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On the theory of phase transitions in binary fluid mixtures
0O.V.Patsahan

Abstract. The microscopic approach to the description of the phase be-
haviour and critical phenomena in binary fluid mixtures is proposed. It is
based on the method of collective variables with a reference system. The
physical nature of the order parameter in a binary mixture is discussed.
The basic density measure (Ginzburg-Landau-Wilson Hamiltonian) is
obtained in the collective variable phase space which contains the vari-
able connected with the order parameter of the system. It is shown that
the problem can be reduced to the 3D Ising model in an external field.
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1. Introduction

The study of phase transitions and critical phenomena in multicompo-
nent fluid systems is very interesting from the theoretical as well as prac-
tical point of view. Whereas in one-component fluid systems only gas-
liquid equilibria exist,three different types of two-phase equilibria have to
be considered in fluid mixtures: gas-liquid, liquid-liquid and gas-gas equi-
libria. Despite the numerous experimental results now available [1]- [5],
theoretical achievements in understanding a microscopic mechanism of
phase behaviour and nonuniversal critical properties of multicomponent
fluids are limited. Most of the theoretical studies devoted to this prob-
lem may be divided into three main groups: phenomenological theories,
mean field approaches and integral equation methods. The phenomeno-
logical approaches [6]- [11] give predictions about critical exponents and
scaling functions but no quantitative estimates of nonuniversal critical
amplitudes are possible within this framework. The problem of the phase
diagram sensitivity to the microscopic model also remains unsolved. The
mean field theories [12] and integral equation methods [13]- reproduce
different phase diagram types by varying the microscopic parameters but
give qualitative estimates.

Of special interest are Refs.[22]- [27] devoted to the study of both the
universal and nonuniversal properties. They are based on the previously
proposed approach to the study of the gas-liquid critical point in a one-
component fluid., namely, the hierarchical reference theory (HRT) [28].
On the microscopic Hamiltonian grounds, the HRT develops the renor-
malization group structure near a critical point. Recently this approach
was also used for studying the 3D Ising model [29].

In spite of the doubtless success of the HRT the problem remains
of constructing a theory that allows within a unified approach a com-
plete description of the phase behaviour of multicomponent continuous
systems beginning with the Hamiltonian and ending with the thermo-
dynamic functions in the neighbourhood of the phase transition point.
This program has already been accomplished in both the 3D Ising model
[32] and a simple fluid near the gas-liquid critical point [33]-[35]. Within
the framework of the ¢* model this approach has permitted to obtain
the non-classical critical exponents and analytical expressions for ther-
modynamic functions .

This theory has its origin in the approach based on the functional
representation of a partition function in the collective variables (CV)
space [31]. First the method of CV was proposed for a study of the
charged particles systems[30]-[31] and then it was applied to the second
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order phase transition theory [32]. The point is that the statistical de-
scription of the phase transition is to be performed in the appropriate
phase space specific for a certain physical model. Among the indepen-
dent variables of this space there must be those connected with order
parameters. This phase space forms a set of CV . Each of them is a
mode of density fluctuations corresponding to the specific feature of the
model under consideration. In particular, for a magnetic system the CV
are variables connected with spin density fluctuation modes, for a one-
component fluid — with particle density fluctuation modes. What is the
content of the CV for a multicomponent system? We will answer this
question below.

Experiments have shown that fluids and fluid mixtures near the or-
dinary critical points belong to the universality class of Ising-like sys-
tems [3]. Thus, a study of critical properties of multicomponent systems
requires, on the one hand, an extension of the method worked out for
one-component fluids and, on the other hand, their further development.
In [36,37] we developed the CV method with a reference system (RS)
for the case of a grand canonical ensemble for a multicomponent system.
Within the framework of this approach the phase diagram of a symmet-
rical mixture was examined in detail [38]-[41]. Our previous study has
been mainly restricted to the Gaussian model. In [37] we obtained the
explicit form of the Ginzburg-Landau-Wilson Hamiltonian (¢* model)
for a binary symmetrical mixture in the vicinity of the gas-gas demix-
ing critical point. In this paper we generalize the approach in the case
of a non-symmetrical binary fluid system (the system of different size
particles interacting via different potentials).

The layout of the paper is as follows. We give a functional representa-
tion of a grand partition function of a two-component system in Section
2. The physical nature of the order parameter in a binary mixture is dis-
cussed in Section 3. In Section 4 we construct the basic density measure
(Ginzburg-Landau-Wilson Hamiltonian) with respect to the CV which
include a variable corresponding to the order parameter.

2. Functional representation of the grand partition
function of a binary mixture

Let us consider a classical two-component system of interacting particles
consisting of IV, particles of species a and IV, particles of species b. The
system is in volume V' at temperature 7.

Let us assume that an interaction in the system has a pairwise addi-
tive character. The interaction potential between a v particle at 7; and
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a 0 particle at 7; may be expressed as a sum of two terms:

Uys(rig) = ¥rs(rij) + dr5(rij),

where 1,5(r) is a potential of a short-range repulsion that will be chosen
as an interaction between two hard spheres o, and oss. ¢+5(r) is an
attractive part of the potential which dominates at large distances. An
arbitrary positive function belonging to the L, class can be chosen as
the potential ¢5(r).

Further consideration of the problem is done in the extended phase
space: in the phase space of the Cartesian coordinates of the particles and
in the CV phase space. An interaction connected with repulsion (poten-
tial ¢,5(r)) is considered in the space of the Cartesian coordinates of the
particles. We call this two-component hard spheres system a reference
system (RS). The interaction connected with an attraction (potential
¢5(r) ) is considered in the CV space. The phase space overflow is can-
celled by introduction of the transition Jacobian. The contribution of
the short-range forces to the long-range interaction screening is ensured
by averaging this Jacobian over the RS.

Then a grand partition function in the CV representation with a RS
can be written as (for details see Appendix A):

[1]
[1]

= Z0=1,

where Z¢ is the grand partition function of the RS. The thermodynamic
and structural properties of the RS are assumed to be known. Although
it is known that mixtures with only repulsive interactions might undergo
a phase transition [43], we assume that in the region of temperatures,
concentrations and densities we are interested in, thermodynamic func-
tions of the RS remain analytic. Z; has the following form:

g = / (dp) (dc) exp [ﬂufpo + Bpyco — % %:[V(k)/)ﬁp—ﬁ

W (K)ege_g + UR)pge_g] J(ps). (2.1)

Here the following notations are introduced:

p and ¢ are the CV connected with total density fluctuation modes
and relative density (or concentration) fluctuation modes in the binary
system.

Functions p; and p] have the form:

. V2

:_( (11+:U’1{)7 M;:

V2
2 2

1 (uf — p3) (2.2)

ICMP-99-03E 4

(the expressions for u] are given in Appendix A) and are determined
from the equations

S = 2.
OIm= (N, - (). (2.4)
OBy

V(k) = (faa(k) + doo(k) + 2¢as(k))/2

W(k) = (Paa(k) + do(k) — 26as(K))/2

Ok) = ($aalk) — dun(k))/2, (2.5)

Hp.0) = [ o) @) exp [i2n Y um +men)| Jw,), 26)

k
—2m)"™ .
Jwm) = en[X Y % S ME(0,...,0) x
n>11i,>0 ’ .
’)/El e ’)/,-c*in wEin+1 .. .wk*n] . (27)

Index i, is used to indicate the number of variables v; in the cumu-

lant expansion (2.6). Cumulants ML) are expressed as linear combina-
tions of the partial cumulants M., . -, (see (5.3)) and are presented for
Y,y = a,band n <4 in [37] (see Appendix B in [37]).

Formulas (2.1)-(2.7) are the initial working formulas in our study of
phase transitions in binary fluids.

3. The order parameter in a binary mixture

A choice of the order parameter in multicomponent fluid mixtures is a
serious problem because the character of the phase transition can be
changing continuously from the pure gas-liquid transition to the mixing-
demixing one. The question of the physical nature of the order parameter
in binary fluid mixtures has been considered until recently from the point
of view of both the phenomenological theory [10,11] and the microscopic
approach [20], [23], [37], [42]. Nowadays the commonly accepted idea
is that both the gas-liquid and mixing-demixing phase transitions are
accompanied by total density fluctuations as well as by relative density
(or concentration) fluctuations. This is the only symmetrical mixture
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which exhibits a complete distinction between these two processes [37].
However, most likely such an ”ideal” system does not occur in reality. In
real mixtures the contribution from each type of the fluctuation processes
changes along the critical curve. The evaluation of such contributions
at each critical curve point is essential to the definition of the order
parameter and to the understanding of the phase transition character
in the mixture. It seems to us that in our approach the question of
the physical nature of the order parameter has a consistent and clear
solution. Here we shall briefly focus on it.

Let us consider the Gaussian approximation of functional integral
(2.1)-(2.7). This approximation, also known as the random-phase ap-
proximation, yields the correct qualitative picture of the phenomena un-
der consideration. As the result of the integration over variables 4 and
wk, =1 can be rewritten as

G 1

— —

= _ A [
co(/m; + Ry /A) — (MR + MR, —

1
5 > lppp_iAun (k) + cpe_pAs (k) +
i

(dp) (dc) exp po(ﬂul + R /A) +

2pE075A12(k)]} : (3.1)
where

Ny = MP MO - MV mY ) Ry = MO M — MY 0

An(k) = _%(év(kHME))
Ago(k) = _%(gw(kH Mg(o))
Aal) = —5(F00 - Mi(l)) (3.2)

A= MOMP ()
In order to determine the phase space of the CV connected with the order
parameters we introduce independent collective excitations by diagonal-
izing the square form in (3.1) by means of the orthogonal transformation:
= Ak + Bk)¢z
= C(k)ng + D(k)&;. (3.3)

p
c

ESTE

ICMP-99-03E 6

The explicit forms for coefficients A(k), B(k), C(k) and D(k) are given
in Appendix B.
As a result, we have

SR
=6 J_ /
so(BMl + DMy) — (M{OR; + M{VR2)/(A(0)) —
=S enbngn_g +em(bee_p)], (3.4)

K

(d€) exp [UO(AMl +OMy) +

where

gii(k) = —(A11(k) + A2 (k) F \/(An(k) — Ax(k))? +443,(K)). (3.5)

One of the quantities (3.5)(or both) tends to zero as the critical
temperature is approached. On the other hand, we have to find such
a CV M- (or f,g*) which is connected with the order parameter. Index

E* must correspond to the point of minimum of one of the functions
e11(k) or e22(k) ( or both). These functions depend on temperature,
attractive potentials ¢.4(k) and characteristics of the RS. The RS enters
into (3.5) by cumulants M,;(k). M,s(k) can be expressed by the Fourier
transforms of the direct correlation functions C,s5(k) by means of the
Ornstein-Zernike equations for a mixture. In [44] the analytic solution
of the Percus-Yevick equation for a hard sphere binary mixture was
obtained.

Coefficients 11 (k) and e22(k) are studied both as wave vector func-
tions at different values of temperature T', density n and concentration x
including the gas-liquid and mixing-demixing critical points (see Fig. 1)
[40] and as temperature functions at k = 0 (see Fig. 2) [41]. The re-
sults show that branch €11 (k) becomes a critical one no matter whether
the system approaches the gas-liquid or gas-gas demixing critical point.
Moreover, £11 (k) and £55(k) have the minima at k = 0 [40]. Hence we
can draw the following conclusions:

1. Branch €11 (k) is always critical.

2. Because e11(k) has the minimum at k¥ = 0, the CV connected
with the order parameter is 7y in the case of the gas-liquid critical
point as well as in the case of the mixing-demixing phase transi-
tion. The particular form of 7y for each of these phenomena can
be determined by means of the relations between the microscopic
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Figure 1. Coefficients €1 (k) and €92 (k) as functions of k for the N H3— N,
mixture. The solid curves represent the gas-gas demixing critical point
(T = 413°K, n = 0.45, x = 0.5) and the dashed curves represent the
gas-liquid critical point (7' = 373°K, n = 0.12, z = 0.5) [40]
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parameters, temperature, density and concentration of the system,
e.g. by means of coefficients A, B, C' and D.

3. In the plane (po, co) we have distinguished two directions: the direc-
tion of strong fluctuations 7y and the direction of weak fluctuations
&o- As a result, we can write the conditions for the binary mixture
critical point in the form:

0%Q
Tzl = (3.6)
0%Q
=0 3.7
[5’770550]0 ’ (3.7
9%0
74, - o os
where 2 = —kT In = is a grand canonical potential.

Now let us consider equations (3.3) at £ = 0. From (3.3) it follows
that

m = +D(0)po F B(0)co
S = FC(0)po £+ A(0)co, (3.9)

where the upper sign corresponds to the case

|Ajp| = —A415  (AD —BC =1) (3.10)
and the lower sign corresponds to

|Aj2| = A12 (AD — BC = -1). (3.11)
On the other hand, (3.9) can be rewritten as

Mo = =£pocosh+cysin
& = —posinf + cgcosh. (3.12)

Comparing (3.9) and (3.12) we can determine rotation angle 6 of axes
1o and & in the (po,cp) plane from the equation

C
tanf = 1 (3.13)

(in both cases (3.10) and (3.11)). In the case (3.11) transformation (3.12)
corresponds to both the mirror image with respect to the ¢y axis and the
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: Figure 3. Density-concentration projection of the critical line of the mod-
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Figure 2. Coeflicients €11(k = 0) and e22(k = 0) as functions of the
dimensionless temperature 7" at ¢ = 1.0, « = 1.0, n = 0.26 and = = 0.7
for different values of r (¢;;(k = 0) are obtained for a binary hard core
Yukawa mixture [41])
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rotation in the (pg, cg) plane. Thus, the proposed approach allows us, on
microscopic grounds, to define the order parameter at each point along
a critical curve and so to understand the phase transition character in
the binary mixture.

Figures 3-5 show the (n, z) projections of the (T, 7, z) critical surfaces
of the model binary mixture for various values of microscopic parameters
a, q and r. The arrows show the direction of the strong fluctuations
(order parameter) along the critical curve in accordance with formula
(3.13). Here the following notations are introduced: 7 is the packing
density (1 = 04+, n;i = mpios; /6, p; = (N)/V is the number density of
species 1), x is the concentration (xz = (Np) /{N)), @ = 044/ 0 is the hard
sphere ratio, ;; is the hard sphere diameter,q = —@py(0)/ | daa(0) | is the
dimensionless ”like” interaction strength and r = —@a(0)/ | daa(0) | is
the "unlike” interaction strength (the form of ¢;;(r) is not specified). The
critical surface is derived from the (f,s,V, ) surface by the equations
for a binary mixture critical point (in terms of the Helmholtz free energy
(1]). fimys is the Helmholtz free energy of a binary mixture in the mean
field approximation (see Appendix C).

The purpose of our further study is the calculation of the binary
mixture properties in the vicinity of its critical points. Based on the
Gaussian distribution (3.1)-(3.2) we have determined the critical branch
and, correspondingly, CV 1y connected with the order parameter. Now
we shall construct the basic density measure with respect to CV np
(Ginzburg-Landau-Wilson Hamiltonian). As it is shown in [32], in the
vicinity of the phase transition point the basic density measure exists
which includes higher powers of CV than the second power. We shall
follow the program: (1) having passed from CV p; and ¢ to CV np
and {; in (2.1), we shall integrate over variables {; with the Gaussian
density measure; (2) then we shall construct the basic density measure
with respect to variables ;. We shall restrict our consideration to the
n* model.

4. The microscopic Ginzburg-Landau-Wilson Hamil-
tonian of the binary fluid mixture

We pass in (2.6) from CV pp and cj; to CV n;; and &;:

B = / (dn) (d€) exp [noﬂl + &ofiz — %Z[n,;n,,;l’(k) +

E€_gR(K) +26m_Q(R)| I (1,6, (4.1)
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Figure 5. Same as figure 3 at « = 0.9, ¢ =09 and r = 0.8
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where
fin = B(ApS +Cpy), iz = B(Bui + Dpy) (4.2)
P(k) = é(AZf/(k) + C*W (k) + 2ACTU (k)) (4.3)
R(k) = é(BW(k) + D*W (k) + 2BDU (k)) (4.4)
Qk) = é(ABf/(k) + CDW (k) + (AD + BO)U (k))  (4.5)

I0.6) = [[(@0) @)exp [ize Y ngxz + 600 + Y Dal?) (46)

K n>1
A —i2m)" o
Du ) = TEN S a, ) x
T Rk
19]-9'1’19]-52 ... 19En_in XE"*(inJrl) X (4_7)

Xi = Awi + Cg, U = Bwi + D
)

and M,(f") are linear combinations of cumulants M,(f" .
The square form in (4.1) is diagonal if

Q=0. (4.8)
Taking into account formulas from Appendix B, equation (4.8) can be
rewritten in the form:
1—12)S,, — x5 -1
=)0 250 _g=1_ (4.9)

Va(l —xz)Sa r

where S;;(k) is a two-particle partial structure factor of the RS.
On the other hand, the square form in (4.7) is diagonal if

MV =0 (4.10)

and the last equality holds if (4.8) holds. Equation (4.8) holds in the
following cases:

e a symmetrical mixture: S,, = Spp, x =1/2,g=1
e a non-symmetrical mixture:(1 — z)S,, — xSp =0,¢ =1

e a non-symmetrical mixture: ¢ # 1.
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Let us eliminate the linear term in (4.7) by the shift
& = & + "5
and present D, (x, ) as a sum of two terms:
Dn(x,0) = D,, + D,,,

where B B - i -
D, = D,(9) + D,(x,v), D, = D,(x).

Here D,,(¥9) includes only the products of variables 19_,;,1_)”()(, 9¥) includes
the mixed products of both variables ¥; and X3, Dn(x) includes only
the products of variables x;.. Let us consider the integral

7 = /(df) exp [M+fo - %Zfﬁf,ﬁR(k) + i27r2§,;19,; +
P i
7(—1'22!71')2 Z Méo)ﬁgﬁik‘] |:1 + A+ %./42 + .. :| ) (4.11)
K

where the following notations are introduced:

MF =i - RO)M,  A=)"D,, (4.12)
n>3

(in (4.11) the prime on &; is omitted for clarity).
If operator 6—‘2_ is substituted for i271;, (4.11) can be rewritten as
k

where

72 17 (0)
exp <2((‘M%> , (4.13)
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_ 1 _
f:AﬁWM++§mmM@) (4.14)

Finally, after the integration in (4.1) over variables {; we obtain
o - 1
= = 205¢8¢ [(an)exp [um — 5 S ngn PO S, (415)
E

where Af is the result of integrating over & which does not include x;.
J(n) has the form:

J(np) = /(dx) exp [iZﬂ'ZXWE — 12w M, (0 Zxkrs +

(- z27r z27r)
ZXkX T —r—M3(0,...) x
(—i2m)*
Z XF X52XE36§1+E2+E3 + 41 X
E1k2ks
M,4(0, .. 0 4.16
4 i EXE:E X X R X R X Ri+Eatkstkal. (4.16)

Here -
M, (0,...) = M{M(0,...) + AM,(0,...).

Setting MT = 0 we get the following expressions for AM,(0,...):

mm—%%yﬁfﬂ- (4.17)
1) gy O e
MM = gy L)+ e L2 - F
¥ (3!;;))); 3 000aF - F = F ) 09
AMy = %Q%ﬁk%ﬂmé%éﬁwwéM@Mp
T okt + s -+ (1.19)
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— 1 — — — — ].
AMy = 3(MY) —i(|ks + ka)) + 202 51

where

(k)
1+ R(

k) S
R(k) = R()(N), S = 3% (V).

An estimation of corrections AM,, was carried out for the symmetrical
mixture in [37]. In this case

My =0, My=1+68, Mz=0, My=—2+0,

where §; are small values.
Let us consider formula (4.3) for P(k). Substituting into (4.3) coeffi-
cients A, B,C and D from Appendix B, we get

_ Bl i :
P(k) = (¢aa(k) + ¢bb(k)) + \/4A%Z n (All _ A22)2

V12
X [Gap (k) (A1 — Asz) + (Gaa(k) — dup (k) Ar2] |, (4.21)

where Ay, Ao and Aj, are functions of temperature. Using condition
(4.8), P(k) can be represented as

Ploms = g [fualh) + ) + 2= s
X(Bas (k) + K(Jaa (k) - ébb(k))], (4.22)
where

q— 1 (1 — J?)Saa — J?Sbb

K = =
r 2y/z(1 —x)Sae
P(k) takes both negative ( at small |k|) and positive ( at large |k|) values

. In the region |E| > B (see Fig. 6) we can integrate in (4.15) over xj
and 7 with the Gaussian measure density as the basic one. As a result,
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we get in the approximation of the n* model

= = =G B B ~ 1
E = :0:€A5A’7 /d(n)N d(x)N? exp [,umo ~3 ZP(k)nEn_E +
E

) - - (—i2m)?
27 Z XNy — 12 M1 (0) Z X0 + TMZ(O) X

K k

—i2m)3
ZXkX—k + 3! Mg(o, ) Z XE1XE2XE36/;1+E2+E3 +
K E1koks
(—i2m)* _
a1 Ma(0,..) > XE X Xi X, X
]_5;1]_‘;2]_‘;3_‘4

o, . . . . (4.23)
k1+k2+k3+k4], |ki|<B,

where in place of M;(0,...) stand renormalized coefficients M;(0,...):

A" = ] Pk)M;+1

|k|>B

We can consider a set of & vectors, |l§| < B, as corresponding to the sites
of a reciprocal lattice conjugated to a certain block lattice r; with Npg
block sites in volume V:

s _ (N)(Bow)*(z + a*(1 —2))

(Ng) = V(B/r) e

One may consider quantity B as the size of the first Brillouin zone of
this block lattice.

Next, two shifts are carried out in order to eliminate the cubic term
in (4.23) [34]:

!

Xj = X + Adg, Ny = g + Midg,

where

and
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Then, (4.23) has the form:
= = EOE?AgA” exp(g)/d(nl)NB d(xl)NB exp [hné) -

1 ro ) ro
k k

(_7/271')2 ~ 1o (—7/271')4 ~
o1 Mz@)ZX,;X?,;‘*‘ ] M4(0,...) x
X X X7 0 4.24
P k%: CXENEXEXES e i) hges, 2
1R2R3 K4
where
- _ 1 (M5(0))? ~ -
0 = a(0) — 5 S (0. = 0.,

After the integration over X;; in (4.24) we get

==0C / explE (n)) (dn)™® (4.25)

where N1
C =ZE28 A A exp(G 4+ agNp)V2 7, (4.26)

1
Ey(n) = hno — m ZdZ(k)n;;n_E -
k

Gy
4!(NB)3 Z nlzﬁ nEz”’% 77]},’4 61;1+1_€‘2+E3+1_€‘4’
]_6‘1...12;4

|ki| < B, (4.27)

2

1/4 1/4 P
ap =In [% (%) (é) exp (Z)U(O’Z)] (4.28)
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dy(k) = az + P(k) (4.29)
ay = |22 NB) e
o (NBY 1T, 2 2
K(z) =U(,2)/U(0,2) (4.32)
_g,. /2 )

Sp = V2" M, /(N).

Here U(a, 2) is the parabolic cylinder function.

As it is seen from (4.27), E4(n) has the form analogous to the basic
density measure of the 3D Ising model in an external field [32]. But
the main difference is the dependence of coefficients ag, as and a4 (see
(4.28)-(4.33)) on the microscopic parameters of the system.

5. Conclusions

We propose the microscopic approach to the study of phase transitions
and critical phenomena in multicomponent mixtures. It is based on the
CV method with RS. This method allows us to take into account the
short-range and long-range interactions simultaneously.

We consider the task of the definition of the order parameter in a
binary mixture and show that it has a consistent and clear solution
within the framework of our approach.

After integration over CV ¢; (which do not include the variable con-
nected with the order parameter) the basic density measure with respect
to CV n; (Ginsburg-Landau-Wilson Hamiltonian) is constructed. It is
shown that the task can be reduced to the 3D Ising model.

Appendix A

A grand partition function of a two-component fluid system in the CV
representation with the RS can be written as [36]:

(1]
[1]

= 2051,




21 IIpenpunT

where

EOZE:ON?: Hexp{ 1o Ny ]/(dl“)
exp _§ZZ¢W6(Tij)

R

is the grand partition function of the RS; g = ﬁ is the reciprocal
temperature; (dI') =[], ,dl'n,, dUn, = didi ... df}y\,1 is an element of
the configurational space of the v-th species; y1g is the chemical potential
of the ~-th species in the RS.

The part of the grand partition function which is defined in the CV
phase space has the form of the functional integral:

Ei = /(dp)ewp[ﬂZquo,w - % DY drslk) x
v R

Pi P51 (Pas pb)- (5.1)

Here,
1) p{ is a part of the chemical potential of the y-th species

1 ~
By = iy — pg + qusw(k)
E

and is determined from the equation
J0lnZ,
REs

1t~ is the full chemical potential of the 7-th species;
2)p; o= pk — zp~ 7 is the collective variable of the y-th species, the

=(N3), (5.2)

indices ¢ and s denote the real part and the coefficient at the imaginary
part of Pi~ pk and pk describe the value of k-th fluctuation mode of

the number of 'y—th species particles. Each of p~ and pﬁ takes all the

real values from —oo to +00. (dp) is a volume element of the CV phase
space:
!
p) = [T doos I dog_dot .
v E#0

The prime means that the product over E is performed in the upper
semispace;

ICMP-99-03E 22

3) J(pa, pp) is the transition Jacobian to the CV averaged on the RS:

b

J(paspp) = /dl/ Hexp z27rz:1/lmplM exp Zx

n>1
z?w)n
Z Z MWl Yn kl; 7kn)
Y1--Un kl
Vi - VEnyVn:| ’ (53)
where variable Vi, is conjugated to CV Pi - My, . . (El, . En) is the
n-th cumulant connected with S,, -, (k1, ..., k), the n-particle partial

structure factor of the RS, by means of the relation

M%---%(kla---akn) =3 Nm ...N%S%,,,%(kl,...,kn)6~ etk

where 6k gogR I8 the Kroneker symbol.
In general, the dependence of le.,,%(l_s'l, .. ,En) on wave vectors
E1,..., ky is complicated. Hereafter we shall replace My, . . (El, . En)

by their values in long-wave length limit M., -, (0,...,0);

4) <Z)W;( ) is the Fourier transform of attractive potential ¢~s(r).
Function ¢.5(k) satisfies the following requirements: ¢.5(k) is negative
for small values of k and limgﬁoo&yg(k) = 0. The behaviour of ¢-5(r) in
the region of the core r < 0,5 must be determined from the conditions of
optimal separation of the interaction. For a very broad class of potentials
the general form of ¢.4(k) is presented in figure 6.

We pass in (5.1) to CV p; and cj; (according to wj and ;) by means
of the orthogonal linear transformation:

V2

Pi = 5 Pyt P5y) (5.4)
V2
i = =5 (Pra = PRp)- (5.5)

As a result, for Z; we obtain formulas (2.1)-(2.7).

Appendix B
The coefficients A(k), B(k), C(k) and D(k) have the forms:

A = \/§|A12|[4A%2 + (A1 — A)? — (A1 — Asp) X
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Figure 6. The Fourier transform of the attractive potential ¢~5(r)
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\/(An — Ag)? +443,]7,
B = \/§|A12|[4A%2 + (All — A22)2 + (All — Azg) X
\/(Au — Ap)? +4A%] 7,

V2 |A ‘
¢ = 5 (|Az|) [A1r — Aga — \/(An — Ap)? 4 4A%,] x

[4:14%2 + (All — A22)2 — (All — Azg) X
\/(Au — Ap)? +4A%] 7,

V2 |4 )
D = —7 (|A1;|) [All — A22 + \/(A11 — A22)2 + 4A%2] X

[4A%, + (A11 — Ag2)? + (A1g — Ago) X
\/(An — Apy)? + 447,17

Appendix C

The Helmholtz free energy of a binary mixture in the mean field approx-
imation can be written as

fmf = fid + fref + fattra

where f;q is the free energy of a binary mixture of ideal gases, f,.; is
the free energy of a binary mixture of hard spheres [45]:

freg = Frep[(NYkpT = —1.5(1 — y1 +y2 + y3) + (3y2 + 2y3)(1 —n) ™"
+15(1—y1 —y2 —y3/3) (L —n) "> + (y3s — 1) In(1 — n),

1+« Na® + M
Y1 =App——, Y2 = App—F——,
Va van
a —1)?
Ay = YTk (0 = V" f—0s
n a
(1 —z)a’n l
M=~z MW=—"Tr7 3
z+(l—z)a z+ (1 —z)a

fattr = Fotr [(N)kpT is the contribution due to attraction between the
particles:

1 n

—§T*($ + (1 _ Z’)Oé3) ((1 — ,’1,')2 + 2.7,'(1 — ZU)T' + szq),

fattr =

where T* = kpT0® | ¢40(0) |~ 7/6 is the dimensionless temperature.
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