HarmionanbHa akameMisa HayK Y KpaiHU

IHCTUTYVYT
PIBNKN
KOHIEHCOBAHUX
CUCTEM

ICMP-98-12E

V. Shpytko

TIME-ASYMMETRIC SCALAR AND VECTOR

INTERACTIONS IN THE TWO-DIMENSIONAL MODEL OF

THE FRONT FORM OF DYNAMICS

\

~

/

JIbBIB

YIOK: 531/533; 530.12: 531.18
PACS: 03.20, 03.30+p, 11.30.Cp

YacoacuMeTpuYHi CKajIapHa Ta BEKTOPHA B3a€MOMil y IBOBH-
MipHili Momeini ¢pporTOoBOI POpMH OUHAMIKHA

B.IIInutko

Amnoramisi. B pamkax ¢pponrasibHol (popMu AuHAMIKY Y ABOBUMIPHOMY
IIPOCTOPiI—Yaci PO3IVIAHYTO PEJIATUBICTUYHY ABOYACTUHKOBY CUCTEMY i3
4aCOACUMETPUIHUME CKAJIAPHOIO Ta BEKTOPHOIO B3aeMomiamu. ['aminb-
TOHIB OITHUC TO3BOJISE MPOIOBKUTHU PYX 03a KPUTUIHI TOYKH i OTpuMaTH
TJIaOKi CBiTOBI JIiHil, AKi IPUBOAATH 10 KBA3IK/JIACUYIHOTO HAOJIMKEHHS,
sAKe Jo0pe y3romKyEThCH i3 KBAHTOBUMU PE3YJIbTATAMHU.

Time-asymmetric scalar and vector interactions in the two-
dimensional model of the front form of dynamics

V. Shpytko

Abstract. Relativistic two-particle system with the time-asymmetric
scalar and vector interactions in the two—dimensional space-time is con-
sidered within the framework of the front form of dynamics. Hamiltonian
formalism permits to extend the motion beyond singular points and to
obtain smooth world lines which lead to semiclassical approximation,
which is in accord with the quantum results.

IMonaerbes B J.Nonlin.Math.Phys
Submitted to J.Nonlin.Math.Phys

© Imcturyt disukn konnencoBauux cucrem 1998
Institute for Condensed Matter Physics 1998



1 IIpenpunT

Introduction

The relativistic direct interactions theory (RDIT) [1]-[3] describes par-
ticle systems in Poincaré—invariant way, using finite number of degrees
of freedom. Poincaré-invariance means that one can formally apply this
theory in the case of arbitrary velocities (v < ¢). Such a theory is phys-
ically meaningful only in the region of relatively little velocities when
there are not creation and annihilation processes. One immediately asks
the questions: what is the point in having a Poincaré-invariant theory
whose validity does not extend on the all region v < ¢? Could an ability
of RDIT to describe in a formal way Poincaré—invariant particle systems
mean that it possible to construct on the base of RDIT a more gen-
eral relativistic particle description which also deals with finite (maybe
changeable) number degrees of freedom?

This article does not answer none of these questions. It is not our
aim and we do not know at the moment how to construct the descrip-
tion which permits to describe physical phenomena on the boundary
between relativistic mechanics and field theory. We investigate only the
behaviour of sufficiently simple relativistic two—particle models with field
type interactions in the essential relativistic region where this boundary
should exist. It turns out that the basic Fokker—action integral does not
contain the information about the whole evolution of the system. Using
the Hamiltonian description within the framework of the front form of
dynamics we construct smooth world lines of particles in M. Particles
reach the speed of light and do not destroy smoothness of world lines.
Moreover we demonstrate that physically sensible mass spectra in semi-
classical approximation need information about the whole evolution of
the system and obtained in this article smooth world lines.

The RDIT allows a wide class of exactly solvable classical and quan-
tum two-particle phenomenologic models [4]-[9] as well as models con-
nected with the field theory [10]-[14] via Fokker-type action integrals
[15]-[21]. The most interesting models are those, which may be inter-
preted in terms of massless field of integer spin [23,24]. The simplest of
them are so—called time-asymmetric models, when one particle responds
only to retarded field and the other particle responds only to advanced
field. These models have been considered in the four-dimensional Min-
kowski space My in Refs [8], [14], [13], [18] — [21] and in two-dimensional
one in Refs [10], [12], [25]. The time-asymmetric case leads to ordinary
differential equations of motion in contrast to the time-symmetric one.
For the choice of the time-symmetric Green’s function the equations
of motion of the 2-body problem are differential-difference equations
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[23,26,27]. This makes the problem hard to handle and requires con-
sideration of approximate solutions [27] or very special exact one [28]
only.

In Refs [10], [12] vector and scalar time—asymmetric interactions on
the line (2-dimensional Minkowski space M2 ) were investigated only in
the repulsion case for M > mj + ms. In contrast to above-mentioned
references and Ref. [25], which deals with the Lagrangian description,
we consider here the Hamiltonian description of 2-body system on the
line with scalar and vector interactions for repulsive and attractive cases
for all values of total mass M > 0 in the framework of the front form of
dynamics [4], [22].

For vector and scalar time-asymmetric interactions [8] there are in
My both the motions which have a good nonrelativistic limit and have
not singular points (dz/dz® = ¢) as well as the motions without nonrel-
ativistic limit and with singular points. In M, the one-dimensional case
almost all possible motions (even such, that have nonrelativistic limit)
have singular points. The case (M > mj + ma, g1g2 > 0) which have
been investigated for scalar and vector interactions in Refs [12], [10],
respectively, is an exception.

The system is not defined at singular points. How do particles move
after the passing through singular points? There is not, of course, a
unique way to prolong the motion after singular points. We shall demon-
strate that Hamiltonian formalism which is considered in the section 2
suggests the possible solution of this problem. In the sections 3 and 4 we
consider the prolongation method for the motion (for scalar and vector
interactions respectively) beyond singular points which permits to con-
struct smooth world lines in the two—dimensional Minkowski space. This
prolongation allows to construct semiclassical approximation (section 5),
which coordinates with the quantum results [29,30].

1. Lagrangian description of time—asymmetric Fok-
ker—type action integrals in the two—dimensional
variant of the front form

Among various forms of relativistic dynamics [31] the front form [4] takes
special place. In the four-dimensional space-time My the front form is
determined by the family ¥y of simultaneity hypersurfaces: n,z# =
7, 7 € R (nyn* = 0). This form of dynamics is characterized by the
largest set of generators of Poincaré group P(1,3) which map ¥ onto
itself. The stability group has seven generators [4].

In the two-dimensional space-time M, the front form of dynamics
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corresponds to the foliation M, by isotropic hyperplanes
P+ =T (1.1)

The Poincaré group P(1, 1) has three generators and is an automorphism
group of ¥ . The quantity 7 is the evolution parameter of the system
[4,22]. The motion of particles is described by functions z,(7), and the
parametric equations of world lines have the form = = z,(7), 2° =
7 — z4(7). The functions z,(7) are defined as solutions of the Hamilton
principle 05 = 0 with an action integral

S = /dm. (1.2)

The general structure of the Lagrange function £ is determined by
the Poincaré-invariance conditions. The invariance of the family of si-
multaneity hypersurfaces (1.1) with respect to transformations of the
Poincaré group P(1,1) permits the solutions, which do not contain
derivatives higher than first order. The Lagrangian function for N-
particle system in this case has the form [22]

N
L=— Zmak‘a + Zrabvab(rabkaarabkb)a (]‘3)
a=1

= a<b

where k, = /1 = 204,04 = do/dT, 7y = T4 — Tp,a,b =1, N, and V,, —
arbitrary functions of indicated arguments. As a result of the Poincaré
invariance of the Lagrangian function (1.3) there exist three conserved
quantities: the energy E, the momentum P, and the center-of-inertia
integral of motion K. They have the form [22]

N N
oL oL
E_;vaava c, P_;6Ua+E,
(1.4)
N
oL
K——TP—GZ::lJJaa—va

The formalism of Fokker—type action integrals [15,16,23] is one of the
most meaningful branches of the classical RDIT. It gives a possibility to
connect classical relativistic mechanics and classical field—like descrip-
tion. We are interested in the Fokker—type action integral which has the
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following form [16]

N
S =8¢+ Sint :—Z/\/adm—
a=1
_Zgagb/dTa/dTb\/jz_Z\/;gF(wab)G(pab)a (15)

a<b

where function F' describes a particle interaction and

pav = a1 (2l — 20) (@ — 78) = €l (wa — 7))

iy = M _ (i)

W) = W) ?
TiT; \TLTy

Nuv is metric tensor of Minkowski space My, €, = sign(:vg — :Ug) and
Jda, 9o € R correspond to particle “charges”. G(pqp) is a Green’s func-
tion of d’Alembert or Klein—-Gordon equation. If G(pgp) is a Green’s
function of d’Alembert equation and F(0) = 1 then in the nonrelativis-
tic limit (¢ — oo) action integral (1.5) becomes the action integral of
nonrelativistic Coulomb problem. The choice of time—symmetric Green’s
function of d’Alembert equation G(pay) = 8(p2,) leads to the Wheeler—
Feynman type field theories. In the case F' = wg, we obtain the Wheeler—
Feynman electrodynamics. With the time-symmetric Green’s function
we can eliminate the field from the consideration. But in this case we
obtain nonlocal (in time) Lagrangians and as a result the difference—
differential equation of motion [16,27].
In the case of time—asymmetric Green’s function of d’Alembert equa-
tion
Glpas) = (L + pas/|pas)(p2y) = 20(a2 —a)d(p2).  (L7)

we get usual local single-time Lagrangians in the four—dimensional Min-
kowski space in the light—cone form of dynamics for two—particle system
[20] and in the two—dimensional space—time in the front form of dynamics
for N—particle system [22].

Let us substitute the time-asymmetric Green’s function (1.7) into
(1.5). Then in the two-dimensional space-time in the front form for the
two—particle system the action integral (1.5) leads to the Lagrangian [22]

a 2k k.
L= mak, glgiﬂ%p(a),r >0, (1.8)
a=1
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where

5= (% + %) /2 (1.9)

1

and r = r12. The case
F(0) =Ty(0) (1.10)

where Ty(9) are Tchebyshev polynomial, corresponds to the particle in-
teraction through a local relativistic massless field of rank ¢ [24], in such
a way that a—th particle responds only to retarded field and the b—th
particle responds to advanced field. We are going to consider the case
of two—particle system with time-asymmetric scalar (¢ = 0) and vector
(¢ = 1) interactions when the function (1.10) has the form

F(o)=46"; £=0,1. (1.11)

Using more convenient in the front form quantities P = E £+ P, we
obtain for the Lagrangian (1.8) with the function F'(J) in the form (1.11)
with arbitrary integer £ > 0 following integrals of motion

2001,
P+ :ml/kl +m2/k2— |7“| [(5 (f—l)—g] s (112)
P_ :m1k1 +m2k2, (113)
K__t(P++P_) _mlml _Jigmg _
B 2 ki ks
2 5£71 k2 k2
a (146) (21 +32)+(1—0) ( 22 2270 | (1.14)
|| ki k3

In the classical mechanics, the Lagrangian function is determined on
the tangent bundle 7'M [32]. If the configuration space M is diffeomor-
phic to R, then tangent bundle is a trivial one: TM ~ RY x RV . This
means, that a single chart with coordinates (x1, ..., xn,v1, ..., UN) COVErs
the whole T'M.

Our configuration space coincides with R?: M = {(z1,72) € R*\{r =
0}|r > 0} ~ R?. Hence one can expect that it should not be any compli-
cations connected with a global structure. But the relativistic Lagrangian
functions and particularly the Lagrangian (1.8) are not determined on
the whole T M. The Lagrangian (1.8) is determined on the submanifold
defined by conditions

v <1/2, a=1,2. (1.15)

Inequalities (1.15) mean that world lines in M are time-like: |dz, /dz%| <
1. This submanifold has not a structure of the vector bundle. We can
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do not pay attention to this fact if a system does not reach boundaries
(v, = 1/2), or at least there is a domain of the initial data, starting
from which a system does not reach boundary region. We call such a
domain as a "good domain”. There is more difficult case when a ”good
domain” does not exist and for arbitrary initial data a system reaches the
points of the boundary region (singular points). System is not defined in
singular points. Theorem of existence and uniqueness for Euler-Lagrange
differential equations breaks at the singular points. There is not unique
way to continue the motion after them. Just the same case takes place
for the Lagrangian (1.8). It has been shown in [25] that Lagrangian
description for the systems with interaction function (1.11) does not
lead to the continuous world lines. We are going to demonstrate that
Hamiltonian formalism suggests some solution of this problem.

2. Hamiltonian formalism for two-particle system
with scalar and vector time—asymmetric interac-
tions

It is well known that Legendre transformation is a differentiable mapping
A:TM — T*M. The Legendre transformation associated with the
Lagrangian (1.8) with F(§) = §¢ has the form

oL My « k2 =1
pa—ava—k—a+m<1+g+(l—£)ﬁ>(s . (21)

a

Here a = 1,2, a = 3 — a. This transformation is a diffeomorphism in the
region ) C TM ~ R*, where

0°L

he = det Ovy0va - TZ%Z%Z
almaky +muk)0C 2 (@ (E+1) 0 exists and # 0, (2.2)
7|k k3
and maps the open region Q@ C TM
A:Q— AQ (2.3)

into open one AQ) C T*M ~ R*.

The Hamiltonian case is equivalent to the Lagrangian one only in the
region AQ [32]. In the strict sense a motion in the Hamiltonian case is
defined on A2 only. In the other words we should consider Af2 as a whole
phase space of the system. But in this case as we mentioned above one
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can not obtain continuous world lines [25] excepting the repulsion case
(o > 0) if the total mass M of the system is great then the sum of parti-
cle masses m = my + mo. This is a consequence of the non—existence of
a "good domain” for other values of quantities M2, a. We shall demon-
strate that the system describing by the Lagrangian (1.8),(1.11) reaches
singular points for which hy = 0 or hy — oco. To obtain smooth world
lines we shall consider whole R* as a phase space and define the motion
in the domain R* \ AQ.

Let us consider scalar (¢ = 0) and vector (¢ = 1) interactions. It
is possible to solve Eq.(2.1) with respect to velocities in these cases.
Solving the system (2.1) with respect to velocities v, and substituting
them in the expressions for conserved quantities, we obtain from (1.4)
the generators of the Lie algebra of the Poincaré group P(1,1).

P, =p +p2, K=ux1p1 + Tapo, (2.4)
- e+ (=D)fa?/Ir]2 + BeaPy [|r] '
where
Ap = (1= 0)(2myms) — L(m3 +m3); By = —L. (2.6)

Quantities (2.4), (2.5) satisfy the following Poisson brackets relations
{P+,P-} =0, {K, Py} =+P;. (2.7)

The classical total mass squared function M? = P;P_ has vanishing
Poisson brackets with all generators (2.4),(2.5). The separation of exter-
nal and internal motion is carried out by the choice

Pi=pi+p, Q=K/Py; {Q,Pr}=1 (2.8)
as new external canonical variables. As internal variables we choose

Map1 — M1P2 Py
= —_— = 1 2-
— B 1T {6} =1, (2.9)

&=
where m = mj + my. The sign of coordinates difference sign(r) is an in-
tegral of motion [22] and r > 0 in the region 2. Therefore we can neglect
the module sign because such a Hamiltonian system will be equivalent in
the region A2 to the basic Lagrangian one. Then, in terms of variables
(2.9) the function M? which determines the inner motion of the system

has the form
M? = X)Y, (2.10)
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where

X = m(mmimaq + m(ma —my)gé + ady),
(2.11)

a2
Y =mimaq+(ma—m1)qé — (Q£2+(—1)Z7> + amB;y.

One can represent phase line equation M? = M?(q,£&) which de-
scribes inner motion as a quadratic equation with respect to momenta

3

(E—€m)?=
(L2 =1)m>m2m3q® —2aM>*mymamptq+(—1)F1 M4a?
Mg , (2.12)
where (s 2 ) ) ) 5
M=—m?=)(ma—ma M=—mi—m;
_ = 1 2 2.13
é-M YWE y M 2m1m2 ( )
The motion is possible in the region where quadratic form
Dy = (u* — )m*mimie® — 2aM*mymaomputq +
(=1)“*tMta? (2.14)

is non—negative. Then we obtain that for the finite motion ¢ € [q1, ¢2],

where ¢, g2 — real solutions of quadratic equation Dy = 0:
_ 2aMP(-1)t! _ 2aM?

"= 0r = —m)m BT 0 —mdm

(2.15)

We have to remember that to obtain in the Hamiltonian case Lagrangian
picture we must restrict a motion of the system to the region AQ2, where
Hessian hy (2.2) exists and is positive. For scalar and vector interaction
it has the form

(6]
hy = (m1m2 — ?(mlkl + mzkg)(e — 1)) kl_3k2_3 . (216)

Solving the system (2.1) with respect to quantities k, and taking into
account Eq.(2.9) we get expressions for k, in terms of canonical variables
Py, q, & They have the form

o m(—mi§ + mims +maa/q) —
e P (=& 4+ &(ma —my) + mims — a?/q?)
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my1 .
Prys’
(2.17)
o = m(ma€ + mims + mia/q) _
P (=& +&(ma —my) + mima —a?/q?)
mys
Prys
for the scalar case and the form
_ P « P,
’911——+<m1+§——>5 T
1m q mim
(2.18)
_ P «a P,
”21— - < z—f——> =+ Y2
maom q mam
for the vector case.
From Eqs.(2.7)-(2.9) and relation
M? 4+ P2
H=—_"* 2.19
TR (2.19)
we obtain the following Hamiltonian equation of motion
. M? .
=1/2——, P.=0 2.20
Q / 2P+7 + ) ( )
. 1 OM? . 1 oM?
j=——-, E=——r . (2.21)

Using phase trajectory equation (2.12) and solving Eqs(2.21) we obtain
law of the particle motion in parametric form

2P+m2 mi — Mma
M?2 2M?2

(mi +m3)M? — (m3 —m3)* y/n  aM?p't

AM2m?m3m3(u® — 1) ¢ m(p? —1)

tt—t5 =

qx

+

To| . (2.22)
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where toi are integration constants,

4 1 x
2mmimay/1 — p?
- mmame(p®—1)g—aM>p’ p?<1
xarcsin e
To= 1 (2.23)
X
2mm1m2 /j,z—]_ H2>1
x In 2<mm1m2$2—21)1q—04M2u£)+2\/E
e
\

and signs £ corresponds to the different solutions of the quadratic equa-
tion (2.12). Inequality p? < 1 means that (m; — m»)? < M? < m?
and corresponds to finite motion. Inequality p? > 1 means that 0 <
M? < (m1 —m2)? or M? > m? and is connected with infinite motions.
Definition of the front form of relativistic dynamics (1.1) and relations
(2.8), (2.9) of particle coordinates x1, w2 and canonical coordinates @, ¢
together with Eq.(2.22) give us equations for world lines in M in para-
metric form

29 (q) = t(q) —z1(q) , 25(q) = t(q) — z2(q) - (2.24)

(2.25)

- Py Py

The world lines in M, for time asymmetric scalar case have been
obtained by P.Stephas in Ref.[10] and for time—asymmetric vector in-
teraction by R.A.Rudd, R.N.Hill in Ref.[12]. In both articles world lines
have been obtained for the the repulsion case for M > mj + mo only
by immediate integrating of equation of motion in the two—dimensional
space—time that is equivalent to the Lagrangian description. Lagrangian
description in the front form of dynamics in M, for the field-like
time—asymmetric interaction has been investigated by A.A.Mayorov,
S.N.Sokolov, V.I.Tretyak in Ref.[25].

The behaviour of the system in the scalar and vector cases is quite
different. Therefore we consider the scalar and vector case separately.
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3. Scalar interaction

In the scalar case if a > 0 the region A{) of the phase plane corresponds
to the region ¢ > 0 restricted by curves y; = 0, y2 = 0. If @ < 0 then in-
dicated region lies between the curves y; = 0, y» = 0 to the right of their
intersection point. As we can see on the phase portraits (Figs 1, 3, 5, 7,
9, 11) only the phase curves corresponding to a > 0, M? > m?, lie com-
pletely in AQ). Just the same case have been considered in Ref.[12]. Phase
trajectories which corresponds to other values of parameters a, M? pass
the boundaries of this region or lie outside. It will be noted that even
the Lagrangian description permits the motions for which hs < 0. That
corresponds to the parts of phase trajectories which lie between curves
y1 =0, 4o =0, ¢ >0ifa <0, p2 < 1, p < 0 (Fig. 5) and if
a <0, 0< M? < (m; —mz)? (Fig. 11). Then the coordinate q belongs

—aM?
mmima

to the interval [qg, ] . If we restrict ourself by the region A2 then

we obtain continuous world lines only for M? > m?, a > 0 (Fig. 1). For
other values of parameters world lines are not continuous or do not exist
(the whole phase curves lie outside the region Af2). The same takes place
in the Lagrangian case. If we want to obtain continuous (or even smooth)
world lines we have to prolong in some way the motion after the system
reaches singular points. On the boundary of the region (2 the Lagrangian
system is not defined. Therefore there not exists unique method of such
a prolongation. The Hamiltonian description suggests possible solution
of this problem. We shall regard the whole plane R? as the inner phase
space of the system. Then the whole curves (not only their parts) shown
in the Figs 1, 3, 5, 7, 9, 11 will be phase curves. Taking this into account
we obtain from Eqs (2.22), (2.24), (2.25) smooth world lines for every
values of quantities M2, a which are shown in the Figs 2, 4, 6, 8, 10, 12.
We put ¢} = 0 and following values of integration constant

- daPympt—t JE>1)

o — (/1,2—1) o (q2)7 a>0

m? < M?* | (3.1)
_ 4aP mp'~t (u?
t-=_——"—""" g >1)
0 (/1,2—1) Jo (q1)7 a<0
_ 4aPymp 2+
ooy e |
0<M?<(my—m?*)?, (3.2)
_4aPympu

t, JO(“2>1)(q2),a <0

(n? =1)
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P 1—¢
e il a<0, pr<l. (3.3)

to = myma(1 — p2)3/2 "’
In the equation (3.1), (3.3) it is necessary to put £ = 0. The intersection
points of the phase trajectories and curves y; = 0, yo» = 0 correspond
the case when one of particles reaches the speed of light. In the region
R2\AQ (as well as in the region AQ) velocities of both particles are less
than the speed of light. Here AQ is the closure of AQ in R?> (AQ |
{curves y; =0, y2 = 0}).

§/m

1.2 .

0.8 e y1 =10

0.8 3

Nry B i e R e gm/|ef

Figure 1. Scalar interaction. Phase trajectories (continuous curves) for
Stephas case: (m2 —my)/m = 0.2; M/m = 1.2;a > 0. Dashed curves
y1 =0, y2 = 0 corresponds to the singularities of Hessian.
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§/m
wom/|a| 0.6
19.0 J / ] y1=0
1 / E| et
3 / 0.4 3 T
/ E| -
! E
/
/ 3
4 / i
9.0 é / 0.2 ?
i ' :
o1 ]
! E
| -0.0 E
] \
-1.0 ] \ ]
] \ E|
f . -0.2 §
\
\
\
\
: \ 0.4 ]
-11.0 J \
] \
] . 4
N E
‘\ -0.6 3 : "
b 2 \ 0.0 2.0 4.0 6.0 8.0 10.0 12.0
] \ xm/|al
-20.00 -10.00 0.00 10.00 20.00 Figure 3. Scalar interaction. Phase trajectories (continuous curves) for
following values of parameters: (ms —my)/m =0.2; M/m =1.2;a < 0.
Dashed curves y; = 0, yo = 0 corresponds to the singularities of Hessian.

Figure 2. Scalar interaction. World lines in My . Stephas case: (ms2 —

my1)/m=0.2; M/m=12;a>0.
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‘ §/m
0.3 1
m/|a| ]
=0
] -0.1
45 ] ]
0.5 1 )
/ ]
: / 'lz
-3.5 ] \
] \ y2 =10
\
|
\ 4
N 09 Yo R e R gm/|al
Y 0.8 1.2 1.6 2.0 2.4
\\
4 \ . . . - . .
] \ xm/|al Figure 5. Scalar interaction. Phase trajectories (continuous curves) for
-11.5 e St St

finite motion: (ma —my)/m = 0.2; M/m = 0.6 (4> < 1,u < 0); a < 0.
-15.00 -5.00 5.00 15.00 . S .
Dashed curves y; = 0, y» = 0 corresponds to the singularities of Hessian.

Figure 4. Scalar interaction. World lines in My for following values of
parameters: (mo —my)/m =0.2; M/m =1.2;a <0.
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§/m

0.6 5

0 / E
x n:z/lal ot ] =0

8.0 1 9 ]

/ 0.2

. ]

\\
4.0 ] Tt 0.0
1 y) 3

AN

\
\
\
\
\
\
L

0.2 3

Ao
0.0 3 X S y2 =0
\\ 1
e 0.4 3
~. E
] -7 E
4.0 3 -7
] -7 N\ i I E— I S I S qm/|a]
g 0.0 2.0 4.0 6.0 8.0 10.0
xm/|al Figure 7. Scalar interaction. Phase trajectories (continuous curves) for
-8.0 I NN - NN - . . 2
finite motion: (ms —mq)/m =0.2; M/m = 0.9 <1lLu>0); a<O.
-2.00 0.00 2.00 4.00 (mo 1)/ » M/ (e 1> 0);

Dashed curves y; = 0, y» = 0 corresponds to the singularities of Hessian.

Figure 6. Scalar interaction. World lines in M for finite motion: (ms —
my)/m=0.2; M/m =0.6 (u*> <1,u<0); a<O.
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§/m
2.0
S y1:0
0.0 ]
] 2 =0
2.0 ]

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Figure 9. Scalar interaction. Phase trajectories (continuous curves) for
following values of parameters: (ms —my)/m = 0.4; M/m = 0.3; a > 0.
Dashed curves y; = 0, y2 = 0 corresponds to the singularities of Hessian.
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Figure 8. Scalar interaction. World lines in M for finite motion: (ms —
my)/m=0.2; M/m=0.9 (u*> <1,u>0); a<O0.
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Figure 10. Scalar interaction. World lines in My for following values of

parameters: (my —my)/m =0.4; M/m =0.3; a > 0.
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Figure 11. Scalar interaction. Phase trajectories (continuous curves) for

following values of parameters: (ms —my)/m =0.4; M/m =0.3; a <0
Dashed curves y; = 0, yo = 0 corresponds to the singularities of Hessian
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Figure 12. Scalar interaction. World lines in M for following values of
parameters: (my —my)/m =0.4; M/m =0.3; a <0.
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4. Vector interaction

In the vector case if o < 0 the region A} corresponds to the region
bounded by curves §; = 0, g2 =0, ¢ = 0. If @ > 0 then indicated region
lies between the curves §; = 0, g2 = 0 to the right of their intersection
point. Analogously to the scalar interaction, only the phase curves cor-
responding to a > 0, M? > m?, lie completely in AQ (Fig 13). Just the
same case has been considered in Ref.[10]. Corresponding world lines are
shown in the Fig. 14. Phase trajectories for other values of parameters
a, M? (excepting a > 0, 0 < M? < (m1 — m2)?) describe particles col-
lisions (¢ = 0). For ¢ > 0 they lie in AQ2. From now on we consider these
motions in a formal way only and are not interested in their physical
sense. Analogously to the scalar interaction, we regard the whole plane
R? as the inner phase space of the system. As was mentioned above, in
the Lagrangian case sgn(r) is integral of motion. Moreover we obtain the
time—asymmetric Lagrangian (1.8) as a consequence of condition r > 0.
This condition (or equivalent one ¢ > 0) is satisfied for the motions in
the Lagrangian region AQ. If we do not restrict the Hamiltonian mo-
tions by the region A} where the Lagrangian and Hamiltonian systems
are equivalent, then we can ignore this condition. In this case we get
two possibilities: to renew the module sign in Eqgs. (2.11), (2.12), (2.14)
or keep these equations in the previous form. The first possibility does
not lead to continuous world lines. Therefore we consider the second
one. This means that we take into consideration negative solutions of
quadratic equation D; = 0. Just the same prolongation of phase curves
is shown in Figs 15, 17, 19, 21 and leads to the smooth world lines in
M, (Figs 16, 18, 20, 22).

At the collision points (¢ = 0) when particles mutually change their
positions (Figs. 15, 17, 19, 21) the phase trajectories break up. Taking
into account equalities

k1 |q~>+0, E——o0 — k1 |q—>70, =00 7 0,
k1 |q~>+0, E—o0 — ky |q—>70, E——co 7 const ,
0 < const < o0 ,

ko |q~>+0, E—o0 — ks |q—>70, E——co 7 0,
k2 |q—>+0, E——00 — k2 |q—)—0, £—o00 —* CONSE
0 < const < o0 ,

it will be seen that the jumps in the phase trajectories (4+0, —00) +—
(=0,00); (+0,00) «— (—0,—00) correspond to the particles motion
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along the smooth world lines. This means that such jumps are not ob-
servable in the two-dimensional Minkowski space and therefore we can
assume that they are not physical. Our canonical variables describe the
system in the proper way only in some finite region in R?> and we can
identify the points(+0, —o0) ~ (=0, 00); (4+0,00) ~ (=0, —00) because
each pair correspond to the one point on the world lines. In other words
our canonical variables are only local coordinates and cannot describe
the whole evolution of the system.

We put ¢ = 0. Integration constant ¢, for the cases M? > m? and
u? < 1is determined by equations (3.1), (33), where we put ¢ = 1. If
0 < M? < (m; —mz2)? then

2

4P
t;_(ﬂjf";,ﬂ“ > (gs), a>0
0<M2<(m1—m2)2 . (42)
t;_?Zern;J(“ >D(q), a<0
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Figure 13. Vector interaction. Phase trajectories (continuous curves) for
Rudd-Hill case: (ma—my)/m = 0.2; M/m = 1.2; « > 0. Dashed curves
71 =0, @2 = 0 corresponds to the singularities of Hessian.
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Figure 15. Vector interaction. Phase trajectories (continuous curves) for
following values of parameters: (ms —my)/m =0.2; M/m =1.2; a <0.
Dashed curves §; = 0, ¢ = 0 corresponds to the singularities of Hessian.

Figure 14. Vector interaction. World lines in My . Rudd-Hill case: (g —
my1)/m=0.2; M/m=12; a>0.
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Figure 16. Vector interaction. World lines in M, for following values of
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parameters: (my —my)/m =0.2; M/m=1.2; a <0.
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Figure 17. Vector interaction. Phase trajectories (continuous curves) for
finite motion: (my —mq)/m = 0.2; M/m = 0.8; a < 0. Dashed curves
71 =0, @2 = 0 corresponds to the singularities of Hessian.
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Figure 18. Vector interaction. World lines in My for finite motion: (msq —
my1)/m =0.2; M/m=0.8; a<0.
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Figure 19. Vector interaction. Phase trajectories (continuous curves) for
finite motion: (my —mq)/m = 0.2; M/m = 0.8; a > 0. Dashed curves
71 =0, @2 = 0 corresponds to the singularities of Hessian.
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500 Figure 21. Vector interaction. Phase trajectories (continuous curves) for

following values of parameters: (ms —my)/m = 0.5; M/m = 0.4; a > 0.

Figure 20. Vector interaction. World lines in M for finite motion: (msq — Dashed curves 1 = 0, g2 = 0 corresponds to the singularities of Hessian.

my1)/m =0.2; M/m=0.8; a>0.
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Figure 22. Vector interaction. World lines in M, for following values of

parameters: (my —my)/m =0.5; M/m =0.4; a > 0.
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Figure 23. Vector interaction. Phase trajectories (continuous curves) for
following values of parameters: (ms —my)/m = 0.5; M/m = 0.4; a <0.
Dashed curves §; = 0, ¢ = 0 corresponds to the singularities of Hessian.
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Figure 24. Vector interaction. World lines in M, for following values of
parameters: (my —my)/m =0.5; M/m =0.4; a <0.
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5. Semiclassical approximation

In the previous sections we have demonstrated that investigated method
of prolongation of world lines permits the smooth periodic finite motions
in the two—dimensional Minkowski space. As it follows from (2.22), (3.3),
the period of finite motion is determined by the equation

Te=1t"(q) =t~ (g2) + tH(g2) =t (@) =

2amp! P
1 A (5.1)
(1 = p?)3/2mymy
if au'=f < 0, and by the equation
T =t (g2) =t (@) +t7 (@) — 7 (q2) =
2omp! ‘P
arp_Tx (5.2)

(1 —p2)3/2mims

if au'=¢ > 0. For the finite motion in the case of scalar interaction
we get usual closed phase curves (Figs 5, 7). The vector case is quite
different because phase trajectories of finite motion (in terms of variables
g, &) are not like any closed curves (Figs 17, 19). Moreover, in this
case the area enclosed by phase curve (or even one of its parts and
the line ¢ = 0) is infinite. As we pointed out above the pairs of points
(4+0, —00) ~ (=0,00); (+0,00) ~ (=0, —00) describe the same physical
reality because they correspond to the same points on the world lines.
Our canonical variables describe the system in the proper way only in
some finite region in R? and we cannot apply correctly our description
for the whole evolution of the system.

For both cases the period of finite motion is finite. In the vector case
we have obtained the smooth periodic world lines for finite motion in
the same manner as for scalar interaction. We may assume that there
exists some symplectic manifold on which phase trajectories are smooth
or at least continuous and phase curves for finite motion enclose a finite
area II; which is connected with the period 7. We also assume that
the jumps in the phase trajectories and the necessity of consideration of
infinite points in ¢—¢ plane are a consequence of bad mapping from some
this manifold in R?.

To obtain mass spectra for both cases we yield as follows. We use
(2.19) and general relation [33]

OI(E)/OE = T(E) , (5.3)
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which holds for every closed phase trajectory. Here E = H is the energy
of system. If M? = m? + m3, then in the scalar case ¢y = q; = ¢2, and
the phase trajectory is a point. Therefore,

(m? +m3) =0 (5.4)
that one can consider as an initial value for integration of the equation

Oy (M)  2mlap'~Y M (5.5)
OM (1 —p2)3/2mimy '

In such a way we obtain

2 —
H0:2<—L+aw) oo, = 2 enl (5.6)

V91— p? 1= p?

It will be noted that in the scalar case one can obtain Il by immediate
calculation of the area enclosed by phase curves (Figs 5, 7).

The mass spectrum is determined in semiclassical approximation by
condition [33]

II(M) =2nxh(n+v/4), n=0,1,2,3,... (5.7

where v is a number of returning points or in general case may be Maslov
index [33]. As a result we have semiclassical mass spectrum for the scalar
interaction

a2

- 2R2(s+1/2—a/(hc))?’

(ME)2=m? +mi + 2m1m2\/1 (5.8)
s=1,2,3,....

There is not such a correspondence with the second equation in (5.6)
and area enclosed by phase trajectories in terms of the canonical variables
¢, & in the vector case. As we mentioned above, in this case the area
enclosed by phase curves is infinite. According our assumption there
exits some mechanical description on symplectic manifold which leads
to the same smooth periodic world lines and gives closed inner phase
curves with the area II;.

Then using Eq. (5.7) we get mass spectrum

9 —1/2
£\2 _ 2 2 a
(Mn )1 =1m3 + ms + 2m1m2 <1 + m) y (59)

where quantity v is undefined.
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One can easily check that the difference II,~¢ — [I;<¢ is finite and
coincides with the expression for II; in (5.6). This strange fact also could
mean that we have not a global description for such a system. We can
assume that the last equation describes the semiclassical mass spectrum
for the vector interaction. Then to determine quantity v we must con-
struct a global description for this system. The sign ”+” in the last
equation corresponds to the attraction (a < 0) and ”-” corresponds to
the repulsion (a > 0).

The semiclassical mass spectra (5.8), (5.9) correlate well with the
exactly quantum results [29,30] which have been obtained in purely al-
gebraic way [30]. It will be noted that the essential feature of the con-
struction of the mass spectra in the semiclassical approximation is the
investigated here method of smooth continuation of world lines.

We have obtained the semiclassical mass spectra from the world lines
without explicit calculation of the area enclosed by phase trajectories.
Such a method does not give an understanding how non-Lagrangian
parts of phase trajectories form the the semiclassical mass spectra (5.8),
(5.9). It is possible also to obtain mass spectra (5.8), (5.9) for both
interactions considering phase trajectories in a following way. It follows
from the definition of quantity ¢ (see Eq. (1.8)) that & € [1,00). Thus
we can put

1
sinfi =, (5.10)
where 3 € [0,7/2]. Substituting (2.4) into expression for inner momen-
tum ¢ (2.13) and using (1.15), (2.1), (5.10) we get parametric represen-
tation of mass shell equation for arbitrary ¢
mmyme[€sin 8 — (¢ — 1)u] cos 3
M2(¢ — 1 — £sin® B)

=&+ (5.11)

_aM?(t—1-(sin®p)
B mmymes sin® B(1 — psin B)

(5.12)

To take into consideration different signs before cos 8 we put in (5.11),
(5.12) B € [0,x]. To take into account non-Lagrangian parts of phase
trajectories in the scalar and vector case we have to assume that

B e0,2n] . (5.13)

For the finite motion (u? < 1) parameter 3 runs the whole interval
[0,27] and the points B = 0,27 correspond to the same point on the
phase trajectory. This means that 8 € S'. For infinite motions 3 runs
only part of the circle S'. In the vector case the jumps on the phase
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trajectories (4.1) correspond to passage of the parameter through the
points 8 = 0, 7.
Let us counsider the integral

dq
)35 (5.14)

27
Trer = [ €022, 9)
0
In the scalar case the integral describes an area enclosed by phase tra-
jectory: J,2<1 = Ilp. Thus putting

TJu2<1 = 2mh(n + v/4) (5.15)
we obtain mass spectrum (5.8). In the vector case
Tuz<r = Hgs0 = Ilgco =101 (5.16)

Using (5.15) we get mass spectrum (5.9)

If B € (m,2n) then as it follows from (5.10) 6 < 0. This means that
for non—Lagrangian parts of phase trajectories one of the Lorentz factors
is negative: ky or ky < 0. It is easily to check that these parts of phase
trajectories one can obtain from the Lagrangian (1.8) by change of signs
before the Lorentz factor of one of particles: k, — —k,, a =1 or 2.

Let us consider the Lagrangian

N - -
U |
_ Z 9192k1k2F(6)’ 5= ]f_l + ]f_Q , (5.17)
= | 2 2 kl
where 1
= —17.2 2
ka = 2my, ()‘a ka + /\ama) : (5'18)

This Lagrangian is obtained from (1.8) by replacement k, — kq. Free
particle part of the Lagrangian (5.17) is similar to that used in the string
theory [34]. It permits to describe massless particles. The idea to use
similar type of Lagrangians for relativistic two—particle systems with
the time-asymmetric scalar and vector interaction was suggested by A.
Duviryak [35]. The equations of motion for quantity A

oL [ k2
6—]2301 <_A_Z +m ) = 0 (519)
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give us two possibilities which do not break symmetry between particles:

LS N G LA P
Ok |7 kr ki

(5.20)
a—:/.::—m2—0é—k1 F - ﬁ—@ F'l=0;
Oks Ir| ke k1
or 2
2 _
AL = m_% . (5.21)
Solving the system (5.20) with respect to &, we get
kﬂ = fﬂ <m17m27 %) . (522)

Substitution of these solutions into (5.17) gives us the Lagrangian which
does not contain the velocities and therefore does not describe a dynam-
ics:

L= L(my,ma,af|r]) . (5.23)

Substituting solutions of the system (5.21) into (5.17) we obtain the
Lagrangian function (1.8) in which

ko — £k, . (5.24)

As we mentioned above, k; < 0 or ks < 0 for non-Lagrangian parts of
phase trajectories. Thus the Lagrangian (5.17) in the scalar and vector
case describes the whole evolution of the system. The quantities A, one
can interpret as ”one—dimensional metric” along the world lines. If the
particle velocity tends to the speed of light then A — 0. This means
that we obtain the smooth world lines only in affine sense but not in the
metric one.

Conclusion and discussion

We have seen that Hamiltonian description of the two—particle system
with the time—asymmetric scalar and vector interactions permits to con-
struct smooth world lines in My . For all values of the total mass M and
the signs of interaction constant « (excepting the case M > m, «a > 0)
one can obtain in the Lagrangian formalism only segments of particles
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world lines. If one of the particle velocities tends to the speed of light
then Hessian hy; — 0 or does not exists and in the framework of the La-
grangian formalism we cannot prolong the particle motion beyond the
singular points. This means that basic Fokker—action integral does not
describe the whole evolution of the system.

The Hamiltonian description is equivalent to the Lagrangian formal-
ism only if the Legendre transformation A is a diffeomorphism. In our
case this is true in the region 2 C T'M, where Hessian hy; > 0. The
Hamiltonian description is equivalent to the Lagrangian one in the region
AQ C T*M ~ R*. We have extended the Hamiltonian description on
the whole R* and by this have suggested the natural method of smooth
prolongation of world lines through the singular points. In such a way
we have constructed world lines which describe the whole evolution of
the system and are smooth everywhere. Moreover, they permit to obtain
semiclassical expressions for mass spectra which correlate well with exact
quantum results. This means that our smooth world lines as well as the
method of their construction have some physical sense. However, as it
follows from the consideration of vector interaction, we have not well de-
termined description everywhere on R*. The necessity of consideration
of infinite points (at ¢ = 0) on the phase plane means that our inner
canonical variables describe the system in the proper way only in some
finite regions in R? and the topology of the phase space (if it exists) is
non-trivial.

We did not pay attention to the physical sense of time—asymmetric
Fokker—type models or the physical conclusions of our prolongation
method of world lines. Our purpose was the consideration in a formal
way the solutions of Hamiltonian equation. The questions of physical
interpretation of "non—Lagrangian” segments of smooth world lines and
variation principle for the whole world lines were out of our considera-
tion. We are going to consider these question in next works.
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