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1 ðÒÅÐÒÉÎÔ1. IntroductionSparked by the emergence of renormalization group (RG) methods atthe beginning of the 1970s, the theory of bulk critical phenomena hasundergone a tremendous development in the past 25 years [1,2]. Thanksto a very fruitful interaction with �eld theory, impressive progress hasbeen achieved both in the theory of bulk critical behavior and in �eldtheory. While the latter has provided a rich variety of powerful tools suchas Feynman-graph expansions and renormalized perturbation theory, onwhich analytical RG approaches could be based, the former has o�ered awealth of challenging physical problems and served as a test laboratoryfor the application of new �eld-theory techniques.One popular line of approach that has been extensively used withremarkable success are expansions about the upper critical dimensiond� (= 4 for an ordinary bulk critical point) [3]. The advantage of thistechnique is well known: The computational e�ort required for calcu-lations to low orders in � � d� � d is relatively modest, in particular,if the simplifying features of such elegant schemes as dimensional regu-larization and minimal subtraction of poles [4] are fully exploited. As aconsequence, the calculations can be | and have been [5,6] | pushedto fairly high orders.A major reason for this computational simplicity is that the cal-culations can be performed directly for the critical (massless) theory.However, there is a price one must pay. The � expansion involves a dou-ble expansion in � and u, the renormalized coupling constant. In makingthis double expansion one by-passes the problem that the perturbationseries of the critical theory in terms of the massless propagator of the freetheory is ill-de�ned for �xed d < 4 because of infrared singularities. Inthe dimensionally regularized theory, these singularities manifest them-selves as poles at rational values of � which accumulate at d = d� as theorder of perturbation theory increases [7,8]. Thus the problem of sum-ming these infrared singularities arises. As stressed by Parisi [9], withoutan additional hypothesis on the summation of these singularities, anycalculation based on the � expansion and the RG in this perturbativezero-mass scheme does not contain any information about the criticalbehavior in a �xed dimension d < d�.In practice, the � expansion often works amazingly well for criticalexponents, even if truncated at order �2 and extrapolated to d = 3 in themost naive fashion by setting � = 1. However, quantitatively accurateresults require higher orders and sophisticated summation techniques[5,6,10]. The extrapolation problem usually is more severe for other uni-
ICMP{98{07E 2versal quantities such as amplitude ratios [11] or scaling functions. Onereason is that the results typically involve (e.g., geometric) factors orfunctions with an explicit dependence on d. Thus the question ariseswhether and which of these d-dependent terms should be expanded in �or rather be kept in the extrapolation procedure. As an empirical ruleit has been advocated to choose the scale of u in such a fashion that aparticular d-dependent geometrical factor is absorbed [12]. From a pure-ly practical point of view, such recipes may well be useful. But they arehardly satisfactory, since they neither have a �rm theoretical basis weare aware of, nor do they ensure that all ambiguities of the extrapolationprocedure are eliminated in a reliable fashion.The �eld-theoretic RG approach based on the � expansion has alsobeen extended [13{18] to, and successfully used in, the study of criticalbehavior of systems with surfaces [17{19]. In the case of such systemsan additional complication may arise: even at low orders of the loopexpansion, the perturbative results may involve both geometric factorsassociated with the d dimensional bulk as well as others coming fromthe d � 1 dimensional boundaries. Hence it may not even be clear howto apply the empirical rule just mentioned.From a fundamental point of view, approaches that work directlyin a �xed dimension and therefore avoid the � expansion are clearlymore attractive. An important one of this kind is the massive �eld-theory approach for �xed d < d� [9,20{27,2]. Its merits are well known:Pushed to su�ciently high orders of perturbation theory and combinedwith sophisticated series summation techniques, it has produced valuesof bulk critical exponents [21,22] with an accuracy comparable to thatof the most precise ones obtained so far by alternative methods [5,6,10,28,29], as well as a set of amplitude ratios of barely inferior precision[23,24,30]. The method has also been utilized, albeit not to the samelevel of precision, to determine the universal ratio of correlation-lengthamplitudes for three-dimensional Ising systems [31], in the analysis ofcritical behavior in various anisotropic and disordered systems [32{34],partly even in general, non-integer dimensions 2 � d < 4 [35], as wellas in studies of three-dimensional �3 theories describing the percolationtransition and the Yang-Lee edge singularity problem [36].In the present paper (a brief account of which has been given in Ref.[37]), we generalize the massive �eld-theory approach for �xed d < d�to the study of critical behavior in semi-in�nite systems. Such an ex-tension is very desirable, both on account of the general conceptual rea-sons explained above, and for purely practical purposes. Recently ex-tensive Monte Carlo calculations [38{43] have been performed for three-



3 ðÒÅÐÒÉÎÔdimensional Ising models with free surfaces and for the adsorption ofpolymers on walls [44,45,38,42]. For most surface critical exponents theseyielded values in reasonable agreement with the ones obtained by set-ting � = 1 in their � expansion to order �2 [17]. For the surface crossoverexponent � [17,19], however, the Monte Carlo estimates turned out tobe 20{30% lower. These discrepancies were one of the motives for thepresent work.Our analysis is based on the semi-in�nite n-vector model, which isthe appropriate prototype model for studying surface e�ects on criticalbehavior [17]. In Sec. 2 we briey recall its de�nition and provide thenecessary background. In Sec. 3 we give normalization conditions forthe massive �eld theory. Sections 4{6 are devoted to the analysis ofthe special transition. In Sec. 4 the general scheme of our approach isexplained; then the Callan-Symanzik equations are given and utilizedto derive the asymptotic scaling forms of the correlation functions nearthe multicritical point describing the special transition. After a briefdiscussion of some general features of perturbation theory, our two-loopresults for the RG functions are presented in Sec. 5. These are utilizedin Section VI to obtain numerical estimates for the values of the surfacecritical exponents of the special transition in three dimensions by meansof Pad�e analyses and Pad�e-Borel summation techniques. The ordinarytransition is treated in Sec. 7. Again, two-loop results are given andexploited to obtain Pad�e-Borel estimates of its surface critical exponentsfor d = 3. Concluding remarks are reserved for Sec. 8.2. Background2.1. The modelLet � = (�a(x)) be an n-vector �eld de�ned on the half-space V =Rd+ � fx = (r; z) 2 Rd j r 2 Rd�1 ; z � 0g bounded by the plane z = 0,which we denote as @V . The semi-in�nite n-vector model is de�ned bythe Euclidean action [17,18]H[�] = ZV �12 (@��)2 + 12 m20 �2 + 14! u0 j�j4�+ Z@V �12 c0�2� : (1)Here m20, u0, and c0 are the bare mass, the bare coupling constant, andthe bare surface enhancement1, respectively.1Upon mapping a semi-in�nite (lattice) Ising model with ferromagnetic nearest-neighbor interactions of strength K1 between surface spins and of strength K else-where one �nds that c0 decreases as (K1 � K)=K increases [17]. For simplicity, we
ICMP{98{07E 4Adding bulk and surface source terms to the action, we introduce thegenerating functionalZ [J ;J1;K;K1] = (2)Z D� exp ��H+ ZV �J � �+ 12K�2�+ Z@V �J1 � �+ 12K1�2��and the correlation functionsG(N;M ;I;I1) (x1; : : : ;RI1) = (3)24 NYj=1 ��Jaj (xj)35" MYk=1 ��Jbk1 (rk)#" IYl=1 ��K(Xl)# " I1Ym=1 ��K1(Rm)� lnZ�����J=J1=K=K1=0 :For the functions G(N;M ;0;0) without �2-insertions on or o� the sur-face we use the notation G(N;M). The tensorial indices faj ; bkg will besuppressed whenever no confusion is possible. The ultraviolet (uv) sin-gularities of the theory should be assumed to be regularized by meansof a large-momentum cuto� �.We shall also need the (bulk) analogs of these functions for thej�j4 theory in the in�nite space, i.e., with V = Rd . The easiest wayto de�ne these is the usual one where all boundary terms in the ac-tion (1) and the generating functional (2) are dropped, and periodicboundary conditions are chosen. We denote the so-de�ned bulk ana-log of G(N;0;I;0)(fxjg; fXlg) as G(N ;I)bulk (fxjg; fXlg) and introduce theirFourier transforms ~G(N ;I)bulk throughG(N ;I)bulk (fxjg; fXlg) = (4)Zq1;:::;QI~G(N ;I)bulk (fqjg; fQlg)ei�Pj qjxj+PlQlXl�(2�)d��Xj qj+Xl Ql�where the integral on the right-hand side indicates integrations Rq �R dd(q=2�) over all d-dimensional momenta q1; : : : ;QI . For the associ-ated standard bulk vertex functions and their Fourier transforms we usethe notation �(N ;I)bulk and ~�(N ;I)bulk , respectively.shall nevertheless use the term surface enhancement for c0, rather than reserving itfor (�c0) or (�c0 + const).



5 ðÒÅÐÒÉÎÔIn the case of our half-space geometry, where translational invarianceis restricted to translations parallel to the surface, it is appropriate toperform Fourier transformations only with respect to (d�1)-dimensionalparallel coordinates. We denote the (d�1)-dimensional parallel momentaassociated with the operators �(x =2 @V ) and �s � �(x 2 @V ) bylower case p's, and those associated with the insertions �2 and �2s byupper case P 's. Parallel Fourier transforms are indicated by a hat; forexample, the pair correlation function in this pz representation is writtenas ^G(2;0)(p; z; z0).In�nitely far away from the surface all properties must attain theirbulk values. Hence the bulk functions ^G(N ;I)bulk can be obtained from^G(N;0;I;0) by letting all N+I perpendicular coordinates zj !1, keepingall relative coordinates zjk � zi � zk �xed:limz1;:::;zN+I!1 ^G(N;0;I;0)(fpg; fzjg) = ^G(N ;I)bulk (fpg; fzjkg) ; (5)where fpg here stands for the set of all N + I parallel momenta.To proceed, it is necessary to recall a few well-known properties of themodel (1) [17]. Its phase diagram exhibits a disordered phase (SD/BD), asurface-ordered, bulk-disordered phase (SO/BD), and a surface-ordered,bulk-ordered phase (SO/BO), provided d exceeds the lower critical di-mension dSO/BD(n) for the appearance of a SO/BD phase.2The boundaries between these phases are the lines of surface, ordi-nary, and extraordinary transitions. They meet at a multicritical point,(m20; c0) = (m20c; csp0 ), called special point and representing the specialtransition. The ordinary and extraordinary transitions correspond re-spectively to the portions c0 > csp0 and c0 < csp0 of the line of bulk critical-ity m20 = m20c. The line of surface transitions separates the SD/BD fromthe SO/BD phase. At bulk criticality, we thus have three distinct tran-sitions | the ordinary, special, and extraordinary transition. Of theseonly the ordinary and special one can be reached from the disordered2This lower critical dimension is given by dSO/BD(1) = 2 and dSO/BD(n) = 3 forthe Ising case, n = 1, and the n-vector case with n � 2 and O(n) symmetry, respec-tively. In the presence of surface terms corresponding to an easy-axis spin anisotropy,a SO/BD phase is possible for n � 2 if d > 2. This case, studied elsewhere [46], willnot be considered here. The case d = 3 with O(2) symmetry of the Hamiltonian is spe-cial in that a surface phase with quasi-long-range order can appear, a problem whichwill also not be considered here. We shall also refrain from a discussion of (d = 2)-dimensional n-vector models with noninteger values of n in the range �2 � n � 2(`loop models' [47]; see, e.g., [48] and its references). However, we shall estimate thesurface critical exponents for the n! 0 case of polymer adsorption [44,45], both forthe ordinary and special transition in d = 3 dimensions.

ICMP{98{07E 6phase. Since our present analysis is restricted to the disordered phase,only these latter two types of transitions will be considered.The restriction to the disordered phase simpli�es the analysis con-siderably. One does not have to deal with a nonvanishing, and spatiallyvarying, order-parameter pro�le h�(x)i, and the free propagator in thepz representation takes the relatively simple form^G(p; z; z0) = 12�0 �e��0jz�z0j � c0 � �0c0 + �0 e��0(z+z0)� (6)with �0 =qp2 +m20 : (7)The translation invariant �rst term on the right-hand side of (6) is thefree bulk propagator.The perturbation series of the correlation functions (3) in terms ofthe free propagator (6) can be regularized by setting ^G(p; z; z0) = 0 forjpj > �. Whenever we do not use dimensional regularization, the theoryis understood to be regularized in this fashion.2.2. Ultraviolet singularities for d < 4Let us �rst discuss the uv singularities of the theory. For bulk dimensionsd = 4� � < 4 the theory is super-renormalizable. Power counting shows[17,16] that the uv singularities of the functions ^G(N;M) can be absorbedthrough a mass shift m20 = ^m20 + �m20 (8)and a surface-enhancement shiftc0 = ^c0 + �c0 : (9)In order that the ^G(N;M) be �nite for 2 � d < 4 when expressed in termsof ^m20 and ^c0, the contributions of order u�0 to these shifts must behaveas �m20 � �2(u0=��)� (10)and �c0 � �(u0=��)� (11)in the limit � ! 1. In contrast to �m20, which is known to be uv-divergent for d � 2, the shift �c0 diverges only for d � 3.



7 ðÒÅÐÒÉÎÔ2.3. Poles of the dimensionally regularized theoryAs is well-known [7,8,23], if the theory is regularized dimensionally, thenthe uv singularities of the bulk correlation functions manifest themselvesas poles at � = 2=k, with k 2 N. These poles can be eliminated by meansof an appropriate mass shift �m20(�). We remind that the two-loop graphshown in Fig. 1 yields a contribution of the form�u20 n+ 218 m2��0 I2(�) ; I2(�) � Zq;q0 1(q2 + 1) (q02 + 1) h(q + q0)2 + 1i(12)to ~�(2)bulk(q = 0) = ��1bulk ; (13)the inverse of the bulk susceptibility. The integral has a simple pole at� = 1; i. e., I2(�) = R2(�)=(� � 1), where R2(�) is regular at � = 1 andwhose value R2(1) = 1=32�2 can be calculated. Removal of the pole isachieved by [23] �m20(�) = u2=�0 n+ 218 132�2 (�� 1) : (14)

Figure 1. Two-loop Feynman diagram responsible for the poles in thedimensionally regularized �4 theory at d = 3Expressed in terms of ^m20 and u0, the bare bulk functions �(N)bulk andG(N)bulk are then �nite at d = 3. Yet, they also depend through logarithmson u0, and hence in a non-analytic fashion on it.Not only does this non-analytic behavior carry over to the correlationfunctions of our semi-in�nite theory; owing to the appearance of addi-tional uv (surface) singularities, it shows up already at one-loop order.To see this, consider the surface susceptibility�11(m0; c0) = ^G(0;2)(p = 0;m0; c0) : (15)
ICMP{98{07E 8Its one-loop graph shown in Fig. 2 has a simple pole at � = 1, which canbe removed by means of an appropriate choice of �c0.

Figure 2. One-loop graph of the surface susceptibility �11 having a simplepole at d = 3. The crossed circles denote points on the surface.We have�11(m0; c0)�1 = c0+m0+n+ 26 u0m1��0 �1(�; c0=m0)+O(2-loops) (16)with�1(�; c) = Z 10 dz e�2z Zp 12pp2 + 1 "1� c�pp2 + 1c+pp2 + 1 e�2zpp2+1#= J1(�) + J2(�; c) + J3(�) ; (17)where Rp � (1=2�)d�1 R dd�1p,J1(�) � Zp 14pp2 + 1 = 2�5����2+�=2 ���1 + �2� ; (18)J2(�; c) � � c2 Zp 1pp2 + 1 11 +pp2 + 1 1c+pp2 + 1 ; (19)andJ3(�) � Zp 14pp2 + 1 11 +pp2 + 1 = 1�� 1 2�3 ��1+�=2 �(�)�[(�+ 1)=2] :(20)The functions J1 and J2 are regular at � = 1; the above-mentioned poleresults from J3. Upon expansion of the �-functions and computation ofJ2(1; c) = c ln 2� ln(c+ 1)8� (1� c) ; (21)



9 ðÒÅÐÒÉÎÔone arrives at the Laurent expansion�1(�; c) = 18� (�� 1) +R1(c) +O(�� 1) (22)with R1(c) = c ln 2� ln(c+ 1)8� (1� c) � 132� � CE � ln�16� : (23)Demanding that the pole be canceled by �c0 gives�c0(�) = �u1=�0 n+ 248� 1�� 1 : (24)Expressed in terms of ^c0, ^m0, and u0, the bare susceptibility is �nite atd = 3. At the level of our one-loop calculation, one �nds��111 ���=1 = ^c0 + ^m0 + n+ 26 u0 �R1(^c0= ^m0)� 18� ln ^m0u0 �+O(2-loops) :(25)The critical values ^m20c = m20c � �m20 and ^csp0 = csp0 � �c0 of ^m20 and^c0 pertaining to the special point would have to be determined from theconditions ~�(2)bulk�q = 0;m20c= ^m20c + �m20� = 0 (26)and ��111 �m0c=q ^m20c + �m20; csp0 = ^csp0 + �c0� = 0 : (27)The former is known to have the form [7]^m20c = u2=�0 ^M(�) : (28)Similarly we have for the latter^csp0 = u1=�0 ^C(�) : (29)The reason is that u0 is the only dimensionful parameter remaining atthe special point in the dimensionally regularized theory (with � = 1and � > 0). In view of the non-analytic dependence of the susceptibilitieson u0, it is clear that Symanzik's observation [7] that ^M(�) cannot bedetermined perturbatively carries over to ^C(�).In the next section we describe an appropriate extension of the mas-sive �eld theory approach that circumvents these di�culties.
ICMP{98{07E 103. Normalization Conditions for the Massive FieldTheoryOur aim is to study surface critical behavior at a bulk critical point.Therefore, a necessary property we ought to require from our approachis that the bulk critical behavior be treated appropriately. A convenientway to achieve this is to choose it in such a manner that it reduces forall bulk quantities to a well-established standard procedure. In our casethis will be the conventional one based on normalization conditions (see,e. g., [2,26,27,49,50]). Alternatively, one could choose an approach basedon minimal subtraction of poles of the massive theory, as described forthe bulk case by Schloms and Dohm [25].3.1. Bulk normalization conditionsStarting from the bare bulk vertex functions �(N;I)bulk (;m20; ; u0), we per-form a mass shift m20 = m2 + �m2(�) (30)and introduce renormalization factors Z�(u), Z�2(u), Zu(u) (which areuv-�nite for d < 4) as well as a renormalized dimensionless couplingconstant u and renormalized �elds such that� = [Z�(u)]1=2 �ren ; �2 = �Z�2(u)��1 ��2�ren ; u0 = Zu(u)m� u :(31)The mass shift and the renormalization factors are �xed through thestandard normalization conditions~�(2)bulk,ren(q;u;m)���q=0 = m2 ; (32)@@q2 ~�(2)bulk,ren(q;u;m)����q=0 = 1 ; (33)~�(2;1)bulk,ren(q;Q;u;m)���q=Q=0 = 1 ; (34)~�(4)bulk,ren(fqig;u;m)���fqi=0g = m� u (35)for the renormalized vertex functions�(N;I)bulk,ren(fq;Qg;m;u) = [Z�(u)]N=2 �Z�2(u)�I �(N;I)bulk (fq;Qg;m20; u0) :(36)Since the mass shift is su�cient to absorb the uv singularities of thebare functions �(N;I)bulk at d < 4, they become uv-�nite when expressed in



11 ðÒÅÐÒÉÎÔterms of m and u (or m and u0). The bulk renormalization factors canbe written as[Z�(u)]�1 = @@q2 ~�(2)bulk�q;m20(m;u); u0(m;u)�����q=0 ; (37)�Z�2(u)Z�(u)��1 = ~�(2;1)bulk �f0g;m20(m;u); u0(m;u)� ; (38)and�Zu(u)Z2�(u)��1 = ~�(4)bulk�f0g;m20(m;u); u0(m;u)�=u0(m;u) : (39)3.2. Surface normalization conditionsConsider now the cumulants G(N;M) and G(N;M ;I;I1) of our semi-in�nite�4 model. As we have seen, a surface-enhancement shift �c is requiredto absorb uv singularities located on the surface. Hence we writec0 = c+ �c ; (40)where c is a renormalized surface enhancement whose precise de�nitionwe still have to give.We also know that the surface operators �s � �jz=0 and (�s)2 shouldscale with scaling dimensions that are di�erent from those of their bulkanalogs �(x) and [�(x)]2 with x =2 @V . This suggests the introductionof separate renormalization factors for these surface operators, which wedo via the relations�s = [Z�Z1]1=2 [�s]ren ; (�s)2 = �Z�2s��1 �(�s)2�ren (41)between the bare and renormalized operators. For the renormalized cu-mulants we thus haveG(N;M)ren (;m;u; c) = Z�(N+M)=2� Z�M=21 G(N;M)(;m0; u0; c0) (42)and G(N;M ;I;I1)ren (;m;u; c) = (43)Z�(N+M)=2� Z�M=21 �Z�2�I �Z�2s�I1 G(N;M ;I;I1)(;m0; u0; c0) :We wish to �x �c and the new renormalization factors Z1 and Z�2sby appropriate normalization conditions. To motivate our choice, let us
ICMP{98{07E 12recall the perturbation expansion of the momentum-dependent surfacesusceptibility �11(p) = ^G(0;2)(p) to lowest order:^G(0;2)(p;m0; u0; c0) = 1c0 +pp2 +m20 +O(u0) : (44)We choose the normalization conditions such that the associated renor-malized susceptibility and its �rst derivatives with respect to p2 agreeat p = 0 with the corresponding zero-loop expressions implied by (44),except for the replacements m0 ! m and c0 ! c. This gives^G(0;2)ren (p;m;u; c)���p=0 = 1m+ c (45)and @@p2 ^G(0;2)ren (p;m;u; c)���p=0 = � 12m(m+ c)2 : (46)The following condition �xes the normalization of insertions of the sur-face operator 1=2�2s, at zero external momentum:^G(0;2;0;1)ren (p;P ;m;u; c)���p=P=0 = (m+ c)�2 : (47)This choice is motivated by the relation^G(0;2;0;1)(f0g) = � @@c0 ^G(0;2)(0) : (48)Equation (45) de�nes the required surface-enhancement shift �c. To-gether with (32), it ensures that the special point is located at m =c = 0. The ordinary transition corresponds to the limit m ! 0 at �xedc > 0. In this limit the renormalized surface susceptibility �11;ren ! c�1.Hence the physical meaning of c is that of the inverse of �11;ren at thetransition.3Equations (46) and (47) specify the renormalization factors Z1 andZ�2s , respectively, in a similar manner as the bulk normalization condi-tions (33) and (34) de�ne Z� and Z�2 . The corresponding expressionsare Z1Z� = (49)�2m(m+ c)2 @@p2 ^G(0;2) [p;m0(m;u); u0(m;u); c0(c;m; u)] ���p=03Keeping c (and u) �xed while changing m requires, of course, that the bare quan-tities c0 (and u0) be varied with m. When exploiting the Callan-Symanzik equationsbelow, we shall as usual hold these bare quantities �xed while varying m, so that therenormalized quantities u and c become m-dependent.



13 ðÒÅÐÒÉÎÔandZ�1�2s = (50)�[Z1Z�]�1(m+ c)2 @@c0 ^G(0;2) [0;m0(m;u); u0(m;u); c0] ���c0=c0(c;m;u) :The above sets of normalization conditions (32){(35) and (45){(47)de�ne m20, u0, Z�, Z�2 , c0, Z1, and Z�2s as functions of m, u, c, and �.All Z factors have �nite �!1 limits in the d < 4 case considered here.For simplicity, we consider the � = 1 limit in the sequel. In ourcalculations described below we actually took � = 1 from the outset,employing dimensional regularization. In this limit the bulk Z factorsZ�, Z�2 , and Zu become functions of the single dimensionless variable u.On the other hand, the above choice of normalization conditions (45){(47) implies that the surface Z factors Z1 and Z�2s depend on both uand the dimensionless ratio c=m.In a full investigation of the crossover from the surface critical be-havior characteristic of the special transition (for c=m � 1) to that ofthe ordinary transition (for c=m � 1), it would be essential to carryalong the dependence on the variable c=m. However, our main objectivein the present work is the calculation of the surface critical exponents ofthe special and ordinary transitions. To this end, a study of the criticalbehavior in the asymptotic limits c=m ! 0 and c=m ! 1 is su�cient.As it turns out, there exist convenient procedures (see [37] and below)which permit one to focus directly on these limits, avoiding the need tokeep track of the detailed dependence on c=m.4. Special TransitionLet us �rst consider the case of the special transition. In order to reachthe corresponding multicritical point, we can safely set c = 0. This doesnot cause any problems in the theory provided the surface-enhancementrenormalization has been performed. The desired critical behavior at thespecial transition can then be obtained by studying the massless limitof the resulting massive c = 0 theory along lines analogous to thoseusually followed in the bulk case. It follows that the asymptotic criticalbehavior at this transition is described by the renormalized theory withthe coupling constant u taken at u�, its value at the infrared-stable �xedpoint (and c set to zero).

ICMP{98{07E 144.1. Normalization conditions at the multicritical pointFor c = 0 the normalization conditions (45){(47) simplify. The c = 0analog of (45) �xes the critical value csp0 of c0. Expressed in terms ofrenormalized variables, it takes the form csp0 = mf�(u) in the dimension-ally regularized theory. Equations (49) and (50) becomeZsp1 (u)Z�(u) = (51)�2m3 @@p2 ^G(0;2)�p;m0(m;u); u0(m;u); csp0 (m;u)� ���p=0 ;hZsp�2s(u)i�1 = (52)�m2 [Zsp1 (u)Z�(u)]�1 @@c0 ^G(0;2)�0;m0(m;u); u0(m;u); c0� ���c0=csp0 ;specifying renormalization factorsZsp1 (u) � Z1(u; c=m = 0) and Zsp�2s(u) �Z�2s(u; c=m = 0) appropriate for the analysis of the special transition.These renormalization factors enter the relations (42) between the bareand renormalized correlation functions G(N;M) for c = 0,G(N;M)ren,sp (;m;u) = Z�(N+M)=2� (Zsp1 )�M=2G(N;M)(;m0; u0; csp0 ) ; (53)and the corresponding c = 0 analogs of the relations (??) for G(N;M ;I;I1).4.2. Callan-Symanzik equationsBy varying m at �xed u0 and csp0 , the Callan-Symanzik (CS) equations(cf. Refs. [2,26,27]) of the correlation functions G(N;M)ren,sp can be derivedin a straightforward way. They read�m @@m+�(u) @@u+N +M2 ��(u)+M2 �textsp1 (u)�G(N;M)ren,sp (;m;u)=�Gren(54)with �Gren � � [2� ��(u)]m2 ZV ddXG(N;M ;1;0)ren,sp (;m;u) ; (55)where the integration is over the position X of the inserted �2 operator.The RG functions appearing here are the usual bulk functions�(u) = m @@m ����0 u (56)



15 ðÒÅÐÒÉÎÔand ��(u) = m @@m ����0 lnZ�(u) = �(u)d lnZ�(u)du ; (57)and the additional, surface-related function�sp1 (u) = m @@m ����0 lnZsp1 (u) = �(u)d lnZsp1 (u)du ; (58)where j0 indicates that the derivatives are taken at �xed bare couplingconstant and surface enhancement (and cuto� �).Just as in the bulk case, and as could be corroborated by means of ashort-distance expansion, the right-hand side of (54), �Gren, should benegligible in the critical regime. The resulting homogeneous equationscan be integrated in a standard fashion.In order to identify the crossover exponent � we must also consid-er deviations �c0 � c0 � csp0 from the multicritical point. We use theexpansion G(N;M)(;m0; u0; c0) = (59)1XI1=0 (��c0)I1I1! Z@V : : :Z@V| {z }I1 G(N;M ;0;I1)(;m0; u0; csp0 ) ;where the integrations R@V are over the positions of the I1 inserted �2soperators. No infrared problems arise here because the massive theoryis used.Expressing the right-hand side in terms of renormalized functionsand the renormalized variable�c � hZsp�2s(u)i�1�c0 (60)gives Z�(N+M)=2� (Zsp1 )�M=2G(N;M)(;m0; u0; c0) = (61)1XI1=0 (��c)I1I1! Z@V : : :Z@V| {z }I1 G(N;M ;0;I1)ren,sp (;m;u) :HenceG(N;M)ren (;m;u;�c) � [Z�(u)]�(N+M)=2 [Zsp1 (u)]�M=2G(N;M)(;m0; u0; c0)(62)
ICMP{98{07E 16are well-de�ned renormalized functions.4 Since they depend on the ad-ditional dimensionless variablec � �c=m ; (63)their RG equations are analogous to, but di�er from, (54) through thereplacementm @@m + �(u) @@u �! m @@m + �(u) @@u � [1 + �spc (u)] c @@c ; (64)where �spc (u) = m @@m ����0 lnZsp�2s(u) = �(u) ddu lnZsp�2s(u) : (65)4.3. Scaling behavior near the multicritical pointThe CS equations given in the preceding subsection can be utilized ina familiar fashion to derive the asymptotic scaling forms of the correla-tion functions near the multicritical point. A detailed exposition of thederivation of scale invariance and universality of bulk vertex functionsfrom the CS equations may be found, for example, in [51] or elsewhere[2]. Since in the present case a completely analogous line of reasoning canbe followed, we can be brief. In particular, we shall avoid carrying alongthe various non-universal constants (metric factors setting the scales ofthe relevant bulk and surface scaling �elds), as would be necessary for anexplicit derivation of four-scale-factor universality[53] within the presentmassive RG framework.We shall need the familiar dependencem20 �m20c � � (66)of the bare mass on � � (T � Tc)=Tc, valid for small deviations from itscritical value m20c. We also recall that m, which is nothing else than theinverse of the (second-moment) bulk correlation length �, behaves asm � �m20 �m20c�� (67)near criticality, with � = [2 + ���2 ]�1 ; (68)4These should be distinguished from the previously de�ned c-dependent renormal-ized functions, which were related to the bare ones via c-dependent renormalizationfactors.



17 ðÒÅÐÒÉÎÔwhere ���2 denotes the value of the function��2(u) = m @@m ����0 lnZ�2(u) = �(u) d lnZ�2(u)du ; (69)at the infrared-stable zero u� of �(u).Integration of (56), (57), (58), and (65) gives the asymptotic depen-dencies Z� � (u� u�)�=! � m� ; (70)Zsp1 � (u� u�)�sp1 (u�)=! � m�sp1 (u�) ; (71)and Zspc � (u� u�)�spc (u�)=! � m�spc (u�) (72)for u ! u� or m ! 0. As usual, ! = �0(u�) and � � ��(u�). Equation(72) can be substituted into (60) and (63) to obtain�c � m��spc (u�)�c0 ; c � m�[1+�spc (u�)]�c0 : (73)From the latter result we read o� the scaling variable ����c0 with thecrossover exponent � = �[1 + �spc (u�)] : (74)Using these results, one easily sees that the CS equations of Sec. 4.2yield the following asymptotic scaling forms of the correlation functionsnear the multicritical point:G(N;M)(x; r;m0; u0; c0) � m(N�+M�sp1 )=� 	(N;M)�mx;mr;m��=��c0� :(75)Here � and �sp1 are standard bulk and surface exponents. The latter isrelated to the usual surface correlation exponent �k via the scaling law�1 = �2 �d� 2 + �k� ; (76)where �k in the present case of the special transition is given by�spk = � + �sp1 (u�) : (77)5. Perturbation TheoryWe now turn to the explicit calculation of the surface renormalizationfactors Zsp1 and Zsp�2s and of their associated exponent functions �sp1 and�spc . In the one-loop approximation, this will be carried out for generalspace dimensions d < 4. However, in our two-loop calculations we shallrestrict ourselves to the case d = 3.

ICMP{98{07E 185.1. General FeaturesThe normalization conditions (45), (46), and (47) we have chosen to �xthe surface counterterms all determine properties of the renormalizedsurface susceptibility ^G(0;2)ren (p;m;u; c). For calculational purposes it ismore convenient to express these conditions in terms of its bare inverse1= ^G(0;2)(p). From (45) we �ndZ1Z� h ^G(0;2)(0;m0; u0; c0)i�1 = m+ c : (78)Utilizing this, (46) becomes@@p2 h ^G(0;2)ren (p;m;u; c)i�1����p=0 = 12m ; (79)which shows that expression (49) for Z1Z� can be cast in the equivalentform(Z1Z�)�1 = 2m @@p2 h ^G(0;2)(p)i�1����p=0 = limp!0 mp @@p h ^G(0;2)(p)i�1 :(80)Likewise (50) can be rewritten asZ�1�2s = Z1Z� @@c0 h ^G(0;2)(p = 0)i�1 : (81)It is useful to decompose the above inverse surface susceptibility intoits free part, which is [ ^G(p; 0; 0)]�1 = c0 + �0 according to (6), and aremainder due to perturbative corrections. Thus we writeh ^G(0;2)(p)i�1 = c0 + �0 � ^�0(p) : (82)To compute ^�0, we start from the following representation of the fullpropagator between two surface points in terms of �, the usual `self-energy': G(0;2) = sjGjs + sjGTGjs ; T = �(1�G�)�1 (83)Here sj and js indicate that the left and right points are located on thesurface, respectively. A straightforward calculation yields^�0(p) = ^gT ^T ^g1 + sj ^Gjs ^gT ^T ^g= ^gT ^�^g + ^gT ^� ^G^�^g � sjGjs �^gT ^�^g�2 +O�^�3� ; (84)
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(2)

(3) (4)

(1)

Figure 3. Feynman graphs to two-loop order of the nominator ^gT ^T ^g ofthe quantity ^�0(p) in (84). Full lines denote the free propagator (6),dashed ones the reduced propagator (85).where ^g is a column vector whose components represent the reducedpropagator ^g(p; z) � (c0 + �0) ^G(p; z; 0) = e��0z ; (85)and ^gT is its transpose.The one-loop and two-loop contributions to ^�0 originating from the�rst two terms on the right-hand side of (84) are depicted in Fig. 3.Denoting the one from the graph labeled \(i)" by Ci(p), we have^�0(p) = 4Xi=1 Ci(p)� [C1(p)]2c0 + �0 +O(u30) ; (86)where the term / C21 results from the last one in (84).5.2. One-Loop ApproximationWe now specialize to the case c = 0. Upon using the above results one caneasily perform a one-loop calculation of the renormalization functions for
ICMP{98{07E 20general dimensions d < 4. Following Ref. [20], let us introduce a rescaledrenormalized coupling constant ~u throughu = bn(d) ~u ; bn(d) = 6n+ 8 (4�)d=2���=2� : (87)The advantage of this choice is that the expansion to order ~u2 of theassociated beta function ~� = � @~u=@u takes the simple form~�(~u) = �~u (1� ~u) +O�~u3� : (88)Our results for the two surface renormalization factors of interest thenread Zsp1 = 1 + n+ 2n+ 8 ~u1 + � +O�~u2� (89)andZsp�2s = 1�n+ 2n+ 8 11 + � �1� 2 1+�2 2F1�3� �2 ; 1 + �2 ; 3 + �2 ; 12�� ~u+O�~u2� ;(90)where 2F1 is the hypergeometric function [54]. Substituting these powerseries into (58) and (65) gives�sp1 (u) � ~�sp1 (~u) = �n+ 2n+ 8 �1 + � ~u+O�~u2� ; (91)�spc (u) � ~�spc (~u) = (92)n+ 2n+ 8 �1 + � �1� 2 1+�2 2F1�3� �2 ; 1 + �2 ; 3 + �2 ; 12�� ~u+O�~u2� :As a consistency check one can compute the pole parts (PP) of theLaurent expansion of the above renormalization factors at � = 0. One�nds PP�=0 [Zsp1 � 1] = n+ 23� u16�2 +O�u2� (93)= PP�=0hZsp�2s � 1i+O�u2� : (94)As it should, this is in conformity with the one-loop terms (of the two-loop results) of Ref. [15], obtained by means of the usual scheme ofminimal subtraction of poles at d = 4 for the massless theory in 4 � �



21 ðÒÅÐÒÉÎÔdimensions.5 Accordingly we also recover the O(u) expressions for theexponents functions �1 and �c of Ref. [15] in the limit �! 0+:lim�!0+ �sp1 (u) = �n+ 23 u16�2 +O�u2� = lim�!0+ �spc (u) +O�u2� :(95)From (88) one reads o� the value ^u� = 1 in this one-loop approxima-tion. Upon inserting this into (5.2), we get�sp1 (u�) = �n+ 2n+ 8 �1 + � +O(2-loop) = �spk +O(2-loop) (96)and�spc (u�)= n+ 2n+ 8 �1 + ��1�2 1+�2 2F1�3� �2 ; 1 + �2 ; 3 + �2 ; 12��+O(2-loop):(97)The reader may check that the Taylor expansion of these exponentsto �rst order in � reproduces the known results (see Refs. [15,17] andreferences therein).If we use (96) and (97) to estimate their values for d = 3, we �nd�sp1 (n=0) = �spk (n=0) = �18 ' �0:13 ; (98)�sp1 (n=1) = �spk (n=1) = �16 ' �0:17 ; (99)and �spc (n=0) = 18 (1� 4 ln 2) ' �0:22 ; (100)�spc (n=1) = 16 (1� 4 ln 2) ' �0:30 : (101)Amazingly, the estimates (5.2) of this simple calculation turn out tobe among the best ones for �spk resulting from our much more involvedtwo-loop calculations (see Tables 1 and 2). On the other hand, our besttwo-loop estimates for �spc di�er appreciably from those listed in (5.2).5.3. Two-Loop ApproximationAt the two-loop order we restrict ourselves to the case d = 3. Details ofthe calculation will be published elsewhere [?]. Here we just quote the5Since in Refs. [15] and [17] a factor 2d�d=2 was absorbed in the renormalizedcoupling constant, the quantity u=16�2 here takes the place of the variable u of thesereferences.

ICMP{98{07E 22�nal results. They readZsp1 Z� = 1 + n+ 22(n+ 8) ~u (102)�12 (n+ 2)(n+ 8)2 �A� n+ 212 (1� ln 2) ln 2� n+ 1448 � ~u2 +O�~u3�Zsp�2s = 1 + n+ 2n+ 8 �2 ln 2� 12� ~u (103)+12(n+ 2)(n+ 8)2 �A�B � n2 ln 2 + n+ 22 ln2 2 + 2n+ 112 � ~u2 +O�~u3��spk (~u) = � n+ 22(n+ 8) ~u (104)+12 (n+ 2)(n+ 8)2 �2A� n+ 26 (1� ln 2) ln 2 + n� 1048 �~u2 +O�~u3�and �spc (~u) = �n+ 2n+ 8 �2 ln 2� 12� ~u� 24 (n+ 2)(n+ 8)2 �A�B � n+ 12 ln 2+n+ 23 ln2 2 + 17n+ 2296 �~u2 +O�~u3� ; (105)where A and B are integrals originating from the two-loop graph (2) ofFig. 3 whose values A ' 0:202428 (106)and B ' 0:678061 (107)we have determined by numerical means [52].6. SURFACE CRITICAL EXPONENTSOF THE SPE-CIAL TRANSITIONWe shall now discuss how the above perturbative results can be utilizedto estimate the surface critical exponents of the special transition. Ourstarting point are the series expansions of these exponents in powersof ~u, which are implied by (104) and (105). To generate these series,



23 ðÒÅÐÒÉÎÔwe substitute the expansion (104) for �spk into the following well-knownscaling-law expressions for surface exponents:�1 = �2 �d� �k� ; (108)�? = � + �k2 ; (109)�1 = �2 �d� 2 + �k� ; (110)11 = � �1� �k� ; (111)1 = � (2� �?) ; (112)�1 = ��1 = d+ 2� �d� 2 + �k ; (113)�11 = �1�1 = d� �kd� 2 + �k : (114)These scaling relations hold for the surface critical exponents of theordinary transition as well; therefore, we have omitted the superscript\sp". We also need the expansions of the bulk exponents � and �. Tothe required order in ~u�, they read for the case d = 3:�(d=3; n) = 12 + n+ 24(n+ 8) ~u� + (n+ 2)(27n� 38)216(n+ 8)2 (~u�)2 +Oh(~u�)3i(115)and �(d=3; n) = 8(n+ 2)27(n+ 8)2 (~u�)2 +Oh(~u�)3i : (116)We shall also consider the exponents�sp1 = �+ � � 1 + � = 1� � [d� 2� �spc (u�)] (117)and �sp11 = �+ � � 2 + 2� = �� [d� 3� 2�spc (u�)] (118)of the layer and local speci�c heats C1(T ) and C11(T ), respectively [17].To obtain the expressions on the extreme right-hand side, we have sub-stituted (74) for � and used the hyperscaling relation � = 2� d�.For each one of these surface exponents we arrive at an expansion ofthe formf(~u�) = 1Xk=0 fk (~u�)k = f0 + f1 ~u� + f2 (~u�)2 +Oh(~u�)3i : (119)
ICMP{98{07E 24As is known from the much studied bulk case (for background and refer-ences, see, e.g., [2]), such series are asymptotic; they have zero radius ofconvergence. The reason for this is that the coe�cients fk grow propor-tional to k! as k ! 1; more precisely, their large-k behavior typicallycan be written as fk � C k! kb�1A�k, where the factor k! basically re-ects the enormous growth of the number of diagrams contributing ata given order of the loop expansion. We expect that these features willcarry over to the power series of surface quantities considered here. Thelarge-order behavior of their coe�cients and the values of the numbersA, b, and C should be obtainable by means of an appropriate extensionof the instanton calculus utilized in the case of the j�j4 bulk theory.Furthermore, in view of the rigorously established Borel summability ofthe d = 3 dimensional j�j4 model [55], we may be con�dent that theseseries are Borel summable.In order to obtain meaningful numerical estimates from the aboveseries expansions for surface critical exponents, we must invoke appro-priate and su�ciently powerful summation techniques. The simplest pro-cedure is to construct the table of Pad�e approximants [56]. This workswell if successive elements SN , SN+1 of the sequence of partial sumsSN (~u�) � PNk=0 fk(~u�)k vary little at low orders of N . A better andmore sophisticated one is the Pad�e-Borel method used in Ref. [20]. Atthe order of perturbation theory we are going to use it here, this involvesthe analytic continuation of the Borel transformBf (~u�) � 1Xk=0 fkk! (~u�)k (120)by a [1=1] Pad�e approximant.Our estimates given in Tables I{IV were produced as follows. For eachexponent f , we rearranged the expansion as f=f0 �Mf = 1+(f1=f0)~u�+(f2=f0)(~u�)2 or f + (1� f0) �Mf = 1 + f1~u� + f2 (~u�)2, depending onwhether jf0j > 1 or jf0j < 1, respectively. Then Pad�e approximants ofthe type indicated in Tables I{IV were constructed for the so-de�nedmodi�ed quantities Mf , and [1=1] Pad�e approximants for their Boreltransforms. For consistency reasons, these approximants were evaluatedusing the values of ~u�(d; n) one gets from the Pad�e-Borel resummed betafunctions ~�(~u) at this two-loop order, namely6 [20,57]~u�(d=3; n=0) = 1:632 (121)6The n = 0 value (121) is given by the negative of the value v�2 of the �xed pointdenoted U in Ref. [57].



25 ðÒÅÐÒÉÎÔand ~u�(d=3; n=1) = 1:597 : (122)Finally, the resulting approximate values of the Mf were converted intoestimates for the exponents by inverting the above equations de�ningMfin terms of f . Note that we used the hyperscaling relations with d = 3.This is why our zeroth approximations (gathered in the column [0=0]) donot always reproduce the Landau (or � = 0) values 0; 1; 0; 12 ; 12 ; 1; 3; 2and 0; 0; � 12 ; 12 of the exponents �spk ; : : : ; �sp11 and ��c ; : : : ;� listed in the�rst columns of Tables I/II and III/IV, respectively.The quantities O1, O2, O1i, and O2i appearing in Tables I{IV arede�ned through the expansions Mf = 1 + O1 + O2 + : : : = [1 + O1i +O2i + : : :]�1 of the modi�ed quantities Mf = f=f0 or Mf = f + 1� f0.Using the latter quantity to generate such truncated expansions in thecase jf0j < 1 rather than simply factoring out f0 yields better behaved`inverse expansions', i.e., series for M�1f .The bigger the absolute values of the ratios O1=O2 and O1i=O2i are,the better is the quality of the resulting series for Mf and its recipro-cal 1=Mf , respectively. All ratios O1(i)=O2(i) have negative sign or elsevanish. Thus all series produced by these expansions are alternating,and hence adapted to the above-mentioned Pad�e-Borel summation tech-nique. (If a series were not alternating, it would be unsuitable for thismethod because the [1/1] approximant of its Borel transform would havea pole on the positive real axis, i. e., inside the integration range [21].)The estimates obtained via Pad�e-Borel resummation of the power seriesfor Mf and 1=Mf are listed in Tables I{IV as R and R�1i , respectively.In most cases the resulting power series in ~u have second-order cor-rections O2(i) whose absolute values are smaller than those of their �rst-order ones. Thus the sequences of associated partial sums appear to beslowly convergent, to the available low order. Exceptions are some seriesinvolving �spc , whose behavior is rather bad. In the �rst group of expo-nents, related to �sp1 (u) and shown in Tables I and II, the most reliableestimates are obtained from the direct series for the exponent �1, whichappear to exhibit the best convergence properties. These estimates are�1 = 0:921 for n = 0 and �1 = 0:997 for n = 1. Substituting these alongwith the standard bulk values [22,2] �(n=0) = 0:588, �(n=0) = 0:027,�(n=1) = 0:630, and �(n=1) = 0:031 into the scaling laws (108){(114),we have computed the remaining seven exponents of this group. Theresulting values f(�1; �; �) are presented in the last columns of Tables 1and 2. By and large, the agreement with the results obtained from theindividual expansions is quite reasonable. The deviations of the valuesf(�1; �; �) from the other resummation estimates might serve as a rough
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ICMP{98{07E 28measure of the numerical accuracy achieved here.The situation is less favorable for the second group of exponents,��c � �spc (u�); : : : ;�, whose estimates are given in Tables 3 and 4. Theirseries exhibit poor convergence properties. One should be cautious inrelying on estimates derived from individual series expansions of an ap-parently divergent nature, like in the case of the crossover exponent �. Inthis group the exponent �1 has the estimates with the least scattering.The best series convergence has ��11 , and the corresponding Pad�e-Borelestimates are �1 = 0:342 for n = 0 and �1 = 0:279 for n = 1. Acceptingthese together with the bulk values of � and � given above, the estimatesof ��c , �11, and � listed as f(�1; �; �) in the last columns of Tables 3 and4 were derived via scaling laws.Table 6. Monte Carlo estimates for surface criticalexponents of the special transition in d = 3 dimensions.n = 011 0.805(15) Meirovitch & Livne, 1988 [38]0.714(6) Hegger & Grassberger, 1994 [42]1 1.304(6) Meirovitch & Livne, 1988 [38]1.230(2) Hegger & Grassberger, 1994 [42]� 0.530(7) Meirovitch & Livne, 1988 [38]0.496(4) Hegger & Grassberger, 1994 [42]n = 1�1 0.18(2) Landau & Binder, 1990 [39]0.22 Vendruscolo et al., 1992 [40]0.237(5) Ruge et al.. 1993 [41]0.2375(15) Ruge & Wagner 1995 [43]11 0.96(9) Landau & Binder, 1990 [39]0.788(1) Ruge & Wagner 1995 [43]1 1.41(14) Landau & Binder, 1990 [39]1.328(1) Ruge & Wagner 1995 [43]� 0.59(4) Landau & Binder, 1990 [39]0.74 Vendruscolo et al., 1992 [40]0.461(15) Ruge et al., 1993 [41]The numerical values of surface critical exponents gathered in Tables1-4 generally are in reasonable agreement both with previous estimatesbased on the � expansion as well as with those obtained by other means.For comparisons we refer to Section III.8 of Ref. [17], where � expansionestimates and estimates that had been gained by alternative techniquestill 1985 are given, and to Table 6 for more recent results. Note, however,



29 ðÒÅÐÒÉÎÔthat our estimates for the crossover exponent � are de�nitely lower thanthe values �(n = 1) ' 0:68 and �(n = 0) ' 0:67 quoted in Ref. [17].The latter were obtained by setting � = 1 in the � expansion of � toorder �2. On the other hand, recent Monte Carlo simulations yielded thesigni�cantly lower estimates �(1) = 0:461� 0:015 [41], �(0) = 0:530�0:007 [38], and �(0) = 0:496�0:005 [42]. Our present results �(1) ' 0:54and �(0) ' 0:52 are fairly close to these values.To see whether comparatively small estimates for �(n; d=3) can beobtained from the � expansion, we have applied the analogous summationtechniques to the series2� = 1 + a1(n) �+ a2(n) �2 ; (123)whose coe�cients are known to be [15,17]a1(n) = � n+ 22(n+ 8) = �8<: 18 = 0:125 for n = 016 ' 0:167 for n = 1 (124)and a2(n) = n+ 24(n+ 8)3 �8�2(n+ 8)� (n2 + 35n+ 156)�= 8<: 116�2 � 39256 ' 0:4645 for n = 0.227�2 � 1681 ' 0:5336 for n = 1. (125)The results are shown in Table VI. It is reassuring that the estimatesobtained via Pad�e-Borel summation compare reasonably well both withour above ones based on the perturbation series at �xed d = 3 as well aswith the Monte Carlo results mentioned. That these estimates deviateconsiderably from the values obtained from the [2/0] approximant (123)at � = 1 seems to be due to the unusual largeness of the O(�2) term of�. In summary, we conclude that the values of the crossover exponent�(n; d) with n = 0; 1 and d = 3 are indeed signi�cantly smaller thanpreviously thought, being close to 0:5.An interesting aspect of the above results is worth mentioning: Wemay be quite con�dent that the inequality�sp11 < 0 (126)is satis�ed for d = 3 and n = 1. For one thing, our best numericalestimate based on the massive RG approach at �xed d = 3 is �sp11(n =
ICMP{98{07E 301; 3) ' �0:18. Second, the scaling relation (118) can be rewritten atd = 3 as �sp11(n; 3)(n; d=3) = �2(� � �) : (127)In view of the various estimates given above it seems rather unlikely that�(1; 3) will be larger than �(1; 3) ' 0:630, so that (126) should be validat d = 3 and n = 1, a conclusion which may also be reached for n = 0.This has important consequences. As has been shown in Ref. [58],(126) plays the role of an irrelevance criterion for weak, short-rangecorrelated randomness that couples to the surface energy density (and isrestricted to the surface). If it is satis�ed, the �xed point describing thespecial transition of the pure model is stable with respect to this kindof randomness., so that such random \surface-enhancement disorder"should be irrelevant at the special transition. According to our numericalestimates, this irrelevance should indeed apply. It has been veri�ed byMonte Carlo simulations recently [59].7. ORDINARY TRANSITIONIn our analysis of the asymptotic critical behavior at the special transi-tion it turned out to be advantageous to set the bare and renormalizedsurface enhancements to their respective critical values c0 = csp0 andc = 0. The bene�t was that we did not have to deal with renormaliza-tion functions depending on two mass parameters m and c, a fact whichfacilitated the computation of the required Feynman graphs consider-ably.In the case of the ordinary transition we must study the limit c=m!1. For the sake of achieving a similar simpli�cation, it would be desirableto set c =1 (or c0 =1) from the outset. In doing so one is faced witha known di�culty: Studying the functions G(N;M) with c0 =1 does noteasily give access to surface critical exponents via the RG equations oftheir renormalized analogs because these bare functions as well as therenormalized ones with c = 1 satisfy Dirichlet boundary conditions .Fortunately it is known from previous studies based on alternative RGapproaches [13,14,17,60] how this problem can be overcome: one muststudy the functionsG(N;M)(x1; : : : ; rM ) � *24 NYj=1 �aj (xj)35" MYk=1 @n�bk (rk)#+cum ; (128)where @n means the derivative along the inner normal. The functions



31 ðÒÅÐÒÉÎÔG(N;M) with M > 0 do not vanish for c0 =1, and the scaling dimensionof @n� yields �ordk , the sole missing surface exponent.7That the relevant information can be obtained from these functionscan be seen either by expanding the bare cumulants G(N;M) in powers ofc�10 or by noting that because of the Dirichlet boundary condition @n�is the leading operator appearing in the boundary operator expansion[14,17] of �.7.1. General considerations and the limit c=m!1Let us denote the functions G(N;M) with c0 =1 as G(N;M)1 . Although weshall not present a complete analysis of the c-dependent normalizationconditions of Sec. 3.2 and of the crossover from special to ordinary surfacecritical behavior here, we will at least verify that this renormalizationprocedure is consistent with the one based on the G(N;M)1 , a scheme whoseresults were briey described in Ref. [37] and which will be exploitedbelow.We start by performing the mass renormalization and introduce^�(p;m; c0), the analog of ^�0(p), via^G(0;2)[p;m0(m); u0; c0] = [�+ c0 � ^�(p;m; c0)]�1 : (129)Assuming that the renormalized surface enhancement c has an arbitraryvalue 0 � c <1, we imagine that the surface-enhancement renormaliza-tion has been carried out. Substituting the resulting form of � ^G(0;2)(p)��1into (80) yields (for more details see Ref. [52])�Z1(u; c=m)Z�(u)��1 � 1 = (130)� limp!0 mp @@p �^�(p;m; c+ �c)� ^�(0;m; c+ �c)� :We wish to study what happens to the perturbation expansion in uof the right-hand side of (130) in the limit c=m!1. To this end, we setm = 1 and let c!1. Then the free propagator | namely (6), with c0and �0 replaced by c and �, respectively | goes over into the Dirichletpropagator. Further, the perturbative corrections caused by the shift �cto the term inside the square brackets of (130) vanish as c!1.8 Hence7Since the scaling dimension �["1] of the surface energy density "1 at the ordinarytransition is exactly given by �["1] = d, the analogs of (117) and (118) read �ord1 =� � 1 and �ord11 = � � 2 � �, respectively [60,14]. The other surface exponents aregiven by the scaling relations (6).8A simple way to see this is to note that such corrections involve free propagatorswith points on the surface. Dimensional arguments lead to the same conclusion.
ICMP{98{07E 32we havelimc!1 �^�(p;m; c+ �c)� ^�(0;m; c+ �c)� = ^�D(p;m)� ^�D(0;m) (131)with ^�D(p;m) = ^�(p;m;1). As we have seen, the graphs of ^�D(p;m)are obtained from those of ^�(p;m; c) by associating with all full linesthe Dirichlet propagator ^GD rather than the c-dependent one (6). Allremaining \surface" lines (cf. Ref. [52]) related to the second term in (6)are given now in the limit c0 =1 (and with kappa0 replaced by �). Notethat these graphs are not in general uv �nite at d = 3. But subtractionof their values at p = 0, which is provided by the last term in (131), issu�cient to make them so. In other words, in the limit c!1, surface-enhancement renormalization reduces to an additive renormalization.To see how this relates to our approach based on the c0 =1 functionsG(N;M)1 , we return to the representation (84) of ^�0 in terms of the self-energy ^�. Since the denominator of the fraction in (84) becomes one forc0 =1, we have ^�D = ^gT ^T [GD]^g, where T [G] is the T-matrix introducedin (83). Now the reduced propagator (85) can be written as^g(p; z0) = e��z0 = @@z ^GD(p; z; z0)����z=0 : (132)Thus we get ^G(0;2)1 [p;m0(m)] = ��+ ^�D(p;m) ; (133)where it should be remembered [16,17,60] that @z@z0 ^GD(p; z; z0) has acontribution of the form [��(z � z0)]; we have dropped the implied sin-gularity [��(0)] in the zero-loop term (��), interpreting @n ^GD  @n as thelimit of @z@z0 ^GD(p; z; z0) as z; z0 ! 0 with z 6= z0. Combining these�ndings with (130) and (131) yields[Z1(u;1)Z�(u)]�1 = � limp!0 mp @@p h ^G(0;2)1 (p)� ^G(0;2)1 (0)i : (134)Next, let us recapitulate our renormalization scheme for the G(N;M)1[37]. Aside from the previous bulk renormalization functions, it involves arenormalization factor Z1;1(u), which enters the de�nition of the renor-malized surface operator:(@n�)ren = [Z1;1Z�]�1=2 @n� ; (135)and of the renormalized functions:^G(N;M)1;ren (fpg; fzjg;m;u) = (136)



33 ðÒÅÐÒÉÎÔZ�(N+M)=2� Z�M=21;1 h ^G(N;M)1 (fpg; fzjg)� �M;2N;0 ^G(0;2)1 (0)i : (137)One evident normalization condition is^G(0;2)1;ren(0;m;u) = 0 : (138)The other, @@p2 ^G(0;2)1;ren(p;m;u)���p=0 = � 12m ; (139)(suggested by the corresponding zero-loop result) serves to �x Z1;1. Inconjunction with (136) it implies the relation:Z1;1(u)Z�(u) = � limp!0 mp @@p h ^G(0;2)1 (p)� ^G(0;2)1 (0)i ; (140)whose comparison with (134) reveals thathZ1(u;1)Z�(u)i�1 = limc=m!1 hZ1(u; c=m)Z�(u)i�1 = Z1;1(u)Z�(u)(141)to any order of perturbation theory.We introduce the analog of the exponent function �sp1 by�1;1(u) � ~�1;1(~u) � m @@m ����0 lnZ1;1(u) = �(u) @ lnZ1;1(u)@u ; (142)where ~u is the rescaled coupling constant of (87). The �xed-point valueof this function, �1;1(u�), is related to �ordk via [37] (cf. Ref. [17])�ordk = 2 + �ord1 (u�) + ��(u�) ; (143)as we shall verify below. Reasoning in a standard fashion, we �nd thatZ1;1 � (u� u�)�1;1(u�)=! � m�1;1(u�) (144)as m ! 0 (or u ! u�), with �xed bare interaction constant u0 (andc0 =1).The renormalized functions G(N;M)1;ren satisfy the analog of the CS equa-tion (54): ^O1G(N;M)1;ren (;m;u) = �G1;ren (145)with ^O1 � m @@m + �(u) @@u + N +M2 ��(u) + M2 �1;1(u) (146)
ICMP{98{07E 34in which the inhomogeneous term �G1;ren is de�ned just as �Gren in(55), but with G(N;M ;1;0)ren,sp replaced by G(N;M ;1;0)1;ren , the corresponding cu-mulant with an insertion of 12 RV �2. Neglecting �G1;ren, we can exploitin the usual fashion the resulting homogeneous CS equation togetherwith the asymptotic forms (70) and (144) of Z� and Z1;1 to concludethat the bare cumulants behave asG(N;M)1 (x; r;m0; u0) � m(N�+M�ord1 )=� 	(N;M)1 (mx;mr) (147)near criticality. That these scaling forms carry over to the asymptot-ic behavior of the functions G(N;M)(x; r;m0; u0; c0) near the ordinarytransition can be seen in the ways mentioned in the introduction to thissection and expounded in Refs. [17] (use either the expansion of the barefunctions in powers of 1=c0 or the boundary operator expansion). Herewe shall present an alternative derivation, which is based directly on ourc-dependent renormalization scheme.First, we need the asymptotic scale dependence of the variable c =c(m) near the ordinary �xed point. This can be conveniently obtainedfrom the reformulated normalization condition (78). The bare functionG(0;2)(p=0) = �11 approaches a �nite value �ord11 (u0; c0;�) as T ! Tc(m! 0) with �xed u0 and c0 < csp0 . Using the limiting behavior (141) ofZ�Z1 for c=m ! 1 together with the asymptotic forms (70) and (144)of Z� and Z1;1, we arrive at the relation(c+m)m�+�1;1(u�) � �ord11 ; (148)which yields c � m�(�ordk �2) : (149)The second ingredient we shall need is the asymptotic behavior ofthe dimensionless functionm�(N+M)(d�2)=2G(N;M)ren (x; r;m;u; c) = G(N;M)ren (mx;mr; 1; u; c=m)(150)as c � c=m!1. Based on our knowledge of the 1=c0 expansion (cf. theanalogous considerations in Sec. III C 6 of Ref. [17]), we anticipate thatG(N;M)ren (x; r; 1; u; c) �c!1 c�MF (N;M)1 (x; r; u) + c�1R(u)�M;2N;0 �(r12) ;(151)where r12 = r1 � r2. When these results are inserted into G(N;M) =Z(N+M)=2� ZM=21 G(N;M)ren , each one of the M surface operators �s is foundto contribute a factorm(d�2)=2 [Z�(u)Z1;1(u)]�1=2 (c=m)�1 � m(d�2+�ordk )=2 (152)



35 ðÒÅÐÒÉÎÔto the prefactor of F (N;M)1 . Hence we recover indeed the familiar scalingform [cf. (147)]:G(N;M)(x; r) � m(N�+M�ord1 )=� F (N;M)1 (mx;mr; u�) : (153)In the special case (N;M) = (0; 2), a contributionm(�ordk �1)R(u�) �(r12)and similar subleading ones / �(r12) appear, which we have suppressedin (153).7.2. Results of perturbation theory to two-loop orderWe now turn to the explicit calculation of the renormalization factorZ1;1(u)Z�(u) up to two-loop order, restricting ourselves again to thecase d = 3.Setting c0 = 1 we wright down the perturbation expansion of ^�Dto second order in u0. This we insert into (133), and the so-obtainedform of ^G(0;2)1 then into (140). There are two simplifying features wecan bene�t from. First, the one-loop graph of ^�D di�ers from its c = 0counterpart by a minus sign. This means that the term linear in u0agrees with its counterpart for Zsp1 Z�. Second, as we shall show in Ref.[52], the contributions from the two-loop graphs (3) and (4) of Fig. 3cancel. Hence we getZ1;1Z� = 1 + n+ 212 u08�m � limp!0 mp @@p ( D

D

D� 12� n+ 218 u20 �I2(m2)�m2I3(m2)�)+O�u30� : (154)The required u20 term is easily calculated by combining the Feynmanintegrals evaluated previously for the case of the special transition. One�nds Z1;1Z� = 1 + n+ 212 u08�m + n+ 23 � u08�m�2 C +O�u30� (155)with C = 107162 � 73 ln 43 � 0:094299 = �0:105063 : (156)
ICMP{98{07E 36Upon expressing u0 in terms of the rescaled renormalized coupling con-stant ~u = u (n+ 8)=48m� [cf. (87)], the result becomesZ1;1(u)Z�(u) = 1+ n+ 22(n+ 8) ~u+ 12 (n+ 2)(n+ 8)2 �C + n+ 824 � ~u2 +O�u3� :(157)From it the exponent function appearing on the right-hand side of (143)can be deduced in a straightforward fashion. One obtains�ordk (u) = ~�ordk (~u) = (158)2� n+ 22(n+ 8) ~u� 24 (n+ 2)(n+ 8)2 �C + n+ 1496 � ~u2 +O�u3� : (159)The corresponding series expansions of the surface exponents �ord1 , �ord? ,�ord1 , ord11 , ord1 , �ord1 , and �ord11 follow again by substituting (158) togetherwith the expansions (6) of � and � into the scaling-law expressions (6).7.3. Numerical estimates for the surface critical exponents ofthe ordinary transitionFollowing the strategy described in Sec. 6, one can analyze the abovepower series for the critical exponents of the ordinary transition andextract numerical estimates. The results are shown in Tables 7-10, wherethe entries have the same meaning as in Tables 1{2 (Sec. 6). As before,the �xed-point values u�(n) of Refs. [20] and [57], obtained by Pad�e-Borelresummation of the two-loop result for the � function, were used.For most of the obtained truncated series expansions, the coe�cientsdo not alter in sign, and the truncated series of their reciprocal (i.e.,their `inverse series') display a similar behavior. Of this kind are theseries for �ordk , �ord1 , �ord? , �ord1 , and �ord11 with n = 0; : : : ; 3, and for ord1with n = 2 and 3. Let s[p=q], with p + q � 2, be the values resultingfrom Pad�e approximants of type [p=q] (and listed in the columns marked[p=q]), and let sp � s[p=0]. Looking at Tables 7{10 one realizes that thesequences of values s[p=q] associated with each one of these critical indiceshave the following feature: The values move away from s0 such that thesecond-order approximants [p=(2� p)] give values farther away from s0than the �rst-order ones [p=(1 � p)] and that furthermore s[1=1] is themost distant one. In other words, either they increase according tos0 < s1 < s2 < s[1=1] and s0 < s[0=1] < s[0=2] < s[1=1] (160)or else they decrease in the corresponding fashion. In most cases eventhe stronger chain of inequalitiess0 < min �s1; s[0=1]	 < max�s1; s[0=1]	 < (161)
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Table 7. Surface critical exponents of the ordinary transition for d = 3 and n = 0. As �xed-pointvalue we used ~u� = 1:632.O1=O2 O1i=O2i [0=0] [1=0] [0=1] [2=0] [0=2] [1=1] f(�k; �; �)�k 2.5 2.0 2.00 1.796 1.815 1.715 1.734 1.660 1.660�1 4.4 7.8 0.25 0.352 0.364 0.375 0.380 0.382 0.394�? 3.6 2.6 1.00 0.898 0.907 0.870 0.877 0.859 0.843�1 �1.9 �1.6 0.75 0.852 0.864 0.799 0.790 0.817 0.78211 0.0 0.0 �0.50 �0.500 �0.500 �0.424 �0.434 - �0.3881 15.4 �11.4 0.50 0.653 0.681 0.663 0.662 0.664 0.680�1 2.5 3.1 1.67 1.780 1.788 1.825 1.832 1.854 1.870�11 2.1 2.7 0.33 0.424 0.433 0.466 0.476 0.504 0.504Table 8. Surface critical exponents of the ordinary transition for d = 3 and n = 1. As �xed-pointvalue we used ~u� = 1:597.O1=O2 O1i=O2i [0=0] [1=0] [0=1] [2=0] [0=2] [1=1] f(�k; �; �)�k 2.3 1.8 2.00 1.734 1.765 1.618 1.655 1.528 1.528�1 3.0 5.0 0.25 0.383 0.404 0.427 0.440 0.450 0.464�? 3.0 2.2 1.00 0.867 0.883 0.823 0.837 0.801 0.779�1 �2.5 �1.9 0.75 0.883 0.904 0.829 0.815 0.845 0.79611 0.0 0.0 �0.50 �0.500 �0.500 �0.402 �0.418 - �0.3331 5.7 �40.4 0.50 0.700 0.749 0.735 0.742 0.742 0.769�1 2.2 2.7 1.67 1.815 1.829 1.883 1.898 1.941 1.966�11 1.9 2.5 0.33 0.452 0.468 0.514 0.533 0.582 0.582
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Table 9. Surface critical exponents of the ordinary transition for d = 3 and n = 2. As �xed-pointvalue we used ~u� = 1:558.O1=O2 O1i=O2i [0=0] [1=0] [0=1] [2=0] [0=2] [1=1] f(�k; �; �)�k 2.2 1.6 2.00 1.688 1.730 1.545 1.598 1.422 1.422�1 2.4 3.9 0.25 0.406 0.435 0.470 0.493 0.514 0.528�? 2.7 1.9 1.00 0.844 0.865 0.787 0.808 0.753 0.727�1 �3.2 �2.1 0.75 0.906 0.935 0.856 0.840 0.868 0.81011 0.0 0.0 �0.50 �0.500 �0.500 �0.387 �0.408 - �0.2821 3.9 42.1 0.50 0.734 0.805 0.794 0.814 0.815 0.851�1 2.0 2.5 1.67 1.840 1.860 1.928 1.952 2.019 2.051�11 1.8 2.3 0.33 0.472 0.494 0.550 0.579 0.651 0.652Table 10. Surface critical exponents of the ordinary transition for d = 3 and n = 3. As �xed-pointvalue we used ~u� = 1:521.O1=O2 O1i=O2i [0=0] [1=0] [0=1] [2=0] [0=2] [1=1] f(�k; �; �)�k 2.1 1.5 2.00 1.654 1.705 1.489 1.556 1.338 1.338�1 2.1 3.4 0.25 0.423 0.459 0.504 0.538 0.574 0.586�? 2.5 1.8 1.00 0.827 0.853 0.759 0.787 0.714 0.685�1 �4.1 �2.4 0.75 0.923 0.959 0.880 0.862 0.889 0.82411 0.0 0.0 �0.50 �0.500 �0.500 �0.377 �0.401 - �0.2381 3.1 16.3 0.50 0.759 0.850 0.842 0.880 0.882 0.927�1 1.8 2.3 1.67 1.859 1.884 1.963 1.995 2.088 2.124�11 1.7 2.3 0.33 0.487 0.515 0.578 0.617 0.711 0.711



39 ðÒÅÐÒÉÎÔmin�s2; s[0=2]	 < max�s2; s[0=2]	 < s[1=1] (162)or its decreasing analog applies.The value s[1=1] always comes last in these sequences. Using it toextrapolate the series amounts to anticipating that the next (thus farunknown) terms of the power series expansion in ~u have coe�cients ofthe same sign. This assumption might well be true for some of the series(an example of this kind is the bulk exponent �), and in view of the justmentioned feature of the s[p=q] with p+q � 2 it seems legitimate to us toaccept it. Accordingly we consider s[1=1] to be the best among all thoseestimates s[p=q] with p + q � 2 for a given exponent that we obtainedfrom its individual series expansion.For ord1 with n = 0 and 1, only the �rst chain of inequalities of (160)holds. Its inverse series has �rst-order and second-order corrections ofdi�erent signs, and hence may be treated by the Pad�e-Borel method.The resulting resummation values (the analog of the ones denoted R�1iin Tables 1{4) agree with s[1=1] up to three decimals.In the case of �ord1 (with n = 0; 1; 2; 3) both the direct and the inverseseries are alternating in signs. The results of our resummations di�erfrom the values of the [1=1] approximants only in the third decimal.(Therefore we have not listed them separately.) The series for ord11 havezero �rst-order corrections and hence are not well adapted for estimatingthis critical exponent.In order to gain further improved estimates, we follow a similar strat-egy as we did in Sec. 6 when estimating the critical exponents of the spe-cial transition: we try to exploit the above results in conjunction withthe available high-precision estimates for the bulk exponents � and �.To this end we substitute our [1=1] values for �ordk , together with theestimates taken from [22], � = 0:588, � = 0:027 (for n = 0), � = 0:630,� = 0:031 (for n = 1), � = 0:669, � = 0:033 (for n = 2), and � = 0:705,� = 0:033 (for n = 3), into the scaling-law expressions (6). The resultsare given as f(�k; �; �) in the last row of Tables 7-10. As one sees, inthose cases in which the Pad�e values s[p=q] move away from s0 in a givendirection such that either (160) | or even (161) | or else their corre-sponding decreasing analogs hold, the estimates f(�k; �; �) turn out tobe displaced even further in the same direction.We consider our estimates f(�k; �; �) as the best we could attainfrom the available knowledge on the series expansions, within the presentapproximation scheme. In some cases they di�er signi�cantly from thezeroth-order values s0 we started from. Like in the case of the specialtransition, our best estimates agree reasonably well both with the ear-lier ones based on the � expansion [17,61] as well as with more recent
ICMP{98{07E 40computer-simulation results [38,42,59,62{65]. The latter are gathered inTable 11. For references to earlier numerical estimates and their com-parison with �-expansion results, the reader may consult Ref. [17].Table 11. Monte Carlo estimates for the surface criticalexponents of the ordinary transition in d = 3 dimensions.n = 011 �0:38(2) Meirovitch & Livne, 1988 [38]�0:353(17) De'Bell et al., 1990 [62]�0:383(5) Hegger & Grassberger, 1994 [42]1 +0:718(8) De'Bell & Lookman, 1985 [63]+0:687(5) Meirovitch & Livne, 1988 [38]+0:694(4) De'Bell et al., 1990 [62]+0:679(2) Hegger & Grassberger, 1994 [42]n = 1�1 +0:79(2) Kikuchi & Okabe, 1985 [64]+0:78(2) Landau & Binder, 1990 [39]+0:75(2) Ruge et al., 1993 [41]+0:807(4) Ruge & Wagner, 1995 [43]+0:80� 0:01 Pleimling & Selke, 1998 [59]1 +0:78(6) Landau & Binder, 1990 [39]+0:760(4) Ruge & Wagner, 1995 [43]+0:78� 0:05 Pleimling & Selke, 1998 [59]11 �0:25� 0:1 Pleimling & Selke, 1998 [59]�1 +2:00(8) Kikuchi & Okabe, 1985 [64]n = 2�1 +0:84 Landau et al., 1989 [65]1 ' 23 Landau et al., 1989 [65]Speci�cally, our estimates ord11 (n= 0) ' �0:388 and ord1 (n= 0) '0:680 for the polymer universality class (n = 0) are in excellent agree-ment with the recent (apparently very precise) Monte Carlo estimatesord11 (n = 0) = �0:383(5) and ord1 (n = 0) = 0:679(2) by Hegger andGrassberger [42]. Likewise for the Ising universality class, our numericalvalues �ord1 (n= 1) ' 0:80 and ord1 (n= 1) ' 0:77 are very close to theMonte Carlo estimates �ord1 (n=1) = 0:807(4) and ord1 (n=1) = 0:760(4)of Ruge et al. [43]. Landau and Binder's earlier Monte Carlo estimates[39] �ord1 (n = 1) ' 0:78 and ord1 (n = 1) = 0:78(6) are slightly smallerand larger, respectively. The more recent ones by Pleimling and Selke[59] coincide within their error bars with those of Ref. [43] and our bestestimate.



41 ðÒÅÐÒÉÎÔThere also exist some experimental results with which these theo-retical Ising values can be compared. Sigl and Fenzl [66] were able toextract the value �1 = 0:83 � 0:05 from capillary-rise experiments onthe transition from partial to complete wetting in critical mixtures oflutidine and water with di�erent amounts of dissolved potassium chlo-ride. Using the technique of x-ray scattering at grazing incidence [67{70], Mail�ander et al. [71] investigated the surface critical behavior of aFeAl alloy at its B2-DO3 disorder-order transition [72{74]. The values�k = 1:52� 0:04, �1 = 0:75� 0:06, and 11 = �0:33� 0:06 they foundare consistent with our estimates9 �ordk (n=1) ' 1:53, �ord1 (n=1) ' 0:80,and ord11 (n=1) ' �0:33 (taken from the last column of Table 8).An x-ray scattering experiment has also been performed on the A2-B2disorder-order transition in a semi-in�nite FeCo alloy that is boundedby a (001) surface [75]. This yielded �1 = 0:79 � 0:10, in conformitywith the above theoretical values for �ord1 (n=1). Yet it should be notedthat the chosen (001) surface breaks the symmetry of interchanging thetwo sublattices [76{78]. Therefore the Hamiltonian one encounters in acoarse-grained continuum description of the large-scale physics is notinvariant under a sign change � ! �� of the order parameter and willgenerically have surface contributions involving odd powers of � andits derivatives [79,17]. In particular, surface contributions linear in �,i.e., a surface ordering �eld g1 6= 0, normally should be present, andsince g1 is a relevant scaling �eld, the asymptotic critical behavior mustbe characteristic of the normal [80] rather than the ordinary transition[77,78].In their experiment, Krimmel et al. [75] actually found evidence of thepresence of such a surface ordering �eld g1. On the other hand, they didnot observe the crossover to the normal surface transition. The reasonseems to be that g1 is rather small. In order to see clear manifestationsof this crossover or even verify the true asymptotic behavior, one musttherefore resolve a temperature regime fairly close to Tc. The one studiedin the experiment was apparently not close enough, a possibility whichhas already been suggested by the experimentalists themselves [75]. Arecent reanalysis [81] of their data indicates that these are even betterconsistent with the behavior one should expect near Tc when the scalingvariable g1j� j��ord1 is still small (so that the crossover to the normal sur-face transition has not yet set in) than the original analysis by Krimmel9The case of the B2-DO3 transition is more complicated than that of the A2-B2transition, for the DO3 structure involves four sublattices and hence a larger numberof composition variables [72]. Nevertheless the B2-DO3 transition is expected tobelong to the Ising universality class [73,74]; see the note added in proof in Ref. [18].
ICMP{98{07E 42et al. revealed.The experiments [71] on the B2-DO3 transition of FeAl also requirea comment. Just as in the measurements on FeCo [75], a small amount oflong-range order near the surface was found to persist at and above Tc.It is tempting to attribute this again to the presence of a surface ordering�eld g1 (cf. Ref. [69]). However, the orientation of the surface plane ofthe FeAl crystal investigated in Ref. [71] was symmetry preserving in thesense of Refs. [76] and [78], so surface contributions breaking the �! ��symmetry of the Hamiltonian should not occur. Thus, if the explanationof the experimental �ndings must indeed be sought in the presence of asurface ordering �eld, then the question of its origin arises.10 It appearsthat further theoretical and experimental work is required to clarify thisissue.X-ray scattering experiments have also been performed on a NH4Brsingle crystal [82]. The authors argue that the critical uctuations atthe observed order-disorder transition should be described by the three-dimensional Ising model, but also point out that the transition is coupledto a �rst-order displacive transition. The e�ective exponents they mea-sured, �k = 1:3 � 0:15 and �1 = 0:8 � 0:1, are compatible with thetheoretical predictions for the n = 1 ordinary transition. In view of thecoupling to the displacive transition it is however not clear to us howserious such a comparison can be taken.Our estimates for n = 2 and 3, given in Tables 9 and 10, also con-form nicely with the previous �-expansion estimates gathered in TableVI (p. 186) of Ref. [17], from which we quote the value �ordk (n=2) ' 1:38as an example (to be compared with our present best estimate ' 1:42).For n = 2, there exist some recent Monte-Carlo results by Landau et al.[65], as mentioned in Table 11. For a comparison with series-expansionestimates for the cases n = 2 and 3, we refer to Table VII of Ref. [17]and the original work [83].Our values �ordk (n=3) ' 1:34 and �ord1 (n=3) ' 0:82 are fairly closeto the estimates �ordk (n=3) ' 1:29� 0:02 and �ord1 (n=3) ' 0:84� 0:01Diehl and N�usser [61] obtained from Pad�e approximants that exploitedthe results of both the � expansion and the d � 2 expansion to secondorder. We are not aware of any recent Monte-Carlo predictions for surface10Any real surface will, of course, not be ideally planar. Hence the symmetry in-voked in proving the absence of symmetry-breaking terms in the Hamiltonian [78]will not be strictly realized. Nevertheless, one would not expect such unavoidableimperfections to manifest themselves through symmetry-breaking contributions pro-portional to the surface area, unless the crystal was not carefully prepared and itssurface not well-de�ned.



43 ðÒÅÐÒÉÎÔcritical exponents of the n = 3 ordinary transition. On the experimentalside, there is the result �1 = 0:825+0:025�0:040 Alvarado et al. [84] found for aNi(100) surface using spin-polarized low-energy electron di�raction.8. CONCLUDING REMARKSIn this work we have extended the massive �eld-theory approach forstudying critical behavior in a �xed space dimension below the uppercritical dimension to systems with surfaces. We have carried out two-loopcalculations for the ordinary and special surface transitions in d = 3 bulkdimensions and performed a Pad�e-Borel analysis of the resulting seriesfor the respective surface critical exponents. The behavior of the trun-cated series we have obtained and analyzed, though less good-naturedfor some than for other exponents, is in general very similar to what one�nds for those of bulk exponents at the same two-loop order of trun-cation. We take this as a clear indication of the potential power of theapproach: when pushed to an order of perturbation theory that is com-parable to what has been achieved for the bulk exponents [2,20{22,85]and investigated by the same sophisticated techniques based on Borelsummation and large-order analysis, it should yield similarly precise nu-merical estimates. We have applied the same kind of numerical analysisas above, to the second-order series expansions of a number of the bulkcritical exponents. The results of this example calculation are given inthe Table 12. The sequences of approximate estimates for each criticalexponent tend to the "standard" values quoted in the last column.One motivation for the present study was to see whether the �eld-theory results might be reconciled with the small values of ' 0:5 foundin recent Monte Carlo simulations [41,42] for the crossover exponents�(d=3; n) with n = 0 and n = 1. Our present best estimates �(3; n=0) ' 0:52 and �(3; n=1) ' 0:54 (cf. Tables 3 and 4) are indeed muchlower than the original ones based on the � expansion (which were ' 0:67and ' 0:68, respectively [15,17]), and as we have seen, a Pad�e-Borelanalysis of the � expansion to order �2 yields comparatively low d = 3estimates. That the original �-expansion estimates for � were ' 20%greater than our present ones seems to be due to the unusual largenessof its O(�2) terms, which entails that the value of the truncated powerseries at � = 1 gives a rather poor approximation for �(d = 3). Thisproblem exist, of course, also for the other surface exponents that derivefrom the same RG function �c as � (such as �sp1 , cf. Tables 3 and 4). Forthe remaining surface exponents of both transitions, the O(�2) terms aremuch smaller, so the values of the truncated series at d = 3 turn out to
ICMP{98{07E 44

Table12.Bulk
criticalexpone

nts.
O 1(i)=O 2(i)

[0=0][1=0]
[0=1][2=0]

[0=2][1=1]
RR�1 iRef.[22]

n=0 �-7.0(-4
.1)0.50

0.6020.614
0.5870.583

0.5890.590
0.5910.588

-4.9(-2
.5)1.00

1.2041.256
1.1621.137

1.1691.172
1.1771.161

5
�-7.0(6

.2)0.50
0.1940.266

0.2380.238
0.2320.230

-0.236
�-44.1(-1

3.6)0.25
0.3010.304

0.3000.300
0.3000.300

0.3000.302
�-6.0(-2

.7)1.25
1.5051.570

1.4621.434
1.4681.470

1.4771.462
n=1 �-27.7(-

5.9)0.50
0.6330.654

0.6280.624
0.6280.629

0.6300.630
-11.3(-

2.8)1.00
1.2661.363

1.2431.207
1.2441.245

1.2541.241
�-27.7(2

.8)0.50
0.1010.215

0.1150.148
0.1150.114

-0.110
�14.5(40

5.8)0.25
0.3170.321

0.3210.321
0.321-

-0.325
�-17.5(-

3.1)1.25
1.5831.703

1.5641.525
1.5651.565

1.5751.565
n=2 �21.7(-9

.1)0.50
0.6560.685

0.6630.661
0.663-

0.6640.669
1(-3.

2)1.00
1.3121.453

1.3121.273
1.312-

1.3221.316
�21.7(1

.9)0.50
0.0330.181

0.0110.086
0.010-

--0.007
�7.2(16

.5)0.25
0.3280.334

0.3390.340
0.340-
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1.6501.609
1.651-

1.6621.661
n=3 �9.1(-15

.9)0.50
0.6730.709

0.6920.693
0.694-

0.6950.705
14.5(-3

.6)1.00
1.3461.528

1.3701.333
1.371-

1.3821.386
�9.1(1.

6)0.50
-0.0190.159

-0.0760.042
-0.083-

--0.115
�5.2(9.

5)0.25
0.3360.345

0.3530.356
0.357-

-0.3645
�10.7(-4

.0)1.25
1.6821.910

1.7231.686
1.727-

1.7391.751



45 ðÒÅÐÒÉÎÔbe much closer to our best estimates.In those cases in which there is little di�erence between the �-expansionvalues given in Ref. [17] and our best estimates here, one may say thatthese �eld-theory values have been put on a more reliable basis by ourpresent analysis because of our use of better extrapolation proceduresbased on Pad�e-Borel summation techniques.To give error bars for our estimates of surface critical exponent isa rather delicate matter. If we took as a measure of uncertainty forthe value of any given one of them the spread of values of the variousextrapolations of the O(u2) series expansion, then a reasonable guessmight be a typical accuracy of a few, say, 5%. What appears to beneeded most for an improvement of the accuracy and more reliable errorbars is the computation of the series coe�cients of the surface exponentsto a higher order in perturbation theory.There is an additional problem one is faced with in massive �eld-theory approaches to systems with boundaries that should be mentioned:the appearance of further mass scales such as the renormalized surfaceenhancement c. Having to deal with more than one mass parameter,namely with m and the ratio c=m, makes calculations rather cumber-some. Fortunately, we have found ways to study directly the asymptoticcases c=m = 0 and c=m!1 corresponding to the special and ordinarytransitions, respectively. Hence one gets back to single-mass problems.Nevertheless the technical problems that must be overcome to extend thecalculations to higher orders of the loop expansion require considerablymore e�ort than in the bulk case.It is our hope that the present work might serve as a useful basisand starting point for further analyses that ultimately could lead toquantitiative �eld-theory results for surface critical exponents and otheruniversal quantities of a precision as good as in the bulk case. Finally,we would also like to express our hope that our work might spur furtherexperimental work as well as simulations, the latter especially for higherspin dimensionalities.AcknowledgementsWe are grateful to the Alexander von Humboldt (AvH) foundation forawarding a research fellowship to one of us (M.S.). This was vital forinitiating the present work. Equally important has been the supportprovided by the Deutsche Forschungsgemeinschaft (DFG) via Sonder-forschungsbereich 237 and the Leibniz program in subsequent stages ofour work.
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