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Awnoramis. [lag omucy cTpyKTYpHOTO (hazoBOro mepexoy aHrapMOHIY-
HEUW TOTeHIiaJ, 10 i€ Ha 10H KPUCTAJITHOL TPATKH, BUOMPAETHCA ¥
HaWb1IbII 3araJIbHOMY , HECUMETPUIHOMY BUTJIA], B AKOMY, Ha JTOJAAHOK
JIO 9eTBEPTOro, MPUCYTHIH aHTapMOHI3M TPETHOTO MOPAIKY; B3aEMOIidA
MIXK 10HAMHU B PI3HHX KOMIPpKaX BPaXOBYEThCS B HaDJIIMKEHH] CepemHbO-
ro mosiga. OTpuMaH] 3aJIeKHOCT] TapaMeTpa MOPAIKY, BIIBLHOI eHeprii Ta
MIeJIEKTPUTIHOL CIIPHAHATINBOCTI Bl 30BHIIMHBOTO TOJA 1 3aJEKHOCTI
mapaMeTpa MOpAIKY Ta BLIBHOI eHepTril Bl TeMIepaTypH Iad PI3HUX
mapamMeTpiB Mogeni. Orpumana dhasoBa miarpama (30BHIIIHE TOJe, TEM-
mepaTypa) 1 JocyiKeHnil BIIMB KyGiYHOTO aHTapMOHISMY Ha (hopMy
da30Bol glarpaMu Ta MOJIOKEHHdA KpUTHIHOI Toukn. locmimkennii da-
30BHII Tepexif MepIioro poay fAK MpH 3MIHI 30BHIIHBOTO MO, TaK 1
TeMIIepaTypu.

Structural Phase Transition in “¢® 4+ ¢*” Model.
[.V.Stasyuk, K.O.Trachenko

Abstract. In the context of description of structural phase transition,
the anharmonic potential effecting on the ion in the crystal lattice is
selected 1n the form that, in addition to quadric, includes cubic anhar-
monicity, thus possessing the most general non-symmetrical form; the
interaction among ions in different cells is accounted in the mean field
approximation. The dependencies of the order parameter, free energy
and dielectric susceptibility on the externally applied field and the order
parameter and free energy on the temperature are derived for various
model parameters. The phase diagram (external field, temperature) is
derived and the influence of cubic anharmonicity on the form of the
phase diagram and location of the critical point is studied. The first or-
der phase transition, occuring as the external field varies as well as the
temperature, is studied.
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1. Introduction

While studying the mechanism of the structural phase transitions in
crystals, the problem of choosing the type of the model potential V(q)
in the Hamiltonian

H= 2(2];\24 + Vig)) — %Zsﬁzqug’ (1)

describing an ion in the lattice cell is raised.

As is mentioned in a number of papers, including [1], in the harmonic
approximation V(q) = %qz, a = Mw?, the crystal lattice may become
unstable in the case of the negative value of . In [1] the simplest stabi-
lizing interaction is chosen in the form

ag? | Pa;
Vig) = —=-+ =~ (2)

As is shown in [1], in this model the system undergoes a structural
phase transition which in two limit cases can be displacive or order-
disorder in character, depending on the parameters in the initital Hamil-
tonian.

In a number of papers (see, for example, 2), the exact numerical cal-
culations were carried out, based on (2). Accounting for the interaction
among ions in different cells in the mean-field approximation, it was
shown that the system undergoes a structural order phase transition.
Studying the behavior of the order parameter, it was concluded that
approximate methods lead to the results which do not comply with the
results of exact nimerical approach (according to [1], even self-consistent
approach is not satisfactory when considerinig systems described by (2);
this approach describes the behavior of the soft mode properly only be-
yond the critical area described by the temperature of the first order
phase transition).

In addition to the description of ion motion in ferroelectrics, the
model anharmonic potential 1s applied to the description of the lattice
anharmonicity in the high temperature superconductors. As is shown in
[4], such an anharmonicity is inherent to the motion of the apex oxygen
in YBaCuO and other superconductive compounds. In [3] the model
potential possessing the most general non-symmetric form

2 3 4
ag; B 4
1% i) — - ) 3
() = 0 2L 01 @
was applied to describe the motion of the apex oxygen in YBayCuzO7_s
compound. Basing on (3) and applying the method of self-consistent
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phonons it was shown that the behaviour of the apex oxygen is bistable.
The dependence of the order parameter on the temperature was shown
to be of a hysteresis character. However, the question of the applicability
of the method of self-consistent phonons to the description of the phase
transition in the systems described by (3), including critical areas arises
(see [1]).

In addition to the studies of YBaCuO series, structural phase tran-
sitions in Hg-based superconductors have been recently of wide consid-
eration, in the context of reported connection between the lattice soft-
ening in these compounds and transition to the superconducting state.
Particlularly, in [5] it was mentioned that near the transition point an
anomalous abrupt mode softening was observed.

In this paper we assume that the model potential acting on the ion
posesses the most general form (3). Secondly, we propose to account
for the anharmonic character of the ion motion by the exact numerical
treatment of (1), in which the interaction among ions in different cells
we account for in the mean-field approximation, assuming the long-range
character of the intercell interaction. Basing on this approach, we derive
the dependencies of the order parameter, free energy and dielectric sus-
ceptibility on the externally applied field and the order parameter and
free energy on the temperature for various model parameters. Analysing
these dependencies we conclude that the system undergoes the first order
phase transition, as the external field varies as well as the temperature;
we note the anomalous behavior of the dielectric susceptibility near the
phase transition point. In addition to that, we construct the phase dia-
gram (external field, temperature) and study the influence of the cubic
anharmonicity on the form of the phase diagram and the location of the
critical point.

2. Model Hamiltonian

Accounting for the last term in (1) in the mean-field approximation leads
to

—% Z ijqiq; —{a)q — %@(qﬂ (4)

ij
p==> ¢ij
g

Before writing the Hamiltonian used for the calculations we comment
on the interaction of the ion and conductivity electrons which is beleived
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to play a crucial role in the mechanism of the high temperature super-
conductivity. In case of the symmetric form of the anharmonic potential
(2) the anharmonic mode can be described in terms of the pseudospin
variables (see, for example, [6]). Furthemore, in the Muller’s model the
interaction of the CuO-plane electrons and the local anharmonic mode
has the form g(niy + n;)S;, where S} is the pseudospin variable, gn;,
represents the energy change of the electron of spin o in site ¢ due to
the apex oxygen transition from one minimum (S? = —|—%) of the an-
harmonic potential to the other one (57 = —1) (see [6]). In case of
the non-symmetric form of the anharmonic potential (3) the interac-
tion between the ion and conductivity electrons can be chosen in the
Holstein-type form Dng, where n - electrons concentration. However, in
the considerations below we assume that n = const, d = n x D, thus
interpreting d as externally applied field acting on the ion.

This leads to the following form of H:
-y,

_p?

Ho— Mwi o, P vai

o Ty T3ty

+dg; + ¢(q)q: — %g0<q>2
(5)

We introduce the phonon creation and annihilation operators:

h . Mhwq
_ + — _pt
4=1/3 wo(b +0), p=1iy/ 5 (b—57). (6)

In matrix representation these operators have the form of infinite
matrices:

(b%)is = Sy Vi, (b)ij = Sig4n)Vi. (7)

After substituting ¢ and p in (5), according to (6), the Hamiltonian
matrix has the following form (all terms are divided by hwg):

H=d—C1f+ Co¥ + Cao(d + (g)) — Calg), (8)
where
CB( h N\ 1 B RN\ L
=3 <2Mw0) hwo’CQ <2Mw0) hwo )

&
TN
>*
N
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‘H
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and
21
5
Bij =0ii41)3iVi + 664135V F + Sii+3V/i(i + 1) (i +2) +
84V + (I +2), (10)
Yij = 0is3 (% + (i = 1)) + Gi(j42)2(2i + DVi(i + 1) +
8i(i+2)2(27 + DV + 1) + SigiraVili + D+ 2)(i + 3) +
S+ Vi + )G +2)( +3),
715 =it Vi + G4 Vi
As the calculation of dependencies of thermodynamical functions on

model parameters shows, accounting for the finite number of harmonic

oscillator levels, 1.e.; limiting the size of the Hamiltonian matrix to N =

25 is sufficient when % < 5. All calculations below are made within this

range of model parameters.

aij=0ij

3. Dependence of order parameter and free energy
on the external field. Phase diagram

For calculation of order parameter we use the expression

e~ PH
(o) = ) (1)

After the unitary transformation is made
Hy=V~'HV, (12)
which diagonilizes the Hamiltonian matrix, we get

_ Sp(ge=PHe)

(9) = ~Spe—Pl g=V=lqV (13)

Note that (¢) is contained in the Hamiltonian (5). Denoting

f=d+e(q) (14)

we derive the self-consistent system of equations:

=()(f, T
{(q}zéqi( s0<Q>)~ 15)
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Figure 1: Dependencies of the order parameter and free energy on the
external field, %:0.17.

Numerical solution of this system allows to obtain the dependence
(¢) = (g)(d) (Fig.1a) for various values of kT/hw (in all calculations
below, ¢=-20; C1=0.157 and C3=0.025). Using this dependence in the
Hamiltonian (5) we calculate the dependence of the free energy on the
external field, according to the expression below:

1
F(d, Ty ==T1InSp e P — §g0<q>2 (16)

Fig. 1b represents the dependence F=F(d).

The dependencies shown on Fig.1 are typical for the first order phase
transition. The abscissa of the self-crossing of the curve F' corresponds
to the value d* at which the phase transition occurs, causing a jump-like
change of the order parameter on Fig.la. Raising the temperature leads
to vanishing of hysteresis-type of this dependence, i.e., to vanishing of
phase transition.

Temperature increase results in decrease of d*. Finding numerically
d* for each value of the temperature, we construct phase diagram (d*,T')
which is shown on Fig.2a.

The left end of this curve corresponds to the value % = 4.6 at which
the phase transition vanishes, having a meaning of the critical point. The
same diagram is presented on Fig. 2b for the higher value of Cy = 0.197.
It shows that increasing of cubic anharmonism leads to the higher value
of the temperature at which the phase transition disappears, i.e., to the
higher value of the critical temperature.
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Figure 2: Phase diagram for different values of cubic anharmonicity:

Cy = 0.157 (a) and Cy = 0.197 (b).

Having the dependence (¢) = (¢)(d), one can calculate the dielectric
susceptibility function y ~ —%. The dependencies y~! = x~1(d) are
shown on Fig. 3a - 3b. While the behavour of x (or x™1) is finite at the

value 7?—3; = 1.4 (Fig. 3a) which corresponds to the middle of the phase

diagram on Fig.2a, it has an infinite point as £L =~ 3.9, (correspond-

Awo
ingly, x~! reaches zero on Fig. 3b), i.e. as it approaches the critical point

at the phase diagram.

4. Dependence of the order parameter and free en-
ergy on the temperature

Solving numerically system (15) for certain values of d we derive the
dependence {q) = (¢)(T'). Using this dependence in the Hamiltonian (5)
and diagonilizing it we obtain the dependence of the free energy on the
temperature, according to (16). The dependencies of the order parameter
and free energy are shown in Figs. 4-6 for three values of d: d=1.4, d=1.3,
and d=1.2, which fall, respectively, to the right of, on, and to the left of
the phase diagram in Fig. 2a. The value of d ~ 1.293 corresponds to the
critical point (left end of the phase diagram in Fig.2a); the dependence
of the order parameter on the temperature for this value of d is shown
in Fig. 7.

The analysis of the free energy dependence on the temperature in
the range d > 1.3 (Fig. 4), i.e., to the right side of the phase diagram
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Figure 3: Inverse dielectric susceptibility as function of the external field,

for the values of ﬁ_l 4 and £_3 9 which correspond to the mlddle
and the left end of Flg 2a.
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Figure 4 Plots of the order parameter and the free energy as functions
of the -atd=1.4 (to the right of the phase diagram shown in Fig. 2a).
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Figure 5: Plots of the order parameter and the free energy as functions of
the at d=1.3 (on the phase diagram shown in Fig.2a). Since branches
1 and 3 in Fig. b) are very close to each other and can not be visually
resolved, we also plot in Fig. ¢) the schematic representation of the same
dependence.
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Figure 6: Plots of the order parameter and the free energy as functions
of the £L at d=1.2 (to the left of the phase diagram shown in Fig. 2a).
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Figure 7: Plot of the order parameter as function of the % at the critical
point of the phase diagram in Fig. 2a, d=1.293.
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curve in Fig. 2a shows that branch 3 of the (¢} = <q>(%) dependence
corresponds to the minimal value of the free energy, which means that
the order parameter varies smoothly in this range of values of d. In the
range 1.293 < d < 1.302, i.e. on the phase diagram curve, the minimal
free energy corresponds to the jump of the order parameter from branch
3 to branch 1 (Fig. 5) at the value % = 2.5, which corresponds to the
first order phase transition. When d < 1.293, or to the left of the phase
diagram, the order parameter varies smoothly, by the branch 1 in Fig.6;
no phase transition occurs in this range of d.

There is an another way which allows to determine the range of d
where the phase transition occurs. We calculate the dependence of the
free energy on order parameter, according to (16), for the fixed value
of % = 0.2, and three different values of d =1.4, 1.3, 1.2 which fall,
respectively, to the right of, on, and to the left of the phase diagram
shown in Fig. 2a. These dependencies are shown in Fig.8a - 8c.

Comparing Fig. 8a and the dependence of the order parameter on
the temperature shown in Fig. 4a (case d = 1.2) one concludes that
the minimal value of the free energy at {q) ~ —0.07 corresponds to the
branch 3 of the Fig. 4a, therefore the order parameter varies smoothly
along this branch. The same smooth behaviour of the order parameter
in case d=1.4 can be concluded by comparing Fig. 8¢ and Fig.6a; in
this case the order paramater varies along branch 1 of the Fig. 6a which
corresponds to the minimal value of the free energy at {(¢) ~ 0.2.

However, if d = 1.3, the minimal value of the free energy in Fig. 8b
corresponds to the value of the order parameter (¢) ~ 0.2, or the branch
1 of the Fig. ba. Therefore, if d = 1.3, a jump like transition of the order
parameter from branch 1 to branch 3 occurs (Fig.5a), confirming the
conclusion resulting from the analysis of the dependencies of the order
parameter and free energy on the temperature.

5. Conclusions

The approach which is based on the exact numerical solution of the sin-
gle ion problem in the crystal lattice allows to consider the most general
non-symmetrical form of the potential which effects on this ion. Ac-
counting for the long-range interaction in the mean-field approximation,
the dependencies of the dynamic and thermodynamic functions on the
external field and the temperature are derived. These dependencies tes-
tify that the system undergoes the first order phase transition, with the
jump-like change of the order parameter (¢}, as the external field varies
as well as the temperature. It is established that the increase of the cu-
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Figure 8: Dependencies of the free energy on the order parameter: d=1.4

(a), d=1.3 (b), and d=1.2 (c), £L.=0.2.
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bic anharmonicity leads to the increase of the critical temperature. The
phase diagram (d,T) of the model is built.
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