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1. Introduction

Magnetic liquids, mixtures of magnetic and nonmagnetic atoms in the ex-
ternal fields of mechanical or electromagnetic origin, have already taken
their significant place in chemical, electronic and other modern technolo-
gies. That is why the investigations of the thermodynamical, structural
and dynamical properties of liquid magnets are very actual for more deep
understanding and forecasting of their behavior [1-3].

The investigation of time-dependent correlation functions as well as
generalized transport coefficients of a liquid mixture of magnetic and
nonmagnetic atoms are very interesting and valuable. They give us pos-
sibility of deep insight into the processes in the systems with coupled
classical and quantum peculiarities. From the theoretical point of view
one of the most interesting problems is investigation of the behavior of
hydrodynamic collective modes, which describe the properties of heat,
sound, and mass fluctuations. Another important aspect of this problem
is the derivation of expressions for dynamic structure factors. It is known,
that these functions can be extract from scattering experiments. Such
theoretical study should be based on the statistical approach, on the
equations of generalized hydrodynamics, particularly. Similar approach
was applied to one-component magnetic mixture [4-8]. The collective
modes of Heisenberg ferrofluid were also considered in [8].

Statistical hydrodynamics for a mixture of magnetic and nonmag-
netic atoms in an external nonhomogeneous magnetic field B(r;t) was
studied in [9]. There was formulated the problem of derivation of general-
ized hydrodynamic equations for magnetic and nonmagnetic subsystems
with the help of nonequilibrium statistical operator method for descrip-
tion both strong and weak nonequilibrium states. Magnetic and non-
magnetic subsystems were characterized by individual nonequilibrium
thermodynamics parameters. As a result nonequilibrium thermodynam-
ical relations and generalized equations of hydrodynamics were derived.

This paper is dedicated to the study of a binary magnetic mixture
consisting of magnetic and nonmagnetic liquids within the method of
nonequilibrium statistical operator. On the base of a set consisting of
five parameters of abbreviated description, for the weak nonequilibrium
case the calculation of hydrodynamic collective modes are carried out
with the help of the perturbation theory. In the chapter 7 the problem of
calculation of time-correlation functions is considered. We propose here
the scheme which allows to calculate the weight coefficients describing a
partial contribution of each mode to the hydrodynamic time correlation
functions. In some limiting cases (pure non-magnetic fluid, simple mag-
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netic liquid, etc.) the obtained results are discussed in comparison with
the results known in the literature.

2. Theoretical framework of the method of nonequi-
librium statistical operator

Let us start with the Liouville equation:

ap(xN) +iL p(z™) = 0, (2.1)
where classical part of iL is determined as a Poisson brackets of the
function p with a classical part of the Hamiltonian of the system and as
a commutator with its quantum part, p is a function of phase variables
2N = {r,p, .§}N, where N is a total number of particles.

Following Zubarev’s method of nonequilibrium statistical operator
[10] we can rewrite equation (2.1) in the form:

(57 +i ) ola™) = =elola™) = ™), (2.2

where ¢ — 0, p, is so-called quasi-equilibrium statistical operator.
Nonzero right-hand side of the equation (2.2) imposes the boundary
conditions, which destroy the time reversal symmetry of the Liouville
equation. To restrict our consideration to the set of slow physical quan-

tities {ﬁa} which are thought to determine nonequilibrium state (the
set of conserved quantities), we can write p, in the Gibbs-like form:

py = exp {—'I>(t) -3 PaFa(t)} : (2.3)

with conditions of self-consistency:
(Pa) = (Pa)f, or Sp (Paple™, 1)) = Sp (Papy (™), (24)
which determine {F,(t)}. The index a = {i,k} denotes a combination

of discrete index ¢ which numerates the variables and wave vector k so,
that summation in (2.3) means:
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Taking into account projecting, the formal solution of equation (2.2)
can be written [10,11]:

+Z / dt' e~ FL ()T (t,t')

x [ drpf(#)Ia(t)0} (1), (2.5)
/
where .
Io(t) = (1 - P(t))Ps (2.6)

are the generalized fluxes, P, =iLP,.

T(t,t") = exps { — / dr(1 = P(r))iL (1) (2.7)

is the operator of time evolution with the Mori-like projection operator

P(t):

SN
P(t)...:(...>+26§f3 >>j {Pa—(Pay} (2.8)

which have the following properties:
P(t)Pa=Pa, POP()=P(t), PL-P()) =0,

Statistical operator (2.5) determines generalized transport equations
in the form:

t
ag(ﬁ) (Pa)y+ ) / dt' e o5 (t, ') Fa(t')dt' (2.9)
where
1
bos(t,t) = [ dr(La0), T(00) 5} To0) 5"y (210)
0

are the generalized memory functions, or generalized transport kernels.
Equations (2.9), (2.10) and (2.4) make up a closed system of nonlinear
equations which describe both strong and weak nonequilibrium.
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Now we will consider weak nonequilibrium, which allows us to lin-
earize system (2.4), (2.9), (2.10). For the small deviations —

N

6P, (1) = (Pa)t — (P)o (2.11)

of averages (P,)t = Sp P,p(t) from the equilibrium values (Pp)y =
Sp Pypo(zN), where

po(z )—exp{ <I>0—ZP FO} (2.12)

is the equilibrium statistical operator, deviations of the intensive quan-
tities 6F,,(t) = F,,(t) — F? can be easily found from the self-consistency
conditions (2.4). In matrix form:

SF(t) = —(AP,APT) AP (2.13)
where
(AP, APY)||;; = (AP, AP;), (2.14)

AP, =P, — (P),
and (A, B) means correlation function:

~

1
(A, B) :/ (ApyBpy ™) dr, (2.15)
0

which transforms into simple average (AB)o in classical case. Now we
can rewrite (2.5) in the form

50(t) = () +Z/dt’ ) §EL(¢) Tolt — 1)

/dT po (1—=P Aa Po B (2.16)

where the projection operator is given by

P...=(...,APT)(AP,AP")'AP. (2.17)
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For the Laplace transforms of time-dependent functions (f(w) =

[ dt f(t)e™"), using the equality
0

9 P\t _ /i T P\t
(AP = GLP)', (2.18)

we get the generalized hydrodynamic equations in the form
(iw — i + ¢. (w)) AP(w) = 0, (2.19)

where . o
i0 = (P,APM)(AP,APT)™Y (2.20)

iw+e+(1-P)iL
X(AP,APT)™'  (2.21)

6o (w) = ((1 ~P)P, ! (1 —P)z'“)

are the matrices of frequencies and memory functions.
The matrix equation for the Laplace-transforms (AP, APT)? of time
correlation functions
1

(AP,APt)* = (AP, = AP+> , (2.22)
Z+1

has the structure, similar to that of (2.19):
{z —iQ+ ¢.(2)} (AP, AP")* = (AP, APY). (2.23)

Retarded correlation Green functions can be expressed in terms of
time correlation functions (AP, AP*)"! (which are connected with
(AP, APT)* by Laplace transformation):

G (t) = —i0(t) (AP, APT)L. (2.24)

Hence, the poles of the retarded Green functions, which give the spec-
trum of collective modes are determined by matrix equation

det|z — i)+ ¢ (2)] = 0. (2.25)
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3. Dynamic variables

Let us consider the system consisting of N1 nonmagnetic and Ny mag-
netic particles posed in external magnetic field. Hamiltonian of such a
system can be written as in [12,13], taking into account the interaction
with nonmagnetic subsystem:

I:I(t) =H, +H2+Hint+1:]ex- (31)
Here and further subscripts 1, » or superscripts in parentheses (1), (2)
indicate nonmagnetic and magnetic subsystem, respectively. Thus H;
and Ho are the Hamiltonians of nonmagnetic and magnetic subsystems
separately, H;,; describes their interaction and H,, is the energy of spin
interaction with external magnetic field.
The Hamiltonian H; of nonmagnetic subsystem can be taken in clas-
sical form

p; 1
H=> - = ) vy, 2
! i—1 2m1 + 2 v (le)7 (3 )

where V(ll)(rﬂ) is the potential of interaction between 2 nonmagnetic
particles j and [, which can be chosen for calculations in any convenient
form; and m; is a mass of nonmagnetic particles.

The term 1':12

1 N2,N3
H2 = HZL - 5 Z J(’f‘jl)(éj, .§l) (33)
J#l
consists of classical, “liquid” part Hs; which has the same form as H;
and quantum part, which describes spin subsystem and can be taken in

Heisenberg-like form.
Other terms in (3.1) could be written in the form

Ni,N2
Hip = Z V(u)(rij)a (34)
,J

I:Iez = —Zéi'B(’l"i,t), (35)

where V(12) (r35) is the potential of interaction between i-th nonmagnetic
and j-th magnetic particle, B(r;,t) — external magnetic field.
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Liouville operator which corresponds to Hamiltonian (3.1) can be
written as follows:

iL =iLi +1iLo + il +iL oy +iL, (3.6)
where
(1) (1) (11
_ p,’ 2 pan ) 9
L = z
e Z my or; Z 67‘1 i) <ap§1> ap)  (3.7)

. 12 ) 0
iLy =iL(9) + 3 Z 6—”J(Tij)(3iasj) <W - W) , (3.8)
0

iL; 122:) v a2)( d (3.9)
int = a’f‘, z] 6p§2) ) .

(91)(1)
) 2) 8(B(r,-,t)-§) 5
IL ex — Z (‘}ri ap(l) R (310)

and iL 4 is a purely quantum part of Liouville operator, it is determined
as a commutator

i (2 2) (2)

iA=L __Z,Jr” 5i:8) =y (Borys) , Al (3.11)

i£j i

To study the dynamics near the equilibrium, we have to consider
all the conserved quantities and most slow ones associated with them.
For our model five parameters of abbreviated description {P;}, i = 1..5
can be chosen, namely: partial densities of particle number 711 (1), fia(7),
densities of momentum p(r), magnetization 1 (r) and total energy £(r).

After the Fourier transformation (f(k) = [ dr f(r)e*"), these values
can be written as follows:

(k)= e, ag(k) =) e*m, (3.12)
(1) o @
ﬁa(k) — sz(‘l) elkri 4 ZPEZ) elk’l’i, (3.13)
@
m (k) =Y &lekm, (3.14)
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(2)
Z (1) ik Zéz@)eik”’ (3.15)

index « indicates spatial a—component of vector, and

(1)2

A(l) 2m1 + = Z A\ 11) zg % Z V(12) ('rij); (316)
J(#1) J
(2 2)
A(z) = 1%2) Z J(7i;) (55, 85). (3.17)
l#]
For our set of variables 13,-, the quantum equations of motion have
the following form (see Appendix)

Pi(k) = ik®J (k) + Ry (k), (3.18)
P, (k) = ik’ % (k) + RO (K), (3.19)
for the scalar {4 (k), n2(k), £(k)} and vector {p(k), m(k)} variables
respectively. Terms R;(k), R;*(k) appeared due to nonhomogeneous ex-

ternal magnetic field. When we assume that B(r,t) is homogeneous,
these terms disappear and variables {P} become conserved.

4. Static correlation functions

For analysis of the generalized hydrodynamic equations (2.19) one needs
to calculate the static correlation functions constructed on the variables

P(k) = {u(k), 2 (), D(K), 1iu(k), (k) } (4.1)

Let us define static correlation function (@,b) as an average of devi-
ations:

) = [ dar(aagabn ). (42)

contrary to (2.15), where it was defined as a simple average.
In order to give some thermodynamical interpretation of correlation
functions we chose the equilibrium statistical operator (2.12) as a Gibbs

distribution for the grand canonic ensemble (u, V, T, b), p = {pa, p2}:
po = exp [B(Q — D)), (4.3)
w=é-— ulnl /I,Q’ﬁ,Q — Bm, (44)
Q=Qu,b,T). (4.5)
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where ) is the thermodynamical potential, 8 is the inverse tempera-
ture, 71, ..., € are the quantities (4.1), taken with k = 0: 7, = ny(k =

0), ..., = &(k = 0); and b is an internal magnetic field.
For an arbitrary operator a and parameter v it is easy to prove the
equation
o) __(, 260)) w6
0y oy

where the average (...) is performed with the distribution (4.3). So, for
example, if @ = ny, v = 1, we get:
ON,
O
Here and further the quantity, written by a capital letter denotes the
average value of corresponding operator written by a small letter, for

instance, N1 = (fi1). In the same manner with the help of (4.6) we can
connect other correlation functions with thermodynamical quantities:

1 aN,.> 1 (azv;) .
ni,M;)=—= | =— = - , 1,7=12 4.8
( .7) ﬂ (a/}/] - ﬂ a,U/z T J ( )

= B(n1,n2). (4.7)

(170, 10) = % (%4)”, (4.10)
(1) = % (%—§>M, (4.11)

where
b=>b>, m=m", M=M~,
and it is supposed that field b is directed along ’02’ axis.

As we see in (4.8)—(4.11), the set of P;(k = 0) is not orthogonal, in
sense that nondiagonal elements of matrix (P, P*) do not vanish. But
often it is more convenient to work with orthogonalized set of dynamic
variables. Here we use the procedure of orthogonalization, which orthog-
onalize all variables one by one except of first two — 7 and 7, so only
the block (2x2) of matrix (P, P+) which includes correlation functions
(74, 7;) will be nondiagonal.

At first we introduce the projection operators:

)

Z ) (R, 1) L -, (4.12)
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Pay o= 3 (oo i) () 7y -, (4.13)

And consider ‘projected’ magnetization defined by
§=(1="Ps, —Pa,)Mm (4.14)
It is obvious that § is orthogonal to 777 and 72 in the sense, that
(8,71) = (8,n2) = 0. (4.15)
Introducing the projection operator
Ps...=(...,58)(5,8) s (4.16)
we can construct so-called ‘enthalpy’ operator
h=(1=Pn —Pay —P:s)é=(1—Pa, —Pay, — Ps)2, (4.17)
which is orthogonal to all previous operators, i.e.
(h,ny) = (h,7y) = (h,8) = 0. (4.18)
The momentum operator p(k) is orthogonal to all variables intrinsically.
We must note, that projection with the help of operators (4.12),
(4.13), (4.16) means transition to another ensemble, for example, pro-
jection like (4.14) means transition from (u,V,T,b) to (N,V,T,b) en-

semble. Really, magnetic susceptibility in (N, V,T)-ensemble is defined
on ‘projected’ variable s:

_(a_M) _(a_M) NGAYES ’l(aNl)
XT.N = ob N,V,T_ 0b J,vr \ 0w op1 ob

- <g_/1i42> <?9]/E>1(af;\£z) = (4.19)

Using (4.6) we can prove one more equality for entropy and arbitrary

parameter 7y
oS (. 0(Bw)
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and for specific heat in (u, V, T, b)-ensemble we will have:

oS o
Cu,b =T (6_T> = /32(‘%‘0) .

Fulfilling transition to (N, M,V, T)-ensemble like in (4.19), we obtain
Cnor = B2 (1= Pa, — Py — Ps)io, @) = 2(h, h). (4.21)

For the operator p(k) we have the equalities

(ﬁ“(k),ﬁﬁ(—k)) = (%'g(mlNl +maNy) = %M, (4.22)
(6°(k). B (k) =0, it Py(k) # 5" (k). (4.23)

where M is a mass of our mixture.

Taking into account the relations (4.14), (4.15), (4.17), (4.18), (4.21),
(4.22), (4.23), one sees, that the set of variables {7, 72, P, §, £} is orthog-
onalized in the sense discussed above. Generalizing obtained results, we
can introduce new set of dynamic variables (k-dependent)

A

which are mutually orthogonal. One exception is for variables i, and 72
which are not mutually orthogonal. For §(k) and h(k) one has

(k) = (1 = Pa, (k) = Pay (K)) - 1ie(k), (4.25)
h(k) = (1 = Pa, (k) — Pas (k) — Ps(k)) - £(k)
= (1 =P, (k) = Pa, (k) = Ps(k)) - w(k), (4.26)

where

Pinh)--- = Z (- ni(=kK)) ((k), (=K));, - (k), (4.27)

Phaih) -+ = Z (- hi(—k)) (k) 2(=k)) , - 7a(k), (4.28)
Paky - = (-, 8(=k)) - (3(k), 3(—k))™" - 3(k), (4.29)

The correlation functions of these quantities can be considered as gen-
eralization of well-known thermodynamical derivatives (4.7) — (4.11),
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(4.19), (4.21), (4.22), for nonzero values of k. Hence,
(i(k), 7 (—k)) = (Ni, Nj)% Sy (k), i,j=1.2,  (4.30)

(5% (k) (k) = %BM, (4.31)
(3(k), 3(—k)) = %XTW(’%‘); (4.32)
(h(k), h(~k)) = %CMM(@, (4.33)

where S;;(k), defined in (4.30) are so-called partial structure factors,
xr,~n (k) and Cn a (k) are the generalized susceptibility and specific heat,
respectively.

5. Frequency matrix and matrix of memory functions

Let us mark linear functions of momentums {p;, ¢ = 1..N; + N>} of
particles by symbol 7!, quadratic functions by 72, etc. One can notice,
that, for example, energy £(k) (3.15) is a sum of some quadratic function
72 and some function of zero power over {p;}, #°. So, for our variables
we can write:

ﬁ/1("’)“"7/%07 ﬁ? Nﬁ-oa ﬁ(k) ~ T )
s~ 7%  &(k) ~ (7% + 7). (5.1)

It is easy to show that for arbitrary 7#¢ and distribution (4.3) fulfills:
(7%) =0, (5.2)

if a is an odd number.
Liouville operator increase the number of a at 1 unit

fll(k) ~ ﬁl; ’ﬁ,.g ~ ﬁ_l; ﬁ(k) ~ ﬁj;
3)'

§~at, Ak)~ (747 (5.3)
Taking into account (5.1), (5.2), (5.3) one can prove, that:
(Vilk),Y5(=R)) =0, if (V; # pand ¥; # p)
or (V; = pand ¥; = p). (5.4)

Because of the symmetry conditions

(Vitk), T3 (-0) = (i), V(=R))

k—0

-~
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for calculation of frequency matrix we must find only correlation func-
tions, which involve momentum:

(6" (). Vi(=k)) = ik” (7 (). Vy(=K)) . ¥;#B.  (55)

For k — 0 one can prove that (see [8])

N1+N2
(T2 (k)0 = {(M +No)T — é < > r,-aUa(:iN) >} (6

K3
where U(r?) is the total potential energy:

(1) p(1)2 (2) p(z)2
Ny . . {
U(r )—5—2 2’m1 —Z 2’m2.
(3

2

Let us find now pressure of the system, which follows from the equilib-

rium treatment
onN

@), e

where Q is the thermodynamical potential (4.5). Imposing 2 to be V-
dependent by substitution 7 = RV % in potentials V(11 v (12) y(22) j
we can get, after some simplifications

N1+Na2
B N1 + N2 1 aU(”‘N)
P=T= 57 < > o ) (5.8)

Comparing (5.6) and (5.8), we obtain
(J20(k)) = 8apPV = —6,490. (5.9)

Results (5.9) show that in system with ‘isotropic’ potential energy
(which is a function of |r|, and does not depend on its direction) in

8Br,t _
19(7" )_0

homogeneous external field ( ), the pressure, defined from

equilibrium treatment can be expressed through the average of the stress
tensor.
With the help of (4.6) now we get

(" (), 71 (=k)) o = 1k (J37, 1)
_ ik o(pT) ik 00 ik®

7 om - Fom - g 610
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Let us introduce now scalar longitudinal momentum p(k), as a com-
ponent of vector momentum p(k), oriented along the vector k . From the
equation (5.10) we conclude, that in isotropic system only longitudinal
components make contribution to the matrix of memory functions, corre-
lation functions of transverse components are equal to zero. In the same
way as (5.10) was obtained we can obtain other correlation functions
with the longitudinal current pk in the limit £ — 0, (k = |k|)

(P, 1) = %Ni, (5.11)

. ik (0P : ik__ (0P
Aam = 5 a1 ) A;"‘A) ==V |+
(o) = & ( ab)“m 6,0) = 1 (aT)W

or for our set of orthogonalized variables

iy (0 k(0P
(p,s>—6v( ab)]w, (p’h"ﬂ2v<aT>N,v,M' (5.13)

Using Gibbs-Duhem equation

(5.12)

SdT + Ny dpy + Nadps + M db—V dp =0 (5.14)

one can write the right-hand sides of equation (5.13) as follows

<8—P> = (5.15)
8b N,V,T KT
8P> ap
— = (5.16)
<8T N,V,M _% (g_;)T7N7M
where
1 /0
=5 () 4
1 /oV
T 6_P>T,N,b7 (4%)
1 /0V
=7 (57 o

are the coefficients of magnetostriction, isothermal compressibility and
isobaric thermal expansion, respectively. The value (0V/9P) in equation
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(5.16) is defined at constant magnetization M. After some algebra with
the help of Gibbs-Duhem and Maxwell relations, we get

1% V22
(35,
op T,N,M X+ o

V 2
(6—13) — (1 ) (5.20)
oT viN o RT X KT

Now making generalization for k # 0 we can write some elements of
matrix iQ2 as follows

and

L IR R
i, s(k) = kVKT(k)x(k)’ Qs p(k) = kVKT(k)M’ (5.21)
. . ap(k) VVP( )

i, n(k) = lkVCNMv(k)HT(k) <1 + NOOIE (5.22)
. V. oa,(k) V”Z(k)

p ) =305 N (8) <1+x(k)fw(k)>' (5:23)

Elements, involving densities of particle number, as follows from
(5.11) and (2.20), read:

~ A —1
Qpon, = ZN (k). 2" (=K)) ;" (5.24)
. . Nl
lﬂn¢7p = lkm, (525)

where (72, (k), ﬁi(—k))i_j1 means {ij}-element of matrix (2x2), which is
inverse to the block (7, 2T) of the matrix of static correlation functions

(P, P+). Matrix (n,7") in the limit & — 0 consists of functions %ggj
(see (4.13)), therefore

nk), At (—k)) L = g (2L
k) =0 (g8 ) (5.26)

where N; denotes set of all Vi, except of ;.
For the right-hand sides of (5.26) we can make transition to the en-
semble with constant pressure

Op; ) ( O ) ViUj
- Y (5.27)
(aNj VTbN; ON; ) yron, VEr
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where

ov >
Vi = | == (528)
<8Ni TPbNy

is the partial molar volume per molecule of species ‘i’, which possesses
the property
> N =V. (5.29)
i

Using Gibbs-Duhem equation, we find for isobaric processes

Z N; ( Ous >vm = 0. (5.30)

Now, with the help of (5.29), (5.30) we can rewrite the elements (5.24)
of iQ)

vy (k) va(k)
rr(k)’ rr(k)

For our case of weak nonequilibrium, matrix of memory functions
(2.10), which Laplace transformation is given in (2.21), reads:

i, 0, (k) =ik

i n, (k) =ik

(5.31)

olk,t) = (1= P)Vi(k),e"=PALL(L - P)Y(—k))

x (Y(k),f/(—kﬁ) , (5.32)
where
P(k) = (-..,0:)(R,0);} - 7y (5.33)
5,
1 1 N1
o) bt (sd) (§7§)5+(...,h) (ﬁ,ﬁ)h,

here dependence on k in the right-hand side is omitted for simplicity.
For the generalized fluxes

Lik) = (1-P)Yi(k) = Yi(k) = >_iQ;Yj, (5.34)
J
in the limit & — O one has
Ii(k) ~ ik f;, (5.35)

where f; are regular longitudinal parts of fluxes. The elements of matrix
é(k,t) (5.32) are proportional to k2.
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One can prove that due to time-reversal symmetry, the structure of
matrix ¢(k,t) in the limit &k — 0, w — 0 is opposite to that of i{2:

0 0 wpy 0 0
0 0 wpp 0 0

=1k | wpny Wpns 0 wpswpe |, (5.36)
0 0 wy, 0 0
0 0 w, 0 0

Pni,ni Pnine 0 Pni,s Pni,h
Pna,ny Png,ng 0 Pna,s Pna,h
¢ = —k? 0 0 wop 0 0 |, (5.37)

Ps,ny  Ps,ng 0 Ps,s  Ps,h
Ohoni Phns 0 ©hs Pnh

because the elements, which involve momentum (except of ¢ ,) can be
neglected because they are proportional to higher powers of k. Thus,
in the hydrodynamic limit, the Laplace transforms can be written as

follows v )
bij = —k>— Zsz (Y y+)k] , (5.38)

where L;; are the kinetic coefﬁments, defined by Green-Kubo - like for-
mulas

L;j _5 <fz; fj> :é/ fire *‘“f, (5.39)
0

6. Hydrodynamic collective modes
Collective modes’ spectrum can be found from the equation (2.25):
det |z —iQ + ¢| =0, (6.1)
as the spectrum of a matrix:
=i — ¢. (6.2)

As § = ik is a small parameter, iQ) ~ &, ¢ ~ 62, in the first approxi-
mation we can neglect the matrix ¢. Defining 2 matrices:

=iQ/s, $=¢/8, (6.3)
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we can find in first approximation 2 nonzero propagation modes:
21,2 = :I:ik}'US, (64)

where

Us = \/wp7n1wn17p + Wp,nyWny,p T Wp,sWs,p + Wp hWh,p (6.5)

is the sound velocity. Three vanishing eigenvalues 2345 = 0 determine
dissipative modes. After simplification and transformation of (6.5) with
the help of Maxwell relations we come to simple result:

. V2 <8P> <8P>
vi=—— | = == , (6.6)
M NV ) nsur Op ) Nsur

where the mass density p = % was introduced.

To find the next approximation we consider z in (6.1) as a series over

J:
2=06"+6D+... . (6.7)
Putting (6.7) into (6.1) and equating to zero coefficients near J, give us

desirable values D. In such a way we will have for propagating sound
modes

z = +ikvy — k* Dy, (6.8)
and for purely damping hydrodynamic modes
zi = —k?’D;, i=23,4,5, (6.9)

where D;, D345 are corresponding damping coefficients. For sound
modes one gets

1
21}2

Sp(p-w?)

Sp(w?)

Damping coefficients for the purely diffusive modes can be found as
the roots of an algebraic equation of third order

D, = — Sp(¢p-&?) = (6.10)

D’ps + D*py + D'py + po = 0, (6.11)
with coefficients p; are defined via the elements of matrix
e=w+¢, &p,=0

as some minors which can be presented with the help of the operator
+ 52 + 53— in the following form:

RE

O®nyn, 839n2n2

pi:< 9 , 9 .9, a)-detaé (6.12)

O®n,ny O®n,n, Oxss O
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7. Calculation of time correlation functions

Equation for time-dependent correlation functions (2.23) can be written
as follows . . .
A(z)-F* = F°, (7.1)

where A(z) = 21— T, and T is defined in (6.2); F* = (Y,Y+)* and F°
are the matrix of Laplace transforms of time correlation functions and
a matrix of static correlation functions. The formal solution of (7.1) is
given by

F? = A7Y(2)-F°, (7.2)

where A_{(z) = (21 — T)~! is the matrix inverse to A. Its the ij-th
element (A~');; can be written as an algebraical adjunct (Ad(A4;;)) of

~

element A;j, divided on determinant A(A)
Ad(A;j)

(A7) = Tf{)j (7.3)
For Ad(A;;) one has A
Ad(Aij) = aaAT(;l), (7.4)

Where we omit the dependence on z for the sake of simplicity. Deter-
minant of matrix 7' can be presented as a product of its eigenvalues

{zi} .
A(T) = H zi,

that’s why
5

A(A) =G - 20, (7.5)
i=1
where z; were found in the previous section up to the second power over
the the small parameter 6 (see (6.7) — (6.9)).
Matrices @ and ¢ have the opposite structure (see (5.36)), so that we
can write

o 0 o 10 10 .o
6Aij B 61(2” 6@51] N 0 awi]’ 02 6(pij ' '
Therefor from (7.4) - (7.6) we have

A azk
Ad(Ay) = => |
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1 1 azk 1 (3Zk
=A Y - '
zk:z—zk (6&% +(52 8%]') ’ (7 7)
and (A=1);; now read (7.3)

(A7) =)

k

where
1 azk 1 (3Zk

g 8wij (5_2 8%]'
are so-called weight coefficients describing the contribution from corre-

sponding collective modes. Because of {z} are series with respect to §
(see (6.7) — (6.9)), the first approximations of ij can be found as:

Gl = (7.9)

GOk _ 9z} . 82,%'
“ Owij  Opij

(7.10)

We can also represent GOF in another form, which is mostly used in
literature. Let X be a matrix of eigenvectors of 7', which corresponds to
eigenvalues {zy}: o

7.X =X-Z,
7= [|zi6:5]] is the diagonal matrix of eigenvalues. It is easy to show that
matrix A(z) have the same eigenvectors X, with eigenvalues {z — 21},
therefore:
. o 1 |
Al = (A-X-Xfl) - (X-(zl - Z)-X*l)
=X-(z1-2)' XL (7.11)

~

Because the matrix of eigenvalues (21 — Z) of A(z) is diagonal, we
can rewrite (7.11) in the form:

A~

(A Ny =) XarlX i | (7.12)

& zZ— Zk
Comparing (7.7) and (7.12), we conclude, that
k An—1
G = XR(X° )y (7.13)

For nondegenerated index k (k = 1,2), for which (7.13) can be easily
calculated, results coincide with that ones obtained in (7.10), but for k =
3,4,5 calculation of (7.13) is more complicate. Therefore the expression
(7.10) can be more convenient for some applications.
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8. Discussion

In this paper the spectrum of collective hydrodynamic modes of a bi-
nary ferromagnetic mixture has been studied on the base of rigorous
statistical treatment. We have found two complex-conjugated collective
modes, which are responsible for the propagating of sound. Other modes
are purely diffusive and describe processes connected with temperature,
mass and magnetization fluctuations. The obtained result are valid for
an arbitrary mixture under the same external conditions (homogeneity
of the external magnetic field, isotropic interactions) within the hydro-
dynamical region. The square of the sound velocity (6.6) appears to be
inversely proportional to the adiabatic compressibility in ensemble with
constant magnetization and particle number, that coincide with the re-
sults for one-component magnetic system [8]. Damping coefficients for
sound modes has been found (see (6.10)), and damping coefficients of
other diffusive modes can be obtained from equation (6.11).

For the paramagnetic case and b = 0 the damping coefficient of spin
mode can be easily found from equation (6.11)

Dm = Pss- (81)

It can be shown that for this case the expressions for time correlation
functions are formally the same as they are for a binary system of two
simple liquids [16], and the Laplace transforms of “spin density—spin
density” time correlation function can be written as

T- k
(§7§)z: XTI\QTV( )

(z + k2pss)
For b # 0 the expressions for time correlation functions have more com-

plicated form because of additional coupling between spin and transla-
tional degrees of freedoms. This problem will be considered elsewhere.

(8.2)

Appendix
It is easy to show that

ny (k) = ik-w, o (k) = ik-w (A1)

my ma
where p®) (k) = ipg-")eik”, so that
J
PV (k)

']7?1 = Tl’ J’I'O;Q = T27 Rn1 =0 (A2)
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Let us introduce now vector function I'g(7), cartesian coordinates of
which are given by:
1— efikr
rp(r)=r*——. A3
2(r) = (43)
Having calculated p® = iﬁp“, we may write the stress tensor Jg‘ﬁ
and term R (k) as follows:

T (k) = T2 (k) + Jo5 (k) + JS2 (k) + 50 (k) (A.4)

p,int
) 0 (B(r),s)
— 7 el

RS (k) = Z o5 (A.5)
where
1 (1), (1)
aBiry _ p; p; ikr;
Jp,l( )_ Z my
;@D
2V () e ”|r5< e, (A.6)
l#] Tij

VD' (r) is a derivative of V1) over its argument |r;l; Jo5 is the
same as Jp71 (implying the substitution of indices ‘1’—‘2’),

(1,1)

1 a4 ikr;
=3 2 I r)Godi)g |rﬁ( e, (A7)
i#j Tij
and
(1,2)
p znt — Z v 12) ZJ Fﬁ( ) 1k:7',‘ (A8)

The magnetization currents:

) (1,2)
p' ikr; ]' P o1« ikr;
Jos = Z ;n_2s;’e keri 4 5 Z J(rij) [8: x 8;]° T2 (ri;)e* i (A.9)
i i#]
(1) A .
R =Y [s x B(ri;t)] elkrs (A.10)
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The energy currents:
JEa = c?jl + ng + Jgss + Jsojinw (All)
@) 9 (B(rj)3;) pi»
RE — Z ( ) pj_elk’rj
- or; my
1 (2,2)
+5 > J(ri) (B, [35,84) (€7 + em) (A.12)
i#j
where
(1) me L (1)
] N 1 ! TijD; a ikr;
REDY B > v (Tij)wrk(rij) elkri, (A.13)
- my 2 ~ |Tz1|m1
d J(#9)
JZ, is the same as J2; after substitution ‘1’—‘2” and implying difference
between &) and &\%;
(3 K3 )
L (2)
1 ooy (TP )
%= 3 {7 [ i) (A9
(2,2)
= 3 Tl ST i) e
JAU0)
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