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1 PreprintIntroductionThe time-asymmetric models appear in literature on few independentways [1-2;3;4-5], and by now they form integrated approach [6-8] to therelativistic direct interaction theory (RDIT). These models are attrac-tive in several aspects. They form rather wide class of exactly integrablerelativistic two-particle models, i.e., there exist the su�cient numberof integrals of motion which make it possible to reduce the problemto quadratures [3,7]. Besides, the time-asymmetric models can be re-formulated equivalently into frameworks of various formalisms of RDIT[3,6,7,9]. The fact of especially physical meaning is that there exists theclose relation of these models to the Fokker-type integrals formalism,and by means of the latter { to �eld-theoretical descriptions of parti-cle interactions. In Refs.[10-12] the class of Fokker-type action integralsis found which corresponds to particle interactions mediated by lineartensor �elds of arbitrary rank. It can be the source of two-particle mod-els with time-asymmetric analogs of such interactions (in the cases ofmassless �elds) in which the �rst particle perceives the retarded �eld ofthe second particle while the latter sense the advanced �eld of the �rstparticle.In Refs.[8,13] the time-asymmetric models with scalar, vector (seealso [3]) and mixed interactions were studied: starting from the Fokker-type action integrals these models were reformulated into the frameworkof the Hamiltonian description (following the Refs.[6,7]) and correspond-ing two-body problems were reduced to quadratures and integrated. Herewe consider the time-asymmetric interaction which is the superpositionof �eld-type interactions of arbitrary �eld rank n. The time-asymmetricanalog of the gravitational interaction is proposed also.Among time-asymmetric �eld-type interactions the only (arbitrary)superposition of scalar and vector interactions permits the exact hamil-tonization of corresponding models. Beginning from the rank of �eldn = 2 and going on, the transition to the Hamiltonian description andthe construction of quadratures need of complicate algebraic (or tran-scendental) equations to be solved. Here we overcome these di�cultiesusing the expansion in coupling constant. As a result we obtain in the sec-ond approximation the Hamiltonian description of the time-asymmetricmodel with an arbitrary �eld-type interaction (including the gravita-tional interaction) explicitly. The corresponding two-body problem isreduced to quadratures and integrated in the case of �nite motion.
ICMP{96{14E 21. The time-asymmetric �eld-type models: originalformulation and hamiltonizationConsider the Fokker-type action integral of the following form:I = � Xa maZ d�aq _x2a �XXa < b ZZ d�ad�bq _x2aq _x2bfab(!ab)G(xab): (1)Herema is the rest mass of a-th particle; x�a(�a) (� = 0; 3) are the covari-ant coordinates of the world line of a-th particle parametrized by an arbi-trary evolution parameter �a; _x�a(�a) � dx�a=d�a; x�ab � x�a(�a)� x�b (�b);G(xab) = �(x2ab) is the symmetrical Green's function of the d'Alambertequation; !ab � _xa � _xb=p _x2a _x2b . We choose the time-like Minkowski met-rics, i.e., k���k = diag(+;�;�;�), and put the light speed to be unit.In the case of fab to be a polynomial (or analytical) function, theinteraction of a-th and b-th particles described by the action (1) canbe considered (following [10-12]) as a �eld-type interaction mediated bythe �nite (in�nite) superposition of some massless linear tensor �elds.Especially, scalar (rank of �eld n = 0) and vector (n = 1) interactionscorrespond to the function fab = gagb!nab, where ga is the charge of a-thparticle.Considering a two-particle system and performing the replacementG(x12)! G�(x12) in (1), whereG�(x) = 2�(�x0)�(x2); � = �1 (2)is the retarded (advanced) Green's function, one obtain the action inte-gral I = � 2Xa=1maZ d�aq _x2a �ZZ d�1d�2q _x21q _x22f(!12)G�(x12) (3)which gives rise to the corresponding time-asymmetric model. In orderto study the dynamics of this model we transit (following [6,7]) to itsHamiltonian description which is relevant for our purpose.Once integrating the second term of the action (3) we reduce thelatter to a single-time form. So that, we obtain the description of ourmodel in the framework of manifestly covariant Lagrangian formalismwith the holonomic constraint x2 = 0, �x0 > 0 and the LagrangianfunctionL = �F (�1; �2; !); (4)



3 Preprintwhere � � � _y � x > 0, x � x1 � x2, y � (x1 + x2)=2, �a � p _x2a=�,! � !12,F � 2Xa=1ma�a + �1�2f(!) � Ff + Fint (5)and all variables depend on an arbitrary common evolution parameter� . The transition to the manifestly covariant Hamiltonian descriptionwith constraints leads to the mass-shell constraint which determines thedynamics of the model and has the following form:�(P 2; �2; P � x; � � x) � �f + �int = 0: (6)Here �� � w� � x�P � w=P � x; P� and w� are canonical momentaconjugated to y� i x� respectively; the function�f = 14P 2 � 12(m21 +m22) + (m21 �m22) v � xP � x + v2 (7)corresponds to the free-particle system, while the explicit form of �int de-pends in complicate manner on the choice of original Fokker-type actionintegral 1. In present case the �int can be written down as follows:�int = � 2m1m2�P � x (f � (! � �)f 0) �m21b2 +m22b1 � (m21 +m22)f 0 + 2m1m2(f � !f 0)�P � x ((b1 � f 0)(b2 � f 0)� (f � !f 0)2) � (8)�(f � !f 0)2 � f 02� ;where� � P 2 �m21 �m222m1m2 ; (9)ba � ��12P � x+ (�)�av � x� ; a = 1; 2; �a � 3� a; (10)f 0(!) � df(!)=d!, and ! is related to canonical variables by the set ofequations:(ba � f 0)�a � (f � !f 0)��a = ma; a = 1; 2; �a � 3� a; (11)b21�21 + b22�22 + 2(b1b2! � �P � xf)�1�2 = P 2: (12)1The quantities �; �a; ! introduced here and T , A, B, C in [6] are mutuallyrelated as follows: � = T; �1 = A; �2 = B; ! = C=(AB).

ICMP{96{14E 4The equations (11) which are linear in �a make it possible to express�a through ba and !,�a = (b�a � f 0)ma + (f � !f 0)m�a(b1 � f 0)(b2 � f 0)� (f � !f 0)2 : (13)The substitution of (13) into (12) gives for ! an equation which cum-bersome form causes the main di�culty of hamiltonization of presentmodel.In the special casef(!) = �+ �!; (14)which corresponds to the arbitrary superposition of scalar and vectorinteractions with coupling constants � and �, respectively, the ! fall upthe right-hand side (r.-h.s.) of Eq.(8) what permits to obtain immediatelythe mass-shell constraint:�f � 2m1m2�P � x (�+ ��) �m21(b2 � �) +m22(b1 � �) + 2m1m2��P � x ((b1 � �)(b2 � �)� �2) (�2 � �2) = 0: (15)Notice that in the case � = �� the last term in the left-hand side (l.-h.s.) of Eq.(15) vanishes what simpli�es to a great extent the dynamicsof the model and what makes it to be similar to the dynamics of thenonrelativistic system with Coulombian interaction (see[13]).In all other (i.e., except the (14)) cases the �int depends essentiallyon the quantity !, which, however, can not be expressed explicitly interms of canonical variables. Other way, one can consider the equation(12) as the mass-shell constraint with the quantities �a and ! to beeliminated by means of Eqs.(6)-(8), (13). Although in such a mannerwe can not achieve a desirable simpli�cation. Indeed, the case of secondrank tensor interaction leads to the 5-order algebraic equation (while the(n � 0){rank case { to the (3n� 1){order equation) with ! to be found.In order to overcome this di�culty we use in the next Section theexpansions into the power series of a coupling constant.2. Hamiltonian description in the second approxi-mation of a coupling constantHereafter we suppose that the function f(!) is of �rst order of the cou-pling constant � which is meant to be small, i.e., f(!) � O(�). Accord-ingly, ! can be eliminated from the l.-h.s. of Eq.(8) using the successiveapproximation method. Here we obtain the second approximation in �.



5 PreprintFor the free-particle case which corresponds to zero order approxi-mation (f = 0), the solution �0a, !0 of the set of equations (12)-(13) is asfollows:�0a = ma=ba; !0 = �: (16)Let us take ! = !0 + �!, where �! � O(�), and calculate the r.-h.s.of Eq.(8) up to �2. The �rst term contains the expression in brackets� O(�) which can be written down as follows:f(!)� (! � �)f 0(!) = f(�+ �!)� �!f 0(�+ �!) � f(�) +O(�3): (17)The second term � O(�2) is equal in this approximation to the maincontribution of its expansion series in �. Thus,�int = �2m1m2�P � x f(�)� h(�)�P � x �m21b1 + m22b2 �+O(�3); (18)whereh(�) � ((f(�) � �f 0(�))2 � (f 0(�))2 � O(�2): (19)For the linear n-rank tensor �eld the function f(�) reads:fn(�) = �Tn(�); (20)where � = g1g2, and Tn(�) is the Tchebyshev polynomial [12]. Especially,T2(�) = 2�2 � 1. Taking � = �
m1m2, where 
 is the gravitationalconstant, this latter case can be considered as such corresponding to thegravitational interaction. But since the original Fokker action integrallike the (1) describes the gravitating particle system correctly in the �rstapproximation only, its time-asymmetric counterpart should be profoundnot far as in this approximation. In order to construct the more adequatemodel which takes into account second order e�ects we refer to the directgravitational interaction theory.3. The time-asymmetric model of gravitational in-teractionAmong approaches to the direct gravitational interaction theory oneproposed by Vladimirov and Turygin [14] is meant to be most adequateto the general theory of relativity. This approach is based on the actionwith multiple Fokker-type integrals which is built up by means of theiteration procedure. In the second approximation of 
 the action has theform:

ICMP{96{14E 6I = �Xa maZ d�aq _x2a +
XXa < b mambZZ d�ad�bq _x2aq _x2b (2!2ab� 1)G(xab) +
22 Xa Xb 6=aXc6=amambmcZZZ d�ad�bd�cq _x2aq _x2bq _x2c �(2!2ab� 1)(2!2ac� 3)G(xab)G(xac) (21)(see [15] from which one can easy obtain this formula).The second order contribution in (21) consists of both sorts of terms:those which correspond to triple interactions and those which describea self-action via the in
uence of other particle. Just the latters re-main in the two-particle case which we consider below. Now perform-ing the substitution G(x12) ! G�(x12) in the �rst order term andG(x12)G(x120 ) ! G�(x12)G�(x120 ), G(x12)G(x102) ! G�(x12)G�(x102)in the second order terms (subscript a0 = 10; 20 denotes � 0a-dependence ofcorresponding variables) we obtain the action for the time-asymmetricgravitational interaction:I = � 2Xa=1maZ d�aq _x2a +
m1m2ZZ d�1d�2q _x21q _x22 (2!212 � 1)G�(x12) ��1 + 
2 �m1Z d� 01q _x210 (2!2102 � 3)G�(x102) +m2Z d� 02q _x220 (2!2120 � 3)G�(x120)�� : (22)The structure of (22) makes it possible (in analogy to the previouscases) to reformulate the description of this model into the framework ofthe Lagrangian formalism. The corresponding Lagrangian has the form(4)-(5) where, however, the function f depends on �a too,f(�1; �2; !) = �
m1m2(2!2�1)�1 + 
2 (2!2�3)(m1�1 +m2�2)�: (23)Now we transit to the Hamiltonian description and obtain the mass-shell constraint up to the 
2-accuracy. Because the �a-dependence of f(22) appears in the second order term only, the straightforward substi-tution of f(�1; �2; !) into the formulae (18)-(19) is correct. After higher



7 Preprintorder terms are neglected it turns out that the second order contributionin the �rst term of (18) is similar (up to a �-dependent factor) to thesecond term, thus it can be associated naturally with the latter. The�nal function �int for the gravitational interaction has the form (18),where fgr(�) = �
m1m2(2�2 � 1); (24)hgr(�) = �2(
m1m2)2(2�2 + 1): (25)It is essential that the mass-shell constraint (6)-(7), (18) has a com-mon structure for both the linear-�eld and gravitational interactions. Itspeci�es the sort of interaction by the functions f(�) and h(�) whichdepend on the integral of motion � only. This fact permits to integratethe two-body problem considering f and h as arbitrary �rst and secondorder functions, respectively, until the �nal analysis of formulae.4. Integration of the two-body problemIn order to study the dynamics of the time-asymmetric models it is con-venient, following [6,7], to transit from the manifestly covariant to three-dimensional Hamiltonian description in the framework of the Bakamjian-Thomas model [16-18]. Within this description ten generators of thePoincar�e group P�, J�� as well as the covariant particle positions x�a arethe functions of canonical variablesQ; P; r; k. The only arbitrary func-tion entering into expressions for canonical generators is the total massjP j=M(r;k) of the system which determines its internal dynamics. Forthe time-asymmetric models this function is de�ned by the mass-shellequation [6,7] which can be derived from the mass-shell constraint viathe following substitution of arguments on the l.-h.s. of (6):P 2!M2; v2! �k2; P �x!�Mr; v �x! �k�r; here r �jrj : (26)In our case use of (7), (18) leads to the mass-shell equation of the form:14M2 � 12(m21 +m22)� �(m21 �m22)k � rMr � k2 � 2m1m2 f(�)Mr �h(�)Mr � m2112Mr � �k � r + m2212Mr + �k � r� = O(�3): (27)Due to the Poincar�e-invariance of the description it is su�cient tochoose the centre-of-mass (CM) reference frame in which P = 0; Q = 0.Accordingly, Po = M , J0i = 0 (i = 1; 2; 3), and the components Si �12" jki Jjk form a 3-vector of the total spin of the system (internal angular
ICMP{96{14E 8momentum) which is the integral of motion. At this point the problem isreduced to the rotating-invariant problem of some e�ective single particlewhich is integrable in terms of polar coordinates,r = rer; k = krer + Se'=r: (28)Here S �jS j; the unit vectors er, e' are orthogonal to S, they formtogether with S a right-oriented triplet and can be decomposed in termsof Cartesian unit vectors i; j:er = i cos'+ j sin'; e' = �i sin'+ j cos'; (29)where ' is the polar angle.The corresponding quadratures read:t� t0 =Z dr @kr(r;M; S)=@M; (30)'� '0 = �Z dr @kr(r;M; S)=@S; (31)where t = 12 (x01 + x02)SM is the �xed evolution parameter (unlike unde-termined �), and the radial momentum kr being the function of r; M; Sis de�ned by the equation (27) written down in terms of these variables,14M2 � 12(m21 +m22)� �(m21 �m22) krM � k2r � S2r2 � 2m1m2 f(�)Mr �h(�)Mr2 � m2112M � �kr + m2212M + �kr� = O(�3): (32)The solution of the problem given in terms of canonical variablesenables to obtain particle world lines in the Minkowski space using thefollowing formulae [6,7]:x0a = t+ 12(�)�a�r; (33)xa = �12(�)�a + � krM � rer + � SM e': (34)Especially, the vector x = r characterizes the relative motion of particles.Let us consider the quadrature (31). In terms of denotationsu � 1=r; q � kr + �m21 �m222M : (35)it can be written down as follows:'� '0 =Z dr @�=@S@�=@kr �����=0 =Z 2S du@�=@krj�=0 ; (36)



9 Preprintwhere� = "� q2 � S2u2 � 2m1m2M f(�)u �h(�)M � m21M1 � �q + m22M2 + �q�u2 = O(�3); (37)@�@kr = �2q � �h(�)M � m21(M1 � �q)2 � m22(M2 + �q)2�u2 +O(�3); (38)" � 14M2 � 12(m21 +m22) + (m21 �m22)24M2 = �m1m2M �2 (�2 � 1); (39)Ma � M2 �1 + m2a �m2�aM2 � : (40)In order to calculate the integrant of (36) in an explicit form the qshould be eliminated from the r.-h.s. of (38) by means of the equation(37). Using the successive approximation method we do it in such a wayto express the quadrature (36) in terms of elementary functions and tospread the integration over whole the domain of possible motions (DPM){ including returning points. The latters obey the conditions� = 0; @�=@kr = 0; (41)which yield the following value of q:q = ��h(�)2M �m21M21 � m22M22 �u2 +O(�3) � O(�2); (42)and which lead to the square equation for u,�2(u) � � jq=O(�2)= "� 2m1m2M f(�)u� ^S2u2 = O(�3); (43)where^S2 � S2 + h(�)M �m21M1 + m22M2� : (44)Now we search the expression for q in whole DPM. Let q1 = q + �qwhere q1 = �R � �p�2(u) (45)satis�es the equation (37) in the �rst order approximation. The aboveexpression for q1 enables to represent the integrant of (36) in the sim-ple calculative form without lost the accuracy at returning points. Theresulting expression for �q is as follows:�q = ��h(�)2M � m21M1(M1 � �R) � m22M2(M2 � �R)�u2 +O(�3): (46)
ICMP{96{14E 10Using (45){(46) in (38) we write down explicitly the quadrature (36),'� '0 = � Z SduR �1� h(�)M � m21M1(M1 � �R)2 +m22M2(M2 � �R)2�u2 +O(�3)� ; (47)which can be evidently exppressed in terms of elementary functions.Similarly one can obtain rather cumbersome expression for the qua-drature (30) which we ommit here.Hereafter we limit ourselves by �nite motions and integrate (47).DPM in this case is bounded by two returning points which are theroots of the equation (43),u1;2 = a � b; (48)wherea � m1m2M ^S2 f(�); b �qa2 + "= ^S2: (49)They must be real and positive what yields the conditions:f(�) < 0 (50)and ��m1m2M ^S f(�)�2 < " < 0: (51)The latter means that " � O(�2) what simpli�es the calculation of thequadrature (47). Indeed, in this case b �jaj� O(�), u2 � O(�2) (becauseu1 < u < u2), and the u2-proportional term can be neglected. Hence thequadrature can be calculated elementarily using the substitution:u = jaj + b cos (52)and it leads (at the certain choice of an integration constant) to thefollowing equality: = ^SS ' � (1� �)': (53)The quantity � in the taken approximation gives the simple form,� = 1� ^SS = 1�s1 + h(�)MS2 �m21M1 + m22M2� �� h(�)2MS2 �m21M1 + m22M2� � �h(1)2S2 ; (54)



11 Preprintsince one can putM � m1+m2,Ma � ma, � � 1 in second order terms.The equation of relative motion trajectory follows immediately from(52)-(53):1=r = jaj + b cos ((1� �)') (b <jaj): (55)It describe an ellipse which precesses with the perihelion advance�' = 2�� = ��h(1)=S2: (56)In the case of the linear tensor interaction of arbitrary rank n the peri-helion advance �' can be calculated by means of the formulae (19){(20)and the equalities Tn(1) = 1; T 0n(1) = n2:�' = �(2n2 � 1)(g1g2=S)2; (57)and for the gravitational interaction { using (24):�' = 6�(
m1m2=S)2: (58)Finally, we note that spatial particle trajectories calculated by meansof (34) turn out to be more intricate than the relative trajectory whatis the typical feature of time-asymmetric models.ConclusionThe speci�c feature of the formalism of Fokker-type action integrals isthat the relativistic particle systems described within its framework pos-sess in�nite number of degrees of freedom. In order to make the dynamicsof such systems tractable mechanically we are forced somehow to cut o�extra degrees of freedom. The time-asymmetric models can be consideredas a possible way leading to the description of systems with �eld-typeinteraction in usual terms of the analytical mechanics.The results presented here substantiate physical grounds of thesemodels. Namely, the values of perihelion advance �t those obtained inframeworks of various quasirelativistic approaches to RDIT (see [19] and[20] for the electromagnetic (i.e., vector) and gravitational interactions,and [21,12,22] from which it is easy to derive values of �' for other�eld-type interactions). Furthermore, unlike these latter approaches thetime-asymmetric models possess the exact Poincar�e invariance even inapproximations in a coupling constant. This fact admits the analysisof essentially relativistic particle motions which occur in the scatter-ing problem just in the �rst-order approximation, while in the boundedstates problem { in the exact consideration (for scalar and vector inter-actions [8,3]) or in higher-order approximations.

ICMP{96{14E 12The Hamiltonian description of time-asymmetric models outlines away leading to the quantum mechanics of particle systems with a �eldinteraction which is alternative to the Bethe-Salpeter equations andquasipotential approach.The author is much grateful to Professor R. Gaida and Doctor V.Tretyak for helpful discussion of this work.References[1] Staruszkiewicz A. An example of a consistent relativistic mechanicsof point particles // Ann. der Phisik, 1970, vol. 25, No 4, p. 362{367.[2] Rudd R.A., Hill R.N. Exactly solvable electrodynamic two-bodyproblem // J. Math. Phys, 1970, vol. 11, No 9, p. 2704{2710.[3] K�unzle H.P. A relativistic analogue of the Kepler problem // Int.J. Theor. Phys, 1974, vol. 11, No 6, p. 395{417.[4] Sokolov S.N., Tretyak V.I. The front form of relativistic dynamics intwo-dimensional space-time and its relation with the Hamiltoniandescription // Teor. Mat. Fiz., 1986, vol. 67, No 1, p. 102-114.[5] Mayorov A.A., Sokolov S.N., Tretyak V.I. Speci�cs of the parti-cle motion and spreading of perturbations on the front form oftwo-dimensional relativistic dynamics. Serpukhov, 1986. / PreprintIHEP 86-243, 62 p.[6] Duviryak A., Tretyak V. Classical relativistic two-body dynamicson the light cone // Condensed Matter Physics, 1993, issue 1, p.92-107 (in Ukrainian).[7] Duviryak A. The time-asymmetric Fokker-type integrals and therelativistic dynamics on the light cone. Lviv, 1996. / Preprint ICMP-96-13E, 26 p.[8] Duviryak A., Tretyak V., Shpytko V. Exactly solvable two-particlemodels in the isotropic form of relativistic dynamics. In: Hadrons-94. Proc. of workshop on soft physics (strong interaction at largedistance). Uzhgorod, Ukraine, September 7-11, 1994. Kiev, 1994, p.353{362.[9] Staruszkiewicz A. Canonical theory of the two-body problem inthe classical relativistic electrodynamics // Ann. Inst. H. Poincar�e,1971, vol. 14, No 1, p. 69{77.[10] Havas P. Galilei- and Lorentz-invariant particle systems and theirconservation laws. In: Problems in the Foundations of Physics.Berlin, Springer, 1971, p. 31{48.[11] Ramond P. Action-at-a-distance theories and dual models // Phys.Rev. D., 1973, vol. 7, No 2, p. 449{458.



13 Preprint[12] Tretyak V.I. Fokker-type action integrals and forms of relativisticLagrangian dynamics. Thesis on search of the degree of doctore ofphysical and mathematical sciences. Lviv State University, Lviv,1996. 306 p. (in Ukrainian).[13] Duviryak A. Symmetries of the relativistic two-particle model withscalar-vector interaction // Nonlinear Math. Phys., 1996, vol. 3, No3-4, p. 372-378.[14] Vladimirov Yu.S., Turygin A.Yu. Theory of direct interparticle in-teraction. Moscow, Energoatomizdat, 1986, 136 p. (in Russian).[15] Turygin A.Yu. Equations of motion in second approximation of di-rect gravitational interaction theory. In: Problems of theory of grav-itation and elementary particles. Issue 13. Moscow, Energoatomiz-dat, 1982, p. 80{85 (in Russian).[16] Bakamjian B., Thomas L.H. Relativistic particle dynamics. II //Phys. Rev., 1953, vol. 92, No 5, p. 1300{1310.[17] Duviryak A.A., Kluchkovsky Yu.B. Covariant two-particle worldlines in relativistic Hamiltonian mechanics // Matemat. Metodyi Fiz.-Mekh. Polya, 1991, issue 34, p. 100-105 (in Ukrainian; transl.in English: J. Soviet Math., 1993, vol. 66, No 6, p. 2648-2652).[18] Duviryak A.A., Kluchkovsky Yu.B. Space-time interpretation of rel-ativistic Hamiltonian mechanics of particle system // Ukr. Fiz. Zh.,1992, vol. 37, No 2, p. 313-320.[19] Darwin C.G. The dynamical motions of charged particles // Phil.Mag., 1920, vol. 39, No 233, p. 537{551.[20] Ryabushko A.P. Motion of bodies in general theory of relativity.Minsk, Vysheisha shkola, 1979, 240 p. (in Russian).[21] Gaida R.P. Quasi-relativistic systems of interacting particles // Fiz.Elem. Chast. i Atom. Yadra, 1982, vol. 13, issue 2, p. 427{493 (inRussian; transl. in English: Sov. J. Part. Nucl., 1982, vol. 13, p.179).[22] Yaremko Yu.G. Quasi-relativistic two-body problem in Lagrangiancentre-of-mass variables. Kiev, 1990. / Preprint Inst. for Theor.Phys. 90-63U, 33 p. (in Ukrainian).
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