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V. ShpytkoTIME{ASYMMETRIC SCALAR AND VECTORINTERACTIONS IN THE TWO{DIMENSIONAL MODEL OFTHE FRONT FORM OF DYNAMICS
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1 ðÒÅÐÒÉÎÔIntroductionThe relativistic direct interactions theory (RDIT) [1]{[3] describes par-ticle systems in Poincar�e{invariant way, using �nite number of degreesof freedom. Poincar�e{invariance means that one can formally apply thistheory in the case of arbitrary velocities (v < c). Such a theory is phys-ically meaningful only in the region of relatively little velocities whenthere are not creation and annihilation processes. One immediately asksthe questions: what is the point in having a Poincar�e{invariant theorywhose validity does not extend on the all region v < c? Could an abilityof RDIT to describe in a formal way Poincar�e{invariant particle systemsmean that it possible to construct on the base of RDIT a more gen-eral relativistic particle description which also deals with �nite (maybechangeable) number degrees of freedom?This article does not answer none of these questions. It is not ouraim and we do not know at the moment how to construct the descrip-tion which permits to describe physical phenomena on the boundarybetween relativistic mechanics and �eld theory. We investigate only thebehaviour of su�ciently simple relativistic two{particle models with �eldtype interactions in the essential relativistic region where this boundaryshould exist. It turns out that the basic Fokker{action integral does notcontain the information about the whole evolution of the system. Usingthe Hamiltonian description within the framework of the front form ofdynamics we construct smooth world lines of particles in M 2 . Particlesreach the speed of light and do not destroy smoothness of world lines.Moreover we demonstrate that physically sensible mass spectra in semi-classical approximation need information about the whole evolution ofthe system and obtained in this article smooth world lines.The RDIT allows a wide class of exactly solvable classical and quan-tum two-particle phenomenologic models [4]{[9] as well as models con-nected with the �eld theory [10]{[14] via Fokker-type action integrals[15]{[21]. The most interesting models are those, which may be inter-preted in terms of massless �eld of integer spin [23,24]. The simplest ofthem are so{called time-asymmetric models, when one particle respondsonly to retarded �eld and the other particle responds only to advanced�eld. These models have been considered in the four-dimensional Min-kowski space M 4 in Refs [8], [14], [13], [18] { [21] and in two-dimensionalone in Refs [10], [12], [25]. The time-asymmetric case leads to ordinarydi�erential equations of motion in contrast to the time-symmetric one.For the choice of the time-symmetric Green's function the equationsof motion of the 2-body problem are di�erential-di�erence equations
ICMP{98{12E 2[23,26,27]. This makes the problem hard to handle and requires con-sideration of approximate solutions [27] or very special exact one [28]only.In Refs [10], [12] vector and scalar time{asymmetric interactions onthe line (2-dimensional Minkowski space M 2 ) were investigated only inthe repulsion case for M > m1 + m2. In contrast to above-mentionedreferences and Ref. [25], which deals with the Lagrangian description,we consider here the Hamiltonian description of 2-body system on theline with scalar and vector interactions for repulsive and attractive casesfor all values of total mass M > 0 in the framework of the front form ofdynamics [4], [22].For vector and scalar time{asymmetric interactions [8] there are inM 4 both the motions which have a good nonrelativistic limit and havenot singular points (dx=dx0 = c) as well as the motions without nonrel-ativistic limit and with singular points. In M 2 the one-dimensional casealmost all possible motions (even such, that have nonrelativistic limit)have singular points. The case (M > m1 + m2; g1g2 > 0) which havebeen investigated for scalar and vector interactions in Refs [12], [10],respectively, is an exception.The system is not de�ned at singular points. How do particles moveafter the passing through singular points? There is not, of course, aunique way to prolong the motion after singular points. We shall demon-strate that Hamiltonian formalism which is considered in the section 2suggests the possible solution of this problem. In the sections 3 and 4 weconsider the prolongation method for the motion (for scalar and vectorinteractions respectively) beyond singular points which permits to con-struct smooth world lines in the two{dimensional Minkowski space. Thisprolongation allows to construct semiclassical approximation (section 5),which coordinates with the quantum results [29,30].1. Lagrangian description of time{asymmetric Fok-ker{type action integrals in the two{dimensionalvariant of the front formAmong various forms of relativistic dynamics [31] the front form [4] takesspecial place. In the four-dimensional space-time M 4 the front form isdetermined by the family �F of simultaneity hypersurfaces: n�x� =�; � 2 R (n�n� = 0). This form of dynamics is characterized by thelargest set of generators of Poincar�e group P(1; 3) which map �F ontoitself. The stability group has seven generators [4].In the two-dimensional space-time M 2 the front form of dynamics



3 ðÒÅÐÒÉÎÔcorresponds to the foliation M 2 by isotropic hyperplanesx0 + x = �: (1.1)The Poincar�e group P(1; 1) has three generators and is an automorphismgroup of �F . The quantity � is the evolution parameter of the system[4,22]. The motion of particles is described by functions xa(�), and theparametric equations of world lines have the form x = xa(�), x0 =� � xa(�). The functions xa(�) are de�ned as solutions of the Hamiltonprinciple �S = 0 with an action integralS = Z d�L: (1.2)The general structure of the Lagrange function L is determined bythe Poincar�e-invariance conditions. The invariance of the family of si-multaneity hypersurfaces (1.1) with respect to transformations of thePoincar�e group P(1; 1) permits the solutions, which do not containderivatives higher than �rst order. The Lagrangian function for N{particle system in this case has the form [22]L = � NXa=1maka +Xa<b rabVab(rabka; rabkb); (1.3)where ka = p1� 2va; va = dxa=d�; rab = xa � xb; a; b = 1; N , and Vab {arbitrary functions of indicated arguments. As a result of the Poincar�einvariance of the Lagrangian function (1.3) there exist three conservedquantities: the energy E, the momentum P , and the center-of-inertiaintegral of motion K. They have the form [22]E = NXa=1 va @L@va �L; P = NXa=1 @L@va +E; (1.4)K = ��P � NXa=1xa @L@va :The formalism of Fokker{type action integrals [15,16,23] is one of themost meaningful branches of the classical RDIT. It gives a possibility toconnect classical relativistic mechanics and classical �eld{like descrip-tion. We are interested in the Fokker{type action integral which has the
ICMP{98{12E 4following form [16]S = Sf + Sint = � NXa=1 Z p _x2ad�a ��Xa<b gagb Z d�a Z d�bp _x2aq _x2bF (!ab)G(�ab); (1.5)where function F describes a particle interaction and�ab = �abq���(x�a � x�b )(x�a � x�b ) � �abj(xa � xb)2j ; (1.6)!ab = ��� _x�a _x�bp _x2a _x2b � ( _xa _xb)p _x2a _x2b ;��� is metric tensor of Minkowski space M 4 , �ab = sign(x0a � x0b) andga; gb 2 R correspond to particle \charges". G(�ab) is a Green's func-tion of d'Alembert or Klein{Gordon equation. If G(�ab) is a Green'sfunction of d'Alembert equation and F (0) = 1 then in the nonrelativis-tic limit (c ! 1) action integral (1.5) becomes the action integral ofnonrelativistic Coulomb problem. The choice of time{symmetric Green'sfunction of d'Alembert equation G(�ab) = �(�2ab) leads to the Wheeler{Feynman type �eld theories. In the case F = !ab we obtain the Wheeler{Feynman electrodynamics. With the time{symmetric Green's functionwe can eliminate the �eld from the consideration. But in this case weobtain nonlocal (in time) Lagrangians and as a result the di�erence{di�erential equation of motion [16,27].In the case of time{asymmetric Green's function of d'Alembert equa-tion G(�ab) = (1 + �ab=j�abj)�(�2ab) = 2�(x0a � x0b)�(�2ab): (1.7)we get usual local single{time Lagrangians in the four{dimensional Min-kowski space in the light{cone form of dynamics for two{particle system[20] and in the two{dimensional space{time in the front form of dynamicsfor N{particle system [22].Let us substitute the time{asymmetric Green's function (1.7) into(1.5). Then in the two-dimensional space-time in the front form for thetwo{particle system the action integral (1.5) leads to the Lagrangian [22]L=� NXa=1maka � g1g2k1k2jrj F (�); r > 0; (1.8)



5 ðÒÅÐÒÉÎÔwhere � = �k1k2 + k2k1� =2 (1.9)and r = r12. The case F (�) = T`(�) (1.10)where T`(�) are Tchebyshev polynomial, corresponds to the particle in-teraction through a local relativistic massless �eld of rank ` [24], in sucha way that a{th particle responds only to retarded �eld and the b{thparticle responds to advanced �eld. We are going to consider the caseof two{particle system with time{asymmetric scalar (` = 0) and vector(` = 1) interactions when the function (1.10) has the formF (�) = �` ; ` = 0; 1 : (1.11)Using more convenient in the front form quantities P� = E � P , weobtain for the Lagrangian (1.8) with the function F (�) in the form (1.11)with arbitrary integer ` � 0 following integrals of motionP+ = m1=k1 +m2=k2 � 2��`�1jrj [�2(`� 1)� `] ; (1.12)P� = m1k1 +m2k2; (1.13)K=� t(P++P�)2 �x1m1k1 �x2m2k2 �2��`�1jrj �(1+`)(x1+x2)+(1�`)�x1k22k21 +x2k21k22 �� : (1.14)In the classical mechanics, the Lagrangian function is determined onthe tangent bundle TM [32]. If the con�guration spaceM is di�eomor-phic to RN , then tangent bundle is a trivial one: TM� RN �RN . Thismeans, that a single chart with coordinates (x1; :::; xN ; v1; :::; vN ) coversthe whole TM.Our con�guration space coincides with R2 :M = f(x1; x2) 2 R2nfr =0gjr > 0g � R2 . Hence one can expect that it should not be any compli-cations connected with a global structure. But the relativistic Lagrangianfunctions and particularly the Lagrangian (1.8) are not determined onthe whole TM. The Lagrangian (1.8) is determined on the submanifoldde�ned by conditions va � 1=2 ; a = 1; 2: (1.15)Inequalities (1.15) mean that world lines in M 2 are time-like: jdxa=dx0aj <1. This submanifold has not a structure of the vector bundle. We can
ICMP{98{12E 6do not pay attention to this fact if a system does not reach boundaries(va = 1=2), or at least there is a domain of the initial data, startingfrom which a system does not reach boundary region. We call such adomain as a "good domain". There is more di�cult case when a "gooddomain" does not exist and for arbitrary initial data a system reaches thepoints of the boundary region (singular points). System is not de�ned insingular points. Theorem of existence and uniqueness for Euler-Lagrangedi�erential equations breaks at the singular points. There is not uniqueway to continue the motion after them. Just the same case takes placefor the Lagrangian (1.8). It has been shown in [25] that Lagrangiandescription for the systems with interaction function (1.11) does notlead to the continuous world lines. We are going to demonstrate thatHamiltonian formalism suggests some solution of this problem.2. Hamiltonian formalism for two-particle systemwith scalar and vector time{asymmetric interac-tionsIt is well known that Legendre transformation is a di�erentiable mapping� : TM ! T �M. The Legendre transformation associated with theLagrangian (1.8) with F (�) = �` has the formpa = @L@va = maka + �2jrj �1 + `+ (1� `)k2�ak2a� �`�1: (2.1)Here a = 1; 2; �a = 3�a. This transformation is a di�eomorphism in theregion 
 � TM� R4 , whereh` = det 



 @2L@v1@v2 



 = m1m2k31k32 ��(m2k1 +m1k2)�(`�2)(�2(`+ 1)� `)jrjk31k32 exists and 6= 0; (2.2)and maps the open region 
 � TM� : 
! �
 (2.3)into open one �
 � T �M� R4 .The Hamiltonian case is equivalent to the Lagrangian one only in theregion �
 [32]. In the strict sense a motion in the Hamiltonian case isde�ned on �
 only. In the other words we should consider �
 as a wholephase space of the system. But in this case as we mentioned above one



7 ðÒÅÐÒÉÎÔcan not obtain continuous world lines [25] excepting the repulsion case(� > 0) if the total mass M of the system is great then the sum of parti-cle masses m = m1 +m2. This is a consequence of the non{existence ofa "good domain" for other values of quantities M2; �. We shall demon-strate that the system describing by the Lagrangian (1.8),(1.11) reachessingular points for which h` = 0 or h` ! 1. To obtain smooth worldlines we shall consider whole R4 as a phase space and de�ne the motionin the domain R4 n �
.Let us consider scalar (` = 0) and vector (` = 1) interactions. Itis possible to solve Eq.(2.1) with respect to velocities in these cases.Solving the system (2.1) with respect to velocities va and substitutingthem in the expressions for conserved quantities, we obtain from (1.4)the generators of the Lie algebra of the Poincar�e group P(1; 1).P+ = p1 + p2; K = x1p1 + x2p2; (2.4)P� = m21p2 +m22p1 +A`�=jrjp1p2 + (�1)`�2=jrj2 +B`�P+=jrj ; (2.5)where A` = (1� `)(2m1m2)� `(m21 +m22); B` = �`: (2.6)Quantities (2.4), (2.5) satisfy the following Poisson brackets relationsfP+; P�g = 0; fK;P�g = �P�: (2.7)The classical total mass squared function M2 = P+P� has vanishingPoisson brackets with all generators (2.4),(2.5). The separation of exter-nal and internal motion is carried out by the choiceP+ = p1 + p2 ; Q = K=P+ ; fQ;P+g = 1 (2.8)as new external canonical variables. As internal variables we choose� = m2p1 �m1p2P+ ; q = rP+m ; fq; �g = 1; (2.9)where m = m1 +m2. The sign of coordinates di�erence sign(r) is an in-tegral of motion [22] and r > 0 in the region 
. Therefore we can neglectthe module sign because such a Hamiltonian system will be equivalent inthe region �
 to the basic Lagrangian one. Then, in terms of variables(2.9) the function M2 which determines the inner motion of the systemhas the form M2 = X=Y; (2.10)
ICMP{98{12E 8whereX = m�mm1m2q +m(m2 �m1)q� + �A`�; (2.11)Y=m1m2q+(m2�m1)q� � �q�2+(�1)`�2q �+ �mB`:One can represent phase line equation M2 = M2(q; �) which de-scribes inner motion as a quadratic equation with respect to momenta� (���M )2=(�2�1)m2m21m22q2�2�M2m1m2m�`q+(�1)`+1M4�2M4q2 ; (2.12)where �M = (M2�m2)(m2�m2)2M2 ; � = M2�m21�m222m1m2 : (2.13)The motion is possible in the region where quadratic formD` = (�2 � 1)m2m21m22q2 � 2�M2m1m2m�`q +(�1)`+1M4�2 (2.14)is non{negative. Then we obtain that for the �nite motion q 2 [q1; q2],where q1, q2 { real solutions of quadratic equation D` = 0:q1 = 2�M2(�1)`+1(M2 � (m1 �m2)2)m; q2 = 2�M2(M2 �m2)m: (2.15)We have to remember that to obtain in the Hamiltonian case Lagrangianpicture we must restrict a motion of the system to the region �
, whereHessian h` (2.2) exists and is positive. For scalar and vector interactionit has the formh` = �m1m2 � �r (m1k1 +m2k2)(`� 1)� k�31 k�32 : (2.16)Solving the system (2.1) with respect to quantities ka and taking intoaccount Eq.(2.9) we get expressions for ka in terms of canonical variablesP+; q; �. They have the form�1 = m(�m1� +m1m2 +m2�=q)P+(��2 + �(m2 �m1) +m1m2 � �2=q2) �



9 ðÒÅÐÒÉÎÔmy1P+y3 ; (2.17)�2 = m(m2� +m1m2 +m1�=q)P+(��2 + �(m2 �m1) +m1m2 � �2=q2) �my2P+y3for the scalar case and the form��11 = P+m1m �m1 + � � �q � � P+m1m ~y1 ; (2.18)��12 = P+m2m �m2 � � � �q � � P+m2m ~y2for the vector case.From Eqs.(2.7){(2.9) and relationH = M2 + P 2+2P+ (2.19)we obtain the following Hamiltonian equation of motion_Q = 1=2� M22P+ ; _P+ = 0; (2.20)_q = 12P+ @M2@� ; _� = � 12P+ @M2@q : (2.21)Using phase trajectory equation (2.12) and solving Eqs(2.21) we obtainlaw of the particle motion in parametric formt� � t�0 = 2P+m2M2 �m1 �m22M2 q�� (m21 +m22)M2 � (m21 �m22)24M2m2m21m22(�2 � 1) D1=2` � �M2�1�`m(�2 � 1)I0� ; (2.22)
ICMP{98{12E 10where t�0 are integration constants,

I0=
8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
� 12mm1m2p1� �2��arcsinmm1m2(�2�1)q��M2�`M2��1�`12mm1m2p�2�1�� ln ���� 2(mm1m2(�2�1)q��M2�`)p�2�1 +2pD`����

���������������������
�2<1�2>1 (2.23)

and signs � corresponds to the di�erent solutions of the quadratic equa-tion (2.12). Inequality �2 < 1 means that (m1 � m2)2 < M2 < m2and corresponds to �nite motion. Inequality �2 > 1 means that 0 <M2 < (m1 �m2)2 or M2 > m2 and is connected with in�nite motions.De�nition of the front form of relativistic dynamics (1.1) and relations(2.8), (2.9) of particle coordinates x1; x2 and canonical coordinates Q; qtogether with Eq.(2.22) give us equations for world lines in M 2 in para-metric form x01(q) = t(q)� x1(q) ; x02(q) = t(q)� x2(q) : (2.24)x1(q) = KP+ + m2 � �(M2; q)P+ q ; (2.25)x2(q) = KP+ � m1 + �(M2; q)P+ q :The world lines in M 2 for time asymmetric scalar case have beenobtained by P.Stephas in Ref.[10] and for time{asymmetric vector in-teraction by R.A.Rudd, R.N.Hill in Ref.[12]. In both articles world lineshave been obtained for the the repulsion case for M > m1 + m2 onlyby immediate integrating of equation of motion in the two{dimensionalspace{time that is equivalent to the Lagrangian description. Lagrangiandescription in the front form of dynamics in M 2 for the �eld{liketime{asymmetric interaction has been investigated by A.A.Mayorov,S.N.Sokolov, V.I.Tretyak in Ref.[25].The behaviour of the system in the scalar and vector cases is quitedi�erent. Therefore we consider the scalar and vector case separately.



11 ðÒÅÐÒÉÎÔ3. Scalar interactionIn the scalar case if � > 0 the region �
 of the phase plane correspondsto the region q > 0 restricted by curves y1 = 0; y2 = 0. If � < 0 then in-dicated region lies between the curves y1 = 0; y2 = 0 to the right of theirintersection point. As we can see on the phase portraits (Figs 1, 3, 5, 7,9, 11) only the phase curves corresponding to � > 0; M2 > m2, lie com-pletely in �
. Just the same case have been considered in Ref.[12]. Phasetrajectories which corresponds to other values of parameters �; M2 passthe boundaries of this region or lie outside. It will be noted that eventhe Lagrangian description permits the motions for which hs < 0. Thatcorresponds to the parts of phase trajectories which lie between curvesy1 = 0; y2 = 0; q > 0 if � < 0; �2 < 1; � < 0 (Fig. 5) and if� < 0; 0 < M2 < (m1 �m2)2 (Fig. 11). Then the coordinate q belongsto the interval hq2; ��M2mm1m2 i. If we restrict ourself by the region �
 thenwe obtain continuous world lines only for M2 > m2, � > 0 (Fig. 1). Forother values of parameters world lines are not continuous or do not exist(the whole phase curves lie outside the region �
). The same takes placein the Lagrangian case. If we want to obtain continuous (or even smooth)world lines we have to prolong in some way the motion after the systemreaches singular points. On the boundary of the region 
 the Lagrangiansystem is not de�ned. Therefore there not exists unique method of sucha prolongation. The Hamiltonian description suggests possible solutionof this problem. We shall regard the whole plane R2 as the inner phasespace of the system. Then the whole curves (not only their parts) shownin the Figs 1, 3, 5, 7, 9, 11 will be phase curves. Taking this into accountwe obtain from Eqs (2.22), (2.24), (2.25) smooth world lines for everyvalues of quantities M2; � which are shown in the Figs 2, 4, 6, 8, 10, 12.We put t+o = 0 and following values of integration constant8>>>><>>>>: t�o = 4�P+m�1�`(�2 � 1) J (�2>1)o (q2); � > 0t�o = 4�P+m�1�`(�2 � 1) J (�2>1)o (q1); � < 0 ����������m2 < M2 ; (3.1)8>>><>>>: t�o =4�P+m�(�2 � 1) J (�2>1)o (q1); � > 0t�o =4�P+m�(�2 � 1) J (�2>1)o (q2); � < 0 ��������� 0<M2<(m1�m2)2; (3.2)
ICMP{98{12E 12t�o = �P+��1�`m1m2(1� �2)3=2 ; � < 0 ; �2 < 1 : (3.3)In the equation (3.1), (3.3) it is necessary to put ` = 0. The intersectionpoints of the phase trajectories and curves y1 = 0, y2 = 0 correspondthe case when one of particles reaches the speed of light. In the regionR2n�
 (as well as in the region �
) velocities of both particles are lessthan the speed of light. Here �
 is the closure of �
 in R2 (�
 Sfcurves y1 = 0, y2 = 0g).

4.0 6.0 8.0 10.0 12.0 14.0qm=j�j-1.2-0.8-0.4-0.00.40.81.2 �=m y1 = 0
y2 = 0

Figure 1. Scalar interaction. Phase trajectories (continuous curves) forStephas case: (m2 �m1)=m = 0:2; M=m = 1:2;� > 0. Dashed curvesy1 = 0; y2 = 0 corresponds to the singularities of Hessian.
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-20.00 -10.00 0.00 10.00 20.00xm=j�j-21.0-11.0-1.09.019.0x0m=j�j
1

2
Figure 2. Scalar interaction. World lines in M 2 . Stephas case: (m2 �m1)=m = 0:2; M=m = 1:2;� > 0.
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0.0 2.0 4.0 6.0 8.0 10.0 12.0qm=j�j-0.6-0.4-0.2-0.00.20.40.6 �=m y1 = 0
y2 = 0

Figure 3. Scalar interaction. Phase trajectories (continuous curves) forfollowing values of parameters: (m2 �m1)=m = 0:2; M=m = 1:2;� < 0.Dashed curves y1 = 0; y2 = 0 corresponds to the singularities of Hessian.
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-15.00 -5.00 5.00 15.00xm=j�j-11.5
-3.5

4.5
x0m=j�j

1
2

�������
�������

��

Figure 4. Scalar interaction. World lines in M 2 for following values ofparameters: (m2 �m1)=m = 0:2; M=m = 1:2;� < 0.
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0.3 �=m y1 = 0

y2 = 0
Figure 5. Scalar interaction. Phase trajectories (continuous curves) for�nite motion: (m2 �m1)=m = 0:2; M=m = 0:6 (�2 < 1; � < 0); � < 0.Dashed curves y1 = 0; y2 = 0 corresponds to the singularities of Hessian.
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Figure 6. Scalar interaction. World lines in M 2 for �nite motion: (m2 �m1)=m = 0:2; M=m = 0:6 (�2 < 1; � < 0); � < 0.
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Figure 7. Scalar interaction. Phase trajectories (continuous curves) for�nite motion: (m2 �m1)=m = 0:2; M=m = 0:9 (�2 < 1; � > 0); � < 0.Dashed curves y1 = 0; y2 = 0 corresponds to the singularities of Hessian.
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Figure 8. Scalar interaction. World lines in M 2 for �nite motion: (m2 �m1)=m = 0:2; M=m = 0:9 (�2 < 1; � > 0); � < 0.
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Figure 9. Scalar interaction. Phase trajectories (continuous curves) forfollowing values of parameters: (m2�m1)=m = 0:4; M=m = 0:3; � > 0.Dashed curves y1 = 0; y2 = 0 corresponds to the singularities of Hessian.



21 ðÒÅÐÒÉÎÔ

0.00 20.00 40.00 60.00 80.00 100.00xm=j�j-120.0
-40.0

40.0
120.0 x0m=j�j

1
2

Figure 10. Scalar interaction. World lines in M 2 for following values ofparameters: (m2 �m1)=m = 0:4; M=m = 0:3; � > 0.
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�=m ~y1 = 0
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Figure 11. Scalar interaction. Phase trajectories (continuous curves) forfollowing values of parameters: (m2�m1)=m = 0:4; M=m = 0:3; � < 0.Dashed curves y1 = 0; y2 = 0 corresponds to the singularities of Hessian.
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Figure 12. Scalar interaction. World lines in M 2 for following values ofparameters: (m2 �m1)=m = 0:4; M=m = 0:3; � < 0.
ICMP{98{12E 244. Vector interactionIn the vector case if � < 0 the region �
 corresponds to the regionbounded by curves ~y1 = 0; ~y2 = 0; q = 0. If � > 0 then indicated regionlies between the curves ~y1 = 0; ~y2 = 0 to the right of their intersectionpoint. Analogously to the scalar interaction, only the phase curves cor-responding to � > 0; M2 > m2, lie completely in �
 (Fig 13). Just thesame case has been considered in Ref.[10]. Corresponding world lines areshown in the Fig. 14. Phase trajectories for other values of parameters�; M2 (excepting � > 0, 0 < M2 < (m1 �m2)2) describe particles col-lisions (q = 0). For q > 0 they lie in �
. From now on we consider thesemotions in a formal way only and are not interested in their physicalsense. Analogously to the scalar interaction, we regard the whole planeR2 as the inner phase space of the system. As was mentioned above, inthe Lagrangian case sgn(r) is integral of motion. Moreover we obtain thetime{asymmetric Lagrangian (1.8) as a consequence of condition r > 0.This condition (or equivalent one q > 0) is satis�ed for the motions inthe Lagrangian region �
. If we do not restrict the Hamiltonian mo-tions by the region �
 where the Lagrangian and Hamiltonian systemsare equivalent, then we can ignore this condition. In this case we gettwo possibilities: to renew the module sign in Eqs. (2.11), (2.12), (2.14)or keep these equations in the previous form. The �rst possibility doesnot lead to continuous world lines. Therefore we consider the secondone. This means that we take into consideration negative solutions ofquadratic equation D1 = 0. Just the same prolongation of phase curvesis shown in Figs 15, 17, 19, 21 and leads to the smooth world lines inM 2 (Figs 16, 18, 20, 22).At the collision points (q = 0) when particles mutually change theirpositions (Figs. 15, 17, 19, 21) the phase trajectories break up. Takinginto account equalitiesk1 jq!+0; �!�1 = k1 jq!�0; �!1 ! 0 ;k1 jq!+0; �!1 = k1 jq!�0; �!�1 ! const ;0 < const <1 ; (4.1)k2 jq!+0; �!1 = k2 jq!�0; �!�1 ! 0 ;k2 jq!+0; �!�1 = k2 jq!�0; �!1 ! const ;0 < const <1 ;it will be seen that the jumps in the phase trajectories (+0;�1)  !(�0;1); (+0;1)  ! (�0;�1) correspond to the particles motion



25 ðÒÅÐÒÉÎÔalong the smooth world lines. This means that such jumps are not ob-servable in the two-dimensional Minkowski space and therefore we canassume that they are not physical. Our canonical variables describe thesystem in the proper way only in some �nite region in R2 and we canidentify the points(+0;�1) � (�0;1); (+0;1) � (�0;�1) becauseeach pair correspond to the one point on the world lines. In other wordsour canonical variables are only local coordinates and cannot describethe whole evolution of the system.We put t+o = 0. Integration constant t�o for the cases M2 > m2 and�2 < 1 is determined by equations (3.1), (3.3), where we put ` = 1. If0 < M2 < (m1 �m2)2 then8>>><>>>: t�o =4P+�m(�2�1) J (�2>1)o (q2); �>0t�o =4�P+m(�2�1) J (�2>1)o (q1); �<0 ��������� 0<M2<(m1�m2)2 : (4.2)
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Figure 13. Vector interaction. Phase trajectories (continuous curves) forRudd{Hill case: (m2�m1)=m = 0:2; M=m = 1:2; � > 0. Dashed curves~y1 = 0; ~y2 = 0 corresponds to the singularities of Hessian.
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-20.00 -10.00 0.00 10.00 20.00xm=j�j-21.0-11.0-1.09.019.0x0m=j�j
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Figure 14. Vector interaction. World lines in M 2 . Rudd{Hill case: (m2�m1)=m = 0:2; M=m = 1:2; � > 0.
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Figure 15. Vector interaction. Phase trajectories (continuous curves) forfollowing values of parameters: (m2�m1)=m = 0:2; M=m = 1:2; � < 0.Dashed curves ~y1 = 0; ~y2 = 0 corresponds to the singularities of Hessian.
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Figure 16. Vector interaction. World lines in M 2 for following values ofparameters: (m2 �m1)=m = 0:2; M=m = 1:2; � < 0.
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Figure 17. Vector interaction. Phase trajectories (continuous curves) for�nite motion: (m2 �m1)=m = 0:2; M=m = 0:8; � < 0. Dashed curves~y1 = 0; ~y2 = 0 corresponds to the singularities of Hessian.
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Figure 18. Vector interaction. World lines in M 2 for �nite motion: (m2�m1)=m = 0:2; M=m = 0:8; � < 0.
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Figure 19. Vector interaction. Phase trajectories (continuous curves) for�nite motion: (m2 �m1)=m = 0:2; M=m = 0:8; � > 0. Dashed curves~y1 = 0; ~y2 = 0 corresponds to the singularities of Hessian.
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Figure 20. Vector interaction. World lines in M 2 for �nite motion: (m2�m1)=m = 0:2; M=m = 0:8; � > 0.

ICMP{98{12E 34

-4.00 0.00 4.00qm=j�j-11.0-7.0-3.01.05.09.0 �=m
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Figure 21. Vector interaction. Phase trajectories (continuous curves) forfollowing values of parameters: (m2�m1)=m = 0:5; M=m = 0:4; � > 0.Dashed curves ~y1 = 0; ~y2 = 0 corresponds to the singularities of Hessian.
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Figure 22. Vector interaction. World lines in M 2 for following values ofparameters: (m2 �m1)=m = 0:5; M=m = 0:4; � > 0.
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Figure 23. Vector interaction. Phase trajectories (continuous curves) forfollowing values of parameters: (m2�m1)=m = 0:5; M=m = 0:4; � < 0.Dashed curves ~y1 = 0; ~y2 = 0 corresponds to the singularities of Hessian.
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Figure 24. Vector interaction. World lines in M 2 for following values ofparameters: (m2 �m1)=m = 0:5; M=m = 0:4; � < 0.
ICMP{98{12E 385. Semiclassical approximationIn the previous sections we have demonstrated that investigated methodof prolongation of world lines permits the smooth periodic �nite motionsin the two{dimensional Minkowski space. As it follows from (2.22), (3.3),the period of �nite motion is determined by the equationT` = t�(q1)� t�(q2) + t+(q2)� t+(q1) =� 2���1�`P+(1� �2)3=2m1m2 ; (5.1)if ��1�` < 0, and by the equationTl = t+(q2)� t+(q1) + t�(q1)� t�(q2) =2���1�`P+(1� �2)3=2m1m2 ; (5.2)if ��1�` > 0. For the �nite motion in the case of scalar interactionwe get usual closed phase curves (Figs 5, 7). The vector case is quitedi�erent because phase trajectories of �nite motion (in terms of variablesq; �) are not like any closed curves (Figs 17, 19). Moreover, in thiscase the area enclosed by phase curve (or even one of its parts andthe line q = 0) is in�nite. As we pointed out above the pairs of points(+0;�1) � (�0;1); (+0;1) � (�0;�1) describe the same physicalreality because they correspond to the same points on the world lines.Our canonical variables describe the system in the proper way only insome �nite region in R2 and we cannot apply correctly our descriptionfor the whole evolution of the system.For both cases the period of �nite motion is �nite. In the vector casewe have obtained the smooth periodic world lines for �nite motion inthe same manner as for scalar interaction. We may assume that thereexists some symplectic manifold on which phase trajectories are smoothor at least continuous and phase curves for �nite motion enclose a �nitearea �1 which is connected with the period T1. We also assume thatthe jumps in the phase trajectories and the necessity of consideration ofin�nite points in q{� plane are a consequence of bad mapping from somethis manifold in R2 .To obtain mass spectra for both cases we yield as follows. We use(2.19) and general relation [33]@�(E)=@E = T (E) ; (5.3)



39 ðÒÅÐÒÉÎÔwhich holds for every closed phase trajectory. Here E = H is the energyof system. If M2 = m21 +m22, then in the scalar case q0 = q1 = q2, andthe phase trajectory is a point. Therefore,�(m21 +m22) = 0 (5.4)that one can consider as an initial value for integration of the equation@�`(M)@M = 2�j��1�`jM(1� �2)3=2m1m2 : (5.5)In such a way we obtain�0 = 2 � ��p1� �2 + ��! ; �1 = 2�j � ��jp1� �2 : (5.6)It will be noted that in the scalar case one can obtain �0 by immediatecalculation of the area enclosed by phase curves (Figs 5, 7).The mass spectrum is determined in semiclassical approximation bycondition [33] �(M) = 2�~(n+ �=4); n = 0; 1; 2; 3; ::: (5.7)where � is a number of returning points or in general case may be Maslovindex [33]. As a result we have semiclassical mass spectrum for the scalarinteraction(M�n )20=m21 +m22 � 2m1m2s1� �2c2~2(s+1=2��=(~c))2 ; (5.8)s=1; 2; 3; : : : .There is not such a correspondence with the second equation in (5.6)and area enclosed by phase trajectories in terms of the canonical variablesq; � in the vector case. As we mentioned above, in this case the areaenclosed by phase curves is in�nite. According our assumption thereexits some mechanical description on symplectic manifold which leadsto the same smooth periodic world lines and gives closed inner phasecurves with the area �1.Then using Eq. (5.7) we get mass spectrum(M�n )21 = m21 +m22 � 2m1m2�1 + �2c2~2(s+ �=4)2��1=2 ; (5.9)where quantity � is unde�ned.

ICMP{98{12E 40One can easily check that the di�erence �q>0 � �q<0 is �nite andcoincides with the expression for �1 in (5.6). This strange fact also couldmean that we have not a global description for such a system. We canassume that the last equation describes the semiclassical mass spectrumfor the vector interaction. Then to determine quantity � we must con-struct a global description for this system. The sign "+" in the lastequation corresponds to the attraction (� < 0) and "-" corresponds tothe repulsion (� > 0).The semiclassical mass spectra (5.8), (5.9) correlate well with theexactly quantum results [29,30] which have been obtained in purely al-gebraic way [30]. It will be noted that the essential feature of the con-struction of the mass spectra in the semiclassical approximation is theinvestigated here method of smooth continuation of world lines.We have obtained the semiclassical mass spectra from the world lineswithout explicit calculation of the area enclosed by phase trajectories.Such a method does not give an understanding how non{Lagrangianparts of phase trajectories form the the semiclassical mass spectra (5.8),(5.9). It is possible also to obtain mass spectra (5.8), (5.9) for bothinteractions considering phase trajectories in a following way. It followsfrom the de�nition of quantity � (see Eq. (1.8)) that � 2 [1;1). Thuswe can put sin� = 1� ; (5.10)where � 2 [0; �=2]. Substituting (2.4) into expression for inner momen-tum � (2.13) and using (1.15), (2.1), (5.10) we get parametric represen-tation of mass shell equation for arbitrary `� = �M + mm1m2[` sin� � (`� 1)�] cos�M2(`� 1� ` sin2 �) (5.11)q = �M2(`� 1� ` sin2 �)mm1m2 sin` �(1� � sin�) (5.12)To take into consideration di�erent signs before cos� we put in (5.11),(5.12) � 2 [0; �]. To take into account non{Lagrangian parts of phasetrajectories in the scalar and vector case we have to assume that� 2 [0; 2�] : (5.13)For the �nite motion (�2 < 1) parameter � runs the whole interval[0; 2�] and the points � = 0; 2� correspond to the same point on thephase trajectory. This means that � 2 S1. For in�nite motions � runsonly part of the circle S1. In the vector case the jumps on the phase



41 ðÒÅÐÒÉÎÔtrajectories (4.1) correspond to passage of the parameter through thepoints � = 0; �.Let us consider the integralJ�2<1 = 2�Z0 �(M2; �) dqd� d� : (5.14)In the scalar case the integral describes an area enclosed by phase tra-jectory: J�2<1 = �0. Thus puttingJ�2<1 = 2�~(n+ �=4) (5.15)we obtain mass spectrum (5.8). In the vector caseJ�2<1 = �q>0 ��q<0 = �1 : (5.16)Using (5.15) we get mass spectrum (5.9)If � 2 (�; 2�) then as it follows from (5.10) � < 0. This means thatfor non{Lagrangian parts of phase trajectories one of the Lorentz factorsis negative: k1 or k2 < 0. It is easily to check that these parts of phasetrajectories one can obtain from the Lagrangian (1.8) by change of signsbefore the Lorentz factor of one of particles: ka ! �ka, a = 1 or 2.Let us consider the Lagrangian~L = � NXa=1ma~ka � g1g2~k1~k2jrj F (~�); ~� = 12  ~k1~k2 + ~k2~k1! ; (5.17)where ~ka = 12ma ���1a k2a + �am2a� : (5.18)This Lagrangian is obtained from (1.8) by replacement ka ! ~ka. Freeparticle part of the Lagrangian (5.17) is similar to that used in the stringtheory [34]. It permits to describe massless particles. The idea to usesimilar type of Lagrangians for relativistic two{particle systems withthe time{asymmetric scalar and vector interaction was suggested by A.Duviryak [35]. The equations of motion for quantity �@ ~L@~ka �� k2a�2a +m2a� = 0 (5.19)
ICMP{98{12E 42give us two possibilities which do not break symmetry between particles:@ ~L@~k1 = �m1 � �~k2jrj  F + ~k1~k2 � ~k2~k1!F 0! = 0 ; (5.20)@ ~L@~k2 = �m2 � �~k1jrj  F � ~k1~k2 � ~k2~k1!F 0! = 0 ;or �2a = k2am2a : (5.21)Solving the system (5.20) with respect to ~ka we getka = fa�m1;m2; �jrj� : (5.22)Substitution of these solutions into (5.17) gives us the Lagrangian whichdoes not contain the velocities and therefore does not describe a dynam-ics: ~L = ~L(m1;m2; �=jrj) : (5.23)Substituting solutions of the system (5.21) into (5.17) we obtain theLagrangian function (1.8) in whichka ! �ka : (5.24)As we mentioned above, k1 < 0 or k2 < 0 for non{Lagrangian parts ofphase trajectories. Thus the Lagrangian (5.17) in the scalar and vectorcase describes the whole evolution of the system. The quantities �a onecan interpret as "one{dimensional metric" along the world lines. If theparticle velocity tends to the speed of light then � ! 0. This meansthat we obtain the smooth world lines only in a�ne sense but not in themetric one.Conclusion and discussionWe have seen that Hamiltonian description of the two{particle systemwith the time{asymmetric scalar and vector interactions permits to con-struct smooth world lines in M 2 . For all values of the total mass M andthe signs of interaction constant � (excepting the case M > m; � > 0)one can obtain in the Lagrangian formalism only segments of particles



43 ðÒÅÐÒÉÎÔworld lines. If one of the particle velocities tends to the speed of lightthen Hessian h` ! 0 or does not exists and in the framework of the La-grangian formalism we cannot prolong the particle motion beyond thesingular points. This means that basic Fokker{action integral does notdescribe the whole evolution of the system.The Hamiltonian description is equivalent to the Lagrangian formal-ism only if the Legendre transformation � is a di�eomorphism. In ourcase this is true in the region 
 � TM, where Hessian h` > 0. TheHamiltonian description is equivalent to the Lagrangian one in the region�
 � T �M � R4 . We have extended the Hamiltonian description onthe whole R4 and by this have suggested the natural method of smoothprolongation of world lines through the singular points. In such a waywe have constructed world lines which describe the whole evolution ofthe system and are smooth everywhere. Moreover, they permit to obtainsemiclassical expressions for mass spectra which correlate well with exactquantum results. This means that our smooth world lines as well as themethod of their construction have some physical sense. However, as itfollows from the consideration of vector interaction, we have not well de-termined description everywhere on R4 . The necessity of considerationof in�nite points (at q = 0) on the phase plane means that our innercanonical variables describe the system in the proper way only in some�nite regions in R2 and the topology of the phase space (if it exists) isnon{trivial.We did not pay attention to the physical sense of time{asymmetricFokker{type models or the physical conclusions of our prolongationmethod of world lines. Our purpose was the consideration in a formalway the solutions of Hamiltonian equation. The questions of physicalinterpretation of "non{Lagrangian" segments of smooth world lines andvariation principle for the whole world lines were out of our considera-tion. We are going to consider these question in next works.References1. Gaida R.P. Quasirelativistic interacting particle systems. | Sov.J. Part. Nucl., 1982, 13, p. 176.2. J.Llosa (ed.) Relativistic Action at a Distance: Classical and Quan-tum Aspects. Proc. Workshop. Barcelona, 1981. | Lect NotesPhys., 1982, 162. | 264 p.3. G. Longhi, L.Lusanna (eds) Constraint's Theory and RelativisticDynamics. Proc. Workshop. Firenze, 1986.| Singapore: World Sci.Publ., 1987. | 352 p.
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