connection between the lower-and higher-order memory functions and can be used for arbitrary choiceof dynamic variables and any s. It is necessary to stress that the relation(4.20) is in fact exact. This statement could also be proved by the anotherway which was applied in Ref. [9] for the particular case s = 1, namely,using the known operator equality(A+B)�1 = A�1 �A�1B(A+B)�1in Eq. (4.18) with A = z + (1�Ps�1)i^L and B = ��Psi^Lt.Let us consider some particular results which follows from (4.20).Using (4.20) the known result of Mori for dynamic structural factor inthe form of an ordinary continued fraction [26] can be reproduced when



19 Preprintthe set of the dynamic variables for longitudinal 
uctuations includesthe densities of particles and momentum as well as higher order theirderivatives. Then, as it follows from (4.15), we have i
l = 0. Moreover,�l and ~'l(z) have not a matrix structure in this case and are usualfunctions, so that we have~'s�1(z) = �s�1z + ~'s(z) : (4.21)The similar result can be found in the case of transverse 
uctuations.For longitudinal 
uctuations, if the density of energy as well as itsderivatives are taken into account, i
l, �l, and ~'l(z) are 2� 2 matrices.In this case the recurrent relation (4.20) for arbitrary s can be rewrittenas follows~'11s�1(z) = �11s�1z + ~'11s (z)� (�i
12s + ~'12s (z))(�i
21s + ~'21s (z))z + ~'22s (z) ;(4.22)~'12s�1(z) = �22s�1�i
21s + ~'21s (z)� (z + ~'11s (z))(z + ~'22s (z))�i
12s + ~'12s (z) ; (4.23)~'21s�1(z) = �11s�1�i
12s + ~'12s (z)� (z + ~'11s (z))(z + ~'22s (z))�i
21s + ~'21s (z) ; (4.24)~'22s�1(z) = �22s�1z + ~'22s (z)� (�i
21s + ~'21s (z))(�i
12s + ~'12s (z))z + ~'11s (z) ;(4.25)and the known relations [9,27] for the memory functions of three- and�ve-mode descriptions (s = 1) follow immediately from (4.22)-(4.25).Using the equations for time correlation functions (3.23) and theexpressions (4.22)-(4.25), the time correlation functions of the hydrody-namic variables can be written in the form of the "generalized continuedfraction". As it was pointed out in Ref.[17] such expressions for the timecorrelation functions correctly conveys the analytic structure of the cor-responding Green functions in the complex z-plane.

ICMP-96-02E 205. Concluding remarksZubarev's method of the nonequilibrium statistical operator hasbeen applied to derive the general equations of the linear relaxation the-ory of a 
uid for the set of dynamic variables which includes besidesthe hydrodynamic macrovariables their higher order derivatives. The re-current relations between the lower- and higher-order memory functionsare found. In fact these relations via Eqs. (4.5)-(4.5) give the connec-tions between the generalized transport coe�cients and the higher-ordermemory functions. The recurrent formulas (4.20) are exact when the ex-plicit expressions (3.17) (or (3.17)) for the memory functions are used.Therefore, we may consider the set of the equations (3.15), (3.23) and(3.26) for the hydrodynamic macrovariables, which are complemented bythe recurrent relations (4.20), as the basic equations of the generalizedhydrodynamics of simple 
uids. These equations describe correctly thehydrodynamic limit, make possible to calculate the generalized transportcoe�cients, and can be used in the intermediate range of wavenumbersk and frequencies !.It is also shown that the results of many known descriptions followimmediately from the basic equations when the dynamic variables andan approximation for the memory functions are speci�ed. We will dis-cuss this point in more detail in the next paper of a series. In general, itis important to stress especially, the choice of an approximation for thememory functions should be considered in combinations with the recur-rent relations (4.20). In such a manner only the consistent description ofa 
uid can be obtained. From the physical point of view the choice of anapproximation is closely connected to some dynamical model of a 
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