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Introduction

The time-asymmetric models appear in literature on few independent
ways [1-2;3;4-5], and by now they form integrated approach [6-8] to the
relativistic direct interaction theory (RDIT). These models are attrac-
tive in several aspects. They form rather wide class of exactly integrable
relativistic two-particle models, i.e., there exist the sufficient number
of integrals of motion which make it possible to reduce the problem
to quadratures [3,7]. Besides, the time-asymmetric models can be re-
formulated equivalently into frameworks of various formalisms of RDIT
[3,6,7,9]. The fact of especially physical meaning is that there exists the
close relation of these models to the Fokker-type integrals formalism,
and by means of the latter — to field-theoretical descriptions of parti-
cle interactions. In Refs.[10-12] the class of Fokker-type action integrals
is found which corresponds to particle interactions mediated by linear
tensor fields of arbitrary rank. It can be the source of two-particle mod-
els with time-asymmetric analogs of such interactions (in the cases of
massless fields) in which the first particle perceives the retarded field of
the second particle while the latter sense the advanced field of the first
particle.

In Refs.[8,13] the time-asymmetric models with scalar, vector (see
also [3]) and mixed interactions were studied: starting from the Fokker-
type action integrals these models were reformulated into the framework
of the Hamiltonian description (following the Refs.[6,7]) and correspond-
ing two-body problems were reduced to quadratures and integrated. Here
we consider the time-asymmetric interaction which is the superposition
of field-type interactions of arbitrary field rank n. The time-asymmetric
analog of the gravitational interaction is proposed also.

Among time-asymmetric field-type interactions the only (arbitrary)
superposition of scalar and vector interactions permits the exact hamil-
tonization of corresponding models. Beginning from the rank of field
n = 2 and going on, the transition to the Hamiltonian description and
the construction of quadratures need of complicate algebraic (or tran-
scendental) equations to be solved. Here we overcome these difficulties
using the expansion in coupling constant. As a result we obtain in the sec-
ond approximation the Hamiltonian description of the time-asymmetric
model with an arbitrary field-type interaction (including the gravita-
tional interaction) explicitly. The corresponding two-body problem is
reduced to quadratures and integrated in the case of finite motion.
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1. The time-asymmetric field-type models: original
formulation and hamiltonization

Consider the Fokker-type action integral of the following form:

I = - za:ma/dTa\/;g —
ZZ/ dTadTb\/;?z\/;gfab(wab)G(xab)- (1)

a < b

Here m,, is the rest mass of a-th particle; z*(7,) (1 = 0, 3) are the covari-
ant coordinates of the world line of a-th particle parametrized by an arbi-
trary evolution parameter 7,; &#(7,) = dat /dr,; o) = xt(1,) — z) (13);
G(zap) = 0(x2,) is the symmetrical Green’s function of the d’Alambert
equation; wqep = dq - &p/+/@24&7. We choose the time-like Minkowski met-
rics, i.e., ||nuw | = diag(+,—, —, —), and put the light speed to be unit.

In the case of f,; to be a polynomial (or analytical) function, the
interaction of a-th and b-th particles described by the action (1) can
be considered (following [10-12]) as a field-type interaction mediated by
the finite (infinite) superposition of some massless linear tensor fields.
Especially, scalar (rank of field n = 0) and vector (n = 1) interactions
correspond to the function fup = gogswl),, where g, is the charge of a-th
particle.

Considering a two-particle system and performing the replacement
G(z12) = Gy(212) in (1), where

G (2) = 26(1a%)5(a%),  n =l (2)

is the retarded (advanced) Green’s function, one obtain the action inte-

gral
[=-— ima/dm/:% —//dndm\/%\/;gf(wu)an(m) (3)

which gives rise to the corresponding time-asymmetric model. In order
to study the dynamics of this model we transit (following [6,7]) to its
Hamiltonian description which is relevant for our purpose.

Once integrating the second term of the action (3) we reduce the
latter to a single-time form. So that, we obtain the description of our
model in the framework of manifestly covariant Lagrangian formalism
with the holonomic constraint 2 = 0, nz > 0 and the Lagrangian
function

LZHF(U1,U2,W)a (4)
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where 0 =ny -z >0, =21 — 22, y = (21 +22)/2, 0, = \/52/0,
w = w2,

2
F= Zmaaa +o0102f(w) = Fy + Fipy (5)

a=1

and all variables depend on an arbitrary common evolution parameter
T.

The transition to the manifestly covariant Hamiltonian description
with constraints leads to the mass-shell constraint which determines the
dynamics of the model and has the following form:

d(P?, v?, Pz, v-x) = 5 + dpint = 0. (6)
Here v, = wy, — «,P - w/P - z; P, and w, are canonical momenta
conjugated to y* i x* respectively; the function
1. 1 VT
65 = 7P = 5(mi+m3) + (mi —m3) 5— +0* (7)

corresponds to the free-particle system, while the explicit form of ¢;,; de-
pends in complicate manner on the choice of original Fokker-type action
integral !. In present case the ¢;,; can be written down as follows:

b = = ST (]~ (=N -
m%bz +m§b1 - (mf +m§)f’+2mlm2(f_wf’) (8)
nP -z ((by — f)(by = f') = (f —wf')?)
((f —wf)? = £7),
where

2 2 2
P —mi —m3

A

(9)

2m1m2
_ 1 a ——
b, =7 EP-QZ-F(—)U'QZ , a=12, a=3-a, (10)

f'(w) = df(w)/dw, and w is related to canonical variables by the set of
equations:

(ba_fl)oa_(f_wfl)J&:maa a=1,2 a=3-a, (11)

b%o% + b%o% + 2(b1b2w — ’I]P - .’L’f)Ulo'z = Pz. (12)

1The quantities 0, 04, w introduced here and T, A, B, C in [6] are mutually
related as follows: 0 =T, 01 = A, 02 = B, w = C/(AB).
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The equations (11) which are linear in o, make it possible to express
o, through b, and w,
! !
b (b= S (f = of e i~
(b1 = f)(b2 = f') = (f —wf')?
The substitution of (13) into (12) gives for w an equation which cum-
bersome form causes the main difficulty of hamiltonization of present
model.
In the special case

fw) =a+ pw, (14)
which corresponds to the arbitrary superposition of scalar and vector
interactions with coupling constants a and 3, respectively, the w fall up
the right-hand side (r.-h.s.) of Eq.(8) what permits to obtain immediately
the mass-shell constraint:

2
b = Sp @B -
mi (b2 — B) + m3(b — B) + 2mimsa
nP -z ((by = B)(bz — B) — a?)
Notice that in the case o = £/ the last term in the left-hand side (1.
h.s.) of Eq.(15) vanishes what simplifies to a great extent the dynamics
of the model and what makes it to be similar to the dynamics of the
nonrelativistic system with Coulombian interaction (see[13]).

In all other (i.e., except the (14)) cases the ¢;,; depends essentially
on the quantity w, which, however, can not be expressed explicitly in
terms of canonical variables. Other way, one can consider the equation
(12) as the mass-shell constraint with the quantities o, and w to be
eliminated by means of Eqgs.(6)-(8), (13). Although in such a manner
we can not achieve a desirable simplification. Indeed, the case of second
rank tensor interaction leads to the 5-order algebraic equation (while the
(n > 0)-rank case — to the (3n — 1)-order equation) with w to be found.

In order to overcome this difficulty we use in the next Section the
expansions into the power series of a coupling constant.

(@®—=p3*) = 0. (15)

2. Hamiltonian description in the second approxi-
mation of a coupling constant

Hereafter we suppose that the function f(w) is of first order of the cou-
pling constant a which is meant to be small, i.e., f(w) ~ O(a). Accord-
ingly, w can be eliminated from the l.-h.s. of Eq.(8) using the successive
approximation method. Here we obtain the second approximation in «.
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For the free-particle case OVVhi(()Ih corresponds to zero order approxi-
mation (f = 0), the solution o, w of the set of equations (12)-(13) is as
follows:

0, =mq /b, W= (16)

Let us take w = w + dw, where dw ~ O(a), and calculate the r.-h.s.
of Eq.(8) up to a?. The first term contains the expression in brackets
~ O(a) which can be written down as follows:

fw) = (w =N f'(w) = fFA+0w) = dwf' (A + dw) =~ f(A) + O(a®). (17)

The second term ~ O(a?) is equal in this approximation to the main
contribution of its expansion series in a. Thus,

b =~ 22 iy - 2O (WL M) o),y
where
h(N) = (FO) = A () = (F/(\)* ~ 0(a?). (19)
For the linear n-rank tensor field the function f(\) reads:
FaN) = aT,(V), (20)

where a = g1 g2, and T, (A) is the Tchebyshev polynomial [12]. Especially,
Ty(A) = 202 — 1. Taking a = —ymyms, where v is the gravitational
constant, this latter case can be considered as such corresponding to the
gravitational interaction. But since the original Fokker action integral
like the (1) describes the gravitating particle system correctly in the first
approximation only, its time-asymmetric counterpart should be profound
not far as in this approximation. In order to construct the more adequate
model which takes into account second order effects we refer to the direct
gravitational interaction theory.

3. The time-asymmetric model of gravitational in-
teraction

Among approaches to the direct gravitational interaction theory one
proposed by Vladimirov and Turygin [14] is meant to be most adequate
to the general theory of relativity. This approach is based on the action
with multiple Fokker-type integrals which is built up by means of the
iteration procedure. In the second approximation of -y the action has the
form:
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I = —Zma/dra\/:% +
72 Zmamb//dTadTb\/;g\/% (2w, — )G (zap) +

a <b
2
TS S mamne [ faradnde 525732 x
a b#a c#a

(23— 1) (2wie— 3)G(was)Gwac)  (21)

(see [15] from which one can easy obtain this formula).

The second order contribution in (21) consists of both sorts of terms:
those which correspond to triple interactions and those which describe
a self-action via the influence of other particle. Just the latters re-
main in the two-particle case which we consider below. Now perform-
ing the substitution G(z12) — Gy(212) in the first order term and
G(712)G(212) = Gp(212)Gy(7127), G(212)G(T12) = Gy(212)Gr(T172)
in the second order terms (subscript a’ = 1',2" denotes 7,-dependence of
corresponding variables) we obtain the action for the time-asymmetric
gravitational interaction:

2
I = — Zma/dra\/:bg +
a=1
’ymlmg//dTldTgﬂ :i?%” CU% (2(4)%2 — ].)Gn(ﬂ?lg) X
g .
{1 + 3 <m1/d7'{\/x%, (2wl — 3)Gy(T112) +
mQ/dTg [32, (2wiy — 3)G,7(x12,)> } : (22)

The structure of (22) makes it possible (in analogy to the previous
cases) to reformulate the description of this model into the framework of
the Lagrangian formalism. The corresponding Lagrangian has the form
(4)-(5) where, however, the function f depends on o, too,

F(o1,02,w) = —ymima(2w? —1) (1 + %(2w2—3)(m101 + mm)). (23)

Now we transit to the Hamiltonian description and obtain the mass-
shell constraint up to the y2?-accuracy. Because the o,-dependence of f
(22) appears in the second order term only, the straightforward substi-
tution of f(o1,02,w) into the formulae (18)-(19) is correct. After higher
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order terms are neglected it turns out that the second order contribution
in the first term of (18) is similar (up to a A-dependent factor) to the
second term, thus it can be associated naturally with the latter. The
final function ¢;,; for the gravitational interaction has the form (18),
where

Fpr V) = —ymams(2X2 = 1), (24)

hgr(A) = =2(ymim2)?(20* + 1). (25)

It is essential that the mass-shell constraint (6)-(7), (18) has a com-
mon structure for both the linear-field and gravitational interactions. It
specifies the sort of interaction by the functions f(A) and h(A) which
depend on the integral of motion A only. This fact permits to integrate
the two-body problem considering f and h as arbitrary first and second
order functions, respectively, until the final analysis of formulae.

4. Integration of the two-body problem

In order to study the dynamics of the time-asymmetric models it is con-
venient, following [6,7], to transit from the manifestly covariant to three-
dimensional Hamiltonian description in the framework of the Bakamjian-
Thomas model [16-18]. Within this description ten generators of the
Poincaré group P, J,., as well as the covariant particle positions z/ are
the functions of canonical variables Q, P, r, k. The only arbitrary func-
tion entering into expressions for canonical generators is the total mass
|P|= M(r,k) of the system which determines its internal dynamics. For
the time-asymmetric models this function is defined by the mass-shell
equation [6,7] which can be derived from the mass-shell constraint via
the following substitution of arguments on the 1.-h.s. of (6):

P2 M?, v*— -X?, P-z—nMr, v-z— —k-r; here r =|r|. (26)
In our case use of (7), (18) leads to the mass-shell equation of the form:

1 1 k-r fA)
ZMQ — E(m% +m3) —n(m? — mg)m —k® —2mymo Ur

2 2
h()‘)<1 L R >:O(a3). (27)
Mr \sMr—nk-r sMr+nk-r

Due to the Poincaré-invariance of the description it is sufficient to
choose the centre-of-mass (CM) reference frame in which P =0, Q = 0.
Accordingly, P, = M, Jo; = 0 (i = 1,2,3), and the components S; =
%eijk Jji, form a 3-vector of the total spin of the system (internal angular
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momentum) which is the integral of motion. At this point the problem is
reduced to the rotating-invariant problem of some effective single particle
which is integrable in terms of polar coordinates,

r=re,, k=kwe +Se,/r (28)

Here S =|S|; the unit vectors e,, e, are orthogonal to S, they form
together with S a right-oriented triplet and can be decomposed in terms
of Cartesian unit vectors i, j:

e, =icosp+jsing, e, =—ising+jcosy, (29)

where ¢ is the polar angle.
The corresponding quadratures read:

t—to = /dr Ok, (r, M, S) /OM, (30)
© — Vo :—/dr 0k, (r,M,S)/0S, (31)
where ¢ = (29 + 29)cwm is the fixed evolution parameter (unlike unde-

termined 7), and the radial momentum k, being the function of r, M, S
is defined by the equation (27) written down in terms of these variables,

oo 1. 2 2 2\ Fr , _ S° )
ZM - §(m1 +my) —n(my _mz)M — kK — Yz 2mime Mr
h()\) m? m3 ) 3
‘ =0 . 32
Mr2 <%M _nkr * %M‘f‘nkr (a ) ( )

The solution of the problem given in terms of canonical variables
enables to obtain particle world lines in the Minkowski space using the
following formulae [6,7]:

1 _
oo =t+5(=)"r, (33)
1,k s
Xq = (5(—) + UM> rep + Uy (34)

Especially, the vector x = r characterizes the relative motion of particles.
Let us consider the quadrature (31). In terms of denotations

2 2
u=1/r, quT+n%. (35)
it can be written down as follows:
0p/0S 2S5 du
—on = ldr =[— 36
LR 06/0kr |4 ) 06Oks],y (36)
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where
¢=c—q* =S =22 f(Nu —
%f@dﬁW+Mf -) =0, (37)
gli = "hf(\/i) ((Mlni%nq) (Mznfnq) ) w00 (38)
. Ly (L RYPCEVREY)
Ma5%<1+%>. (40)

In order to calculate the integrant of (36) in an explicit form the ¢
should be eliminated from the r.-h.s. of (38) by means of the equation
(37). Using the successive approximation method we do it in such a way
to express the quadrature (36) in terms of elementary functions and to
spread the integration over whole the domain of possible motions (DPM)
— including returning points. The latters obey the conditions

¢=0, 0¢/0k, =0, (41)
which yield the following value of g:
h(A) (mi m3 2 3 2
— A My ~ 42
0= -n'ys) (5 -~ 1) v+ 0la®) ~ 02 (12)

and which lead to the square equation for u,
lIy(u) = ¢ |y=0(a2)= & = 2=~ f(Nu = §** = 0(a®),  (43)

where

A h(\) (m?  m2
=92y 2Ly 2. 44
S S+M <M1+M2 (44)

Now we search the expression for ¢ in whole DPM. Let (} =q+dq

where |
¢ =*R=+/II(u) (45)

satisfies the equation (37) in the first order approximation. The above

mimsa

expression for (} enables to represent the integrant of (36) in the sim-
ple calculative form without lost the accuracy at returning points. The
resulting expression for dq is as follows:

h(\)

0g = —n mi - s u? 4+ 0(a®).  (46)
2M \My(My FnR) Mz(Mz+nR)
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Using (45)—(46) in (38) we write down explicitly the quadrature (36),

/&m%_hM<mmgiWP

; )>u2—|—0(a3)}, (47)

m3
M2 (M2 + ’I}R 2
which can be evidently exppressed in terms of elementary functions.
Similarly one can obtain rather cumbersome expression for the qua-
drature (30) which we ommit here.
Hereafter we limit ourselves by finite motions and integrate (47).
DPM in this case is bounded by two returning points which are the
roots of the equation (43),

U2 = a + b, (48)
where

_ Mmimaz _ . Ae
a= YIS fA), b=+/a®+¢/S52 (49)

They must be real and positive what yields the conditions:

f(A) <0 (50)
and 2
- (T\}?f@)) <e<0. (51)

The latter means that e ~ O(a?) what simplifies the calculation of the
quadrature (47). Indeed, in this case b ~|a|~ O(«a), u® ~ O(a?) (because
uy < u < ug), and the u?-proportional term can be neglected. Hence the
quadrature can be calculated elementarily using the substitution:
= |a| + bcosy (52)
and it leads (at the certain choice of an integration constant) to the
following equality:
S
Y = 5 ¥

The quantity ¢ in the taken approximation gives the simple form,

5 h(\) (m3 | m3
§ = 1-5 = 1_\/1+M52 <M1+MZ
A

<m—%+m—3> ~ —Z(—;Z), (54)

= (1-0)e. (53)
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since one can put M ~ mj+ms, M, ~ m,, A & 1 in second order terms.

The equation of relative motion trajectory follows immediately from
(52)-(53):

1/r =la| + bcos((1—9)p) (b <lal). (55)
It describe an ellipse which precesses with the perihelion advance
Ap = 276 = —7h(1)/S% (56)

In the case of the linear tensor interaction of arbitrary rank n the peri-
helion advance Ag can be calculated by means of the formulae (19)-(20)
and the equalities T,,(1) = 1, T} (1) = n*:

Ap = (20 = 1)(g192/5)?, (57)
and for the gravitational interaction — using (24):
Ap = 6m(ymima/S)>. (58)

Finally, we note that spatial particle trajectories calculated by means
of (34) turn out to be more intricate than the relative trajectory what
is the typical feature of time-asymmetric models.

Conclusion

The specific feature of the formalism of Fokker-type action integrals is
that the relativistic particle systems described within its framework pos-
sess infinite number of degrees of freedom. In order to make the dynamics
of such systems tractable mechanically we are forced somehow to cut off
extra degrees of freedom. The time-asymmetric models can be considered
as a possible way leading to the description of systems with field-type
interaction in usual terms of the analytical mechanics.

The results presented here substantiate physical grounds of these
models. Namely, the values of perihelion advance fit those obtained in
frameworks of various quasirelativistic approaches to RDIT (see [19] and
[20] for the electromagnetic (i.e., vector) and gravitational interactions,
and [21,12,22] from which it is easy to derive values of Ag for other
field-type interactions). Furthermore, unlike these latter approaches the
time-asymmetric models possess the exact Poincaré invariance even in
approximations in a coupling constant. This fact admits the analysis
of essentially relativistic particle motions which occur in the scatter-
ing problem just in the first-order approximation, while in the bounded
states problem — in the exact consideration (for scalar and vector inter-
actions [8,3]) or in higher-order approximations.
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The Hamiltonian description of time-asymmetric models outlines a
way leading to the quantum mechanics of particle systems with a field
interaction which is alternative to the Bethe-Salpeter equations and
quasipotential approach.

The author is much grateful to Professor R. Gaida and Doctor V.
Tretyak for helpful discussion of this work.
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