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Amnoramisi. 3anpoNoOHOBaHA CXeMa B TepMiHax Teopil 30ypeHb 3a eJiek-
TPOHHUM I[IEPEHOCOM, AKa [PYHTYETbC:A HA Teopemi Bika mjis omeparo-
piB Xabbapna. HiarpaMui psay MiCTATH OITHOBY3J/I0BI BEPIIUHI 3’ €THAHL
nmiriamu nmepenocy. Ilokaszano, Mo O/I4 KOXKHOI BEPIIMHYT 33]1a9a PO3ITa-
TAETHC HA, MAMPOCTOPH 3 “BaAKyyMHUMHI CTaHAMU , AKI BU3HAYAIOTHCS
[iaroHaJbHUME omeparopamu Xabbapaa i 103BOJIEHUMU € TiIbKU 30y-
JIZKEHHsl BIOHOCHO IUX “BakyyMHHMX CTaniB”. 3alpOnOHOBAaHI MpaBUia
nobynoBu miarpam. ¥ rpaxuni 6e3MekHOI pO3MipHOCTI IPOCTOPY IOBHA
JIOTTOMIKHa OIHOBY3/I0BA 337893 TOYHO PO3MATAETHCA HA IMiIMIPOCTOPH,
10 TO3BOJIAE MOOYIyBATH AHAJITUIHUI TEPMOIUHAMITHO CAMOY3TOIZKe-
Huih miaxin oyt momesi Xaboapaa. [IpuBeneni neski anasiTudsi pesysib-
TaTh AJIA OPOCTUX HAOJIMKEHb KOJIM OTPUMYETHCHA 2-X i 4-X moJIiocHA
crpykrypa mia dyuxuiit I pixa.

Strong Coupling Approach for Strongly Correlated Electron
Systems

A. M. Shvaika

Abstract. A perturbation theory scheme in terms of electron hopping
which is based on the Wick’s theorem for Hubbard operators is devel-
oped. Diagrammatic series contain single-site vertices connected by hop-
ping lines and it is shown that for each vertice the problem splits into
the subspaces with “vacuum states” determined by the diagonal Hub-
bard operators and only excitations around these “vacuum states” are
allowed. The rules to construct diagrams are proposed. In the limit of
infinite spatial dimensions the total auxiliary single-site problem exactly
splits into subspaces which allows to build an analytical thermodynam-
ically consistent approach for Hubbard model. Some analytical results
are given for simple approximations when 2-pole and 4-pole structure
for Green’s function is obtained.
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1. Introduction

Many unconventional properties (e.g. metal-insulator transition, elec-
tronic (anti)ferromagnetism) of the narrow band systems (transition
metals and their compounds, some organic systems, high-7,. supercon-
ductors, etc.) can be explained only by proper treatment of the strong
local electron correlations. The simplest models allowing for the electron
correlations are a single-band Hubbard model with on-site repulsion U
and hopping energy ¢ and its strong coupling limit (U > ¢): t — J model.
Resent studies of the Hubbard type models connected mainly with the
theory of high—T,. superconductivity and performed in the weak (U < 4t)
and strong (U > t) coupling limits elucidate some important features of
these models [1]. But still a lot of problems remains, especially for the
U > t case where there are no rigorous approaches.

Such approaches can be built using systematic perturbation expan-
sion in terms of the electron hopping [2] using diagrammatic technique
for Hubbard operators [3,4]. One of them was proposed in for the Hub-
bard (U = oo limit) and ¢ — .J models [5,6]. The lack of such approach
is connected with the concept of “hierarchy” system for Hubbard opera-
tors when the form of the diagrammatic series and final results strongly
depend on the system of the pairing priority for Hubbard operators. On
the other hand it is difficult to generalize it on the case of arbitrary U.

In last decade the essential achievements of the theory of the strongly
correlated electron systems are connected with the development of the
dynamical mean field theory (DMFT) proposed by Metzner and Voll-
hardt [7] for Hubbard model (see also Ref. [8] and references there in).
DMEFT is a nonperturbative scheme which allows to project Hubbard
model on the single impurity Anderson model and is exact in the limit
of infinite space dimensions (d = o00). There are no restrictions on the
U value within this theory and it turns out to be useful for intermedi-
ate coupling (U ~ t) for which it ensures the correct description of the
metal-insulator phase transition and determines the region of the Fermi
liquid behaviour of the electron subsystem. Moreover, some class of the
binary alloy type models (e.g. Falicov-Kimball model) can be studied al-
most analytically within DMFT [9]. But in the case of Hubbard model,
the treatment of the effective single impurity Anderson model is very
complicated and mainly computer simulations (exact diagonalization of
the finite sized systems or quantum Monte Carlo) are used which calls
for the development of analytical approaches.

The first analitical approximation proposed for Hubbard model was
a simple Hubbard-I approximation [10] (see Ref. [11] for its possible im-
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provement) which is correct in the atomic (¢ = 0) and band (U = 0)
limits but is inconsistent in the intermediate cases and can not de-
scribe metal-insulator transition. Hubbards alloy-analogy solution [12]
(so-called Hubbard-III approximation) incorporates into the theory an
electron scattering on the charge and spin fluctuations that allow to give
qualitative description of the changes of the density of state at the metal-
insulator transition point. Hubbard-I and Hubbard-III approximations
introduces two types of particles (electrons moving between empty sites
and electrons moving between sites occupied by an electrons of oppo-
site spin) with the different energies which differ by U and form two
Hubbard bands. Related schemes of the so-called 2-pole approximations
[13,14] are also considered. However, in the recent QMC studies [15,16] it
is clearly distinguished 4 bands in the spectral functions rather then the
2 bands predicted by the 2-pole approximations. Such 4-band structure
is reproduced by the strong coupling expansion for the Hubbard model
[16] in the one-dimensional case. Within other approches let us mention
non-crossing approximation [17,18], Edwards-Hertz approach [19,20], it-
erative perturbation theory [21], alloy analogy based approaches [22-24]
and linked cluster expansions [25,26] which are reliable in certain limits
and the construction of the thermodynamically consistent theory still
remains open.

The aim of this paper is to develop for Hubbard type models a rig-
orous perturbation theory scheme in terms of electron hopping which is
based on the Wick’s theorem for Hubbard operators [3,4] and is valid for
arbitrary value of U (U < oo) and does not depend on the “hierarchy”
system for X operators. In the limit of infinite spatial dimensions these
analytical scheme allows to build a self-consistent Kadanoff-Baym type
theory [27] for Hubbard model and some analytical results are given for
simple approximations. Falicov-Kimball model is also considered as an
exactly soluble limit of Hubbard model.

2. Perturbation theory in terms of electron hopping

We consider lattice electronic system which can be described by the
following statistical operator

po= e g(p),

¢ &
6(8) = Texp —/dT/dT'Ztgj(T—T')aj(,(T)ajU(T') , (1)

0 ijo
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where

Hy = Z a; (2)

is a sum of the single site contributions and for Hubbard model we must
put

Hi = Ungtniy, — p(niy +nqy) — h(nig — nqy),
t%(T —7') =t;;6(r —71'). (3)
In addition for Falicov-Kimball model we must also put

! ij -7 f =
- ={ WG BTl @

It is supposed that we know eigenvalues and eigenstates of the zero-
order Hamiltonian (2)

and one can introduce Hubbard operators
XPT =i, p)(i,ql (5)
in terms of which zero-order Hamiltonian is diagonal
Hy=>_ > AXP.
i p

For Hubbard model we have four states |i,p) = |é,n;+,7m4,1): |,0) =
|i,0,0) (empty site), |i,2) = |i,1,1) (double occupied site), |i,1) =
|i,1,0) and |i,4) = |i,0,1) (sites with spin-up and spin-down electrons)
with energies

=0, o=U-2u, AN =h—p, I=-h—p (6)

Connection between the electron operators and Hubbard ones is fol-
lowing
nie = XZ + X% ai, = X)7 +0X7% (7)

Our aim is to calculate grand canonical potential functional

1 ) 1 A
0= _BlnSpp = QO - Bln<a(ﬂ)>07
QO = —% In Sp e—,@HO, (8)
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single-electron Green’s functions

0
vio(T — 1) = (Tal () —
G J (T T ) < aza'(T)a] (T )) 6t(ifj (7_ _ TI) (9)
and mean values

1 1 dQ

n= gy 2lmn ) = -

1 1 dQ
=y 2l = i) =~ g (10)

i
Here, (...) = £ Sp(...p), Z = Spp, or in interacting representation

1
(@(B))o

where (...)o = £ Sp(...e PH0); Zy = Spe FHo,

We expand scattering matrix 6(8) in (1) into the series in terms of
electron hopping and for {(c(3))o we obtain a series of terms which are
products of the hopping integrals and averages of the electron creation
and annihilation operators or, using (7), Hubbard operators which will
be calculated with the use of the corresponding Wick’s theorem.

Wick’s theorem for Hubbard operators was formulated in Ref. [3]
(see also Ref. [4] and references therein). For the Hubbard model we can
define four diagonal Hubbard operators X?? (p = 0,2, |,1) which are of
bosonic type, four annihilation X%, X% X2 X2 and four conjugated
creation fermionic operators, and two annihilation X+, X°? and two
conjugated creation bosonic operators. The algebra of X operators is
defined by the multiplication rule

()= (-~ 0(B)o =(--6(8)oc, (11)

XToXP1 = 6,,X]1, (12)
conserving condition
d X =1 (13)
p
and commutation relations
[XIS:X]I')q]i = 61’]’(6st:(1 :tfsquzps): (14)

where one must use anticommutator when both operators are of the
fermionic type and commutator in all other cases. So, commutator or
anticommutator of two Hubbard operators is not a C number but a new
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Hubbard operator. Then the average of a T" products of X operators
can be evaluated by the consecutive pairing, with taking into account
standard permutation rules for bosonic and fermionic operators, of all off-
diagonal Hubbard operators X?¢ according to the rule (Wick’s theorem)

XP(m)XE (1) = ~Soigya(7 —W)XP (), XPUm))e (15)

until we get the product of the diagonal Hubbard operators only. Here
we introduce zero-order Green’s function

- Eni(Apg) T>T
— — (T Tl))\pq +\pg 1
gpq(T Tl) € { in:l:()\pq) -1 r<m ’ (16)
where A\yy = A, — Ay and ni(X) = i, and its Fourier transform is
equal
1
Ipg(wn) = ———. (17)
pq 4 _ qu

In particular, for Hubbard model one can introduce following pair-
ings:
|
aio(1)al, (1) = =6ij{goo(r — 1) (X°(11) + X7 (1))

+g25 (1 — 1)(X{* (1) + X77 (1)}

<
ai&(Tl)a}g (T) = _(Sz]fa (T - Tl)X (Tl)
| ——
al, (m)al, (1) = 6o (r = m) -0 - X}°(n0), (18)
< B
al, (1) X7 (1) = 611905 (1 — T1)al, (1),
o (11)X77 (1) = —8ijgos (T — T1)aiz (11),
[ ——
aw(Tl)X]‘?O (1) = =0ijg20(T —T1) -0 - CLI&(Tl),

where
fo(Wn) = goo(Wn) = 920 (wWn) = —Ugoo(wn)g25 (Wn).
Applying such pairing procedure to the expansion of (6(3))o we get
the following diagrammatic representation:

((8), = <exp{— {Z}
_{;\g:}__..._ —}> . (19)

0

N —
oalb—t
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where arrows denote zero order Green’s functions (17), wavy lines de-
note hopping integrals and O, ... stay for some complicated “n-vertices”
which for such type perturbation expansion are an irreducible many-
particle single-site Green’s functions calculated with single-site Hamil-
tonian (3). Each vertice (Green’s function) is multiplied by a diagonal
Hubbard operator denoted by a circle and one gets an expression with av-
erages of a products of diagonal Hubbard operators. For Falicov-Kimball
model expression (19) reduces and contains only single loop contributions

O, = <exp{ L - {:} ——@

where _G— = m, Pz = TL,J{, T =1- TL,J{ and by in-

troducing pseudospin variables S7 = §(Pi+ - ]51_) one can transform

Falicov-Kimball model to an Ising type model with the effective multi-
site retarded pseudospin interactions.
So, after applying Wick’s theorem our problem splits into two ones:

1. calculation of the irreducible many-particle Green’s functions (ver-
tices) in order to construct expression (19) and

2. calculation of the averages of the products of diagonal Hubbard
operators and summing up of the resulting series.

3. Irreducible many-particle Green’s functions

For Hubbard model by applying Wick’s theorem for X operators one
gets for 2-vertice

—O— = go0(wn)(X77 + X7°) + g25 (w) (X7? + X77),  (21)

for 4-vertice

o ]Q[ ol 5 Agié(w”7wn+m7wn’+mawn’) (22)

P ©. QU
= X 950(wn)go0 Wn+m) (U + U2 g20(@nn+m)) 90 (@n)gr0(@nr+m)
+X72955 (Wn) 925 (Wnam) (U = U2g20(Wntni+m)) 920 (Wi ) 920 (Wrr 4m)
+X77 960 (wn) 900 (@Wntm) (U + UPgos (Wn—n)) 920 (Wnr ) 920 (Wrr4-m)
+X77 925 (Wn) 926 (Wntm) (U = U*9o5(wn-n')) gz0(wn')g50(wn'+m),

~

(4) _
Aio’o’ (wn; Wntmy Wn'+m, wn’) =0
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and so on. Expressions (21), (22) and for the vertices of higher order
possess one significant feature. They decompose into four terms with
different diagonal Hubbard operators XPP, which project our single site
problem on certain “vacuum” states (subspaces), and zero-order Green’s
functions, which describe all possible excitations and scattering processes
around these “vacuum” states (subspaces): i.e. creation and annihilation
of single electrons and of the doublon (pair of electrons with opposite
spins) for subspaces p = 0 and p = 2 and creation and annihilation
of single electrons with appropriate spin orientation and of the magnon
(spin flip) for subspaces p =1 and p =J.
In compact form expressions (21) and (22) can be written as

—®— =) X0 (wn) (23)

and

o =Y« (24)

X 9o (p) (Wn) 9o (p) (Wntm ) Uss(p) (Wns Wilwm) 9z (p) (W1) 95 (p) (Wit m)
where

9o (p) (Wn) = { z;gg::g 21{ z i g’,; : (25)
Here

U1+ Ugz0(wnti+m)) for p=0,2

Usa(p) (@n, wilwm) = { U1 £Ugro(wnr))  forp=c5 20

[70(—7(1,) (Wi wilwm) = ﬁ&a(p) (wi, wn|wm)

is a renormalized Coulombic interaction in the subspaces, or in diagram-

matic notations
1 2
forp=0,2
1 4 >—>—< p=0,
L4 3 4
- = . e
1 2
2 3 2 3 )ﬁb-( forp=o0,0
4 3
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where dots denote Coulombic correlation energy U = Ay + Ag — Ay — Ay
and dashed arrows denote bosonic zero-order Green’s functions: doublon

g20(wm) Or magnon gys (Wp,).
For 6-vertex one can get

A®)

05T (wnv Wy Wny )y Wngy Wny wns) = 6(wn —Wny T Wny —Wnyt+Wn, _wns)

XY X950 (@n) 9o (p) (Wni ) o (p) (Wns) 9(p) (Wns ) 9o(p) (Wna ) 9o (p) (s )
p

%{ T 5) (s s na—ns )9 3) Wz —ns) Do () (s s g [
~Uyo(p) (@Wns Wns [Wna—ns )96 () Wrtnz—ns ) U () (W » Wng | wWng—ng) (28)
Uy 5(p) Wy Wng [Wna—n5) 95 (p) (Wnt-na—ns ) Usa (p) @y s @ [Wng—ns)

Uy 5() (W W |9 — 5 )96 () (Wntna—ns ) Usa (p) Wy s @np [Wng—ns)

+TUE'E'(p) (Wna Wny,Wno ), Wng, Wny, Wns ) }7

where
Ta’&'&'(p) (wn: wn1 I wnz ) an ) Wn4 ) Wns) (29)
+U? (920 (Wntns) — 920 (Wnns)) (920(Wny +ns ) — g20(wn, +ns )
for p=10,2

iU3 (920(wn7n3) - gZO(an’ns)) (920(wn17n2) - 920(wn17n4))
forp=o0,0

In expression (28) the contributions of the first four terms in braces can
be presented by the following diagrams

%_% ‘*/L\T_ _L\T_f/l_ (30)

with the internal vertices of the same type as in (27), whereas the con-
tribution of the last term can be presented diagrammatically as

P
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So, we can introduce primitive vertices'

X=X .

by which one can construct all n-vertices in expansion (19) according to
the following rules:

1. n-vertices are constructed by the diagonal Hubbard operator XP?P
and zero-order fermionic and bosonic lines connected by primitive
vertices (32) specific for each subspace p.

2. External lines of n-vertices must be of the fermionic type.

3. Diagrams with the loops formed by zero-order fermionic and
bosonic Green’s functions are not allowed because they are already
included into the formalism, e.g.

PX e >

Diagrams (27), (30) and (31) topologically are truncated Bethe-lattices
constructed by the primitive vertices (32) and can be treated as some
generalization of the Hubbard stars [28,29] in the thermodynamical per-
turbation theory.

It should be noted that each n-vertice contains Coulombic interaction
U as in primitive vertices (32) (denoted by dots) as in the denominators
of zero-order Green’s functions (17). In the U — oo limit each term in
expressions for n-vertices can diverge but total vertice possesses finite
U — oo limit when diagrammatic series of Ref. [5] are reproduced.

Second problem of calculation of the averages of diagonal X operators
is more complicated. One of the ways to solve it is to use semi-invariant
(cumulant) expansions as it was done in Refs. [5] and [6] for U = oo
limit. Another way is to consider d = oo limit where new simplifications
appear.

4. Dynamical mean-field theory

Within the frames of the considered perturbation theory in terms of
electron hopping a single-electron Green’s function (9) can be presented

1For n-vertices of higher order a new primitive vertices can appear but we do not
check this due to the rapid increase of the algebraic calculations with the increase of
n.
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in a form

1
H_l(wn, k) —tg ’
where we introduce an irreducible part Z,(wy, k) of Green’s function

which, in general, is not local. In the case of infinite dimensions d — oo
one should scale hopping integral according to

Gy (wn, k) = (33)

tij
Vd
in order to obtain finite density of states and it was shown by Metzner

in his pioneer work [25] that in this limit the irreducible part become
local

t,'j —

Eijo(T—=T7)=06;;Z,(T—7") or Ey(wn,k)=ZE,(wn) (34)

and such site-diagonal function, as it was shown by Brandt and Mielsch
[9], can be calculated by mapping the infinite-dimensional lattice prob-
lem (1) with t;(r — 7') = Z=t;; on the atomic model with auxiliary
Kadanoff-Baym field

ty; (T — ') =6; (1 —1'), (35)

which has to be self-consistently determined from the condition that
the same function Z,(w,) defines Green’s functions for the lattice and
atomic limit. The self-consistent set of equations for 2, (w,,) and J,(wy,)
(e.g. see Ref. [8] and references therein) is following

Z_ w - = G (wn, {Jo(wn)}), (36)

n) — tk Eal(wn) — Jo(wn)

where G5 (wn, {J,(wp)}) is Green’s function for atomic limit (35).
Grand canonical potential for lattice is connected with the one for
atomic limit by expression [9]

Q0

5= % ; {magﬂ)(wn) - % zk:lnGa(wn,k)} EY

On the other hand, we can write for the grand canonical potential for
atomic limit 2, the same expansion as in (19) but now we have averages
of the products of diagonal X operators at the same site. According
to (12) we can multiply them and reduce their product to a single X
operator which can be taken outside of the brackets and exponent in
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canonical potential for atomic limit we get

Qo = —llnze*mm, (38)
ﬂ p

(19) and its average is equal (XPP)y = Finally, for the grand

where ()(,) are “grand canonical potentials” for subspaces

o =n L0 {3 {:;

Now we can find single-electron Green’s function for atomic limit by

(@) (r _ +1) = _ 4
G =)= iy = Lo = ) (40
where 50
) (p)
Gg(p) (T T) (5.] (7_ —T’) (41)

are single-electron Green’s functions for the subspaces characterized by
“statistical weights”
6_169(10)

Z e_ﬂQ(Q) (42)
q

’U)p:

and our single-site atomic problem exactly (naturally) splits into four
subspaces p = 0,2, ], 1.

We can introduce irreducible parts of Green’s functions in subspaces
Eo(p)(wn) by

Ga(p) (wn) = - ! (43)

=) (Wn) — Jo (wn)7

where
Eg(p)(wn):++ Q + E +

According to the rules of the introduced diagrammatic technique n-
vertices are terminated by the fermionic Green’s functions (see (27), (30)
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and (31)) and this allows to write a Dayson equation for irreducible parts
and to introduce a self-energy

=—1

o (p) (wn) = g;(lp) (wn) - E(r(p) (wn): (44)

where self-energy X,(,)(w,) depends on hopping integral Jo(w,) only
through quantities

G""(P)( ’) - Ecrr’(p)( ) (45)
= 22, ) (W) {Jo (i) + ot (W) () (W) T (wi) + -}

= =’ (p)

Now, one can reconstruct expressions for grand canonical potentials
Q(p) in subspaces from the known structure of Green’s functions. To do
this, we scale hopping integral

Iy (wn) = ady (wn), a €[0,1]

which allows to define grand canonical potential as

0

and after some transformations one can get

B ) (wn) = Jo (wn)

1 A, (p) (Wn, @) _
—— Z / da% (Gg'(p) ((A)n, CY) — ‘:‘o'(p) (wn,a)) ,

where ¥, (wn,a) depends on a only through quantities
{Gor (py(Wnry ) — Egpy(wnr, @)} So, if one find or construct self-
energy X,(,)(wn) he can find Green’s functions and grand canonical
potentials for subspaces and, according to (38) and (40), solve atomic
problem.
For Falicov-Kimball model J)(w,) = 0 and according to (22) and
(28)
Zip) (@n) =05 Eqp) (wn) = 91() (Wn) (48)
and

Dy = Ap — % D In (1= Jp(wn)gt(p) (@n)) » (49)
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1—n n
G () = v & 50
T (w ) iwn - /\TO - JT(wn) + iwn - )\2i - JT(wn)’ ( )

= 326 ),

which immediately gives results of Ref. [9] (see also Ref. [30]).
For Hubbard model there are no exact expression for self-energy but
the set of Eqs. 43, 44 and 47 allows to construct different self-consistent

ny =ws +wy (51)

approximations.
The first approximation, which can be done, is to put
Ea(p) (wn) =0 (52)
which gives
Eo(p) (Wn) = Go(p) (wn) (53)

and
Q(p = Z ln

and for the Green’s function for atomic problem one can obtain 2-pole
expression

wn)ga(p) (wn)) (54)

wo + wa + wo + w5
—Ao0 — ( n) — Xos — (wn)

of the alloy-analogy solution for the Hubbard model which is exact for
Falicov-Kimball model. In this approximation mean values (10) are equal

G (wn) = - (55)

wo + We W + wg
eﬁ)\ao + 1 eﬁAZE- + ]_

Ny ZG(a (wn) + w2 + w, —

ﬁ ZG(“ wn) (56)

The next one is to consider only contribution from n-vertices of the
(27) and (30) type which allow to construct self-energy in the following
form

Zatp) (wn) = 3 Z Uso) (@ns ww[0) (Goy(wn') = Eoi(wn)) » (57)
which besides Hartree-Fock type term

0(1)) - ﬂ Z 5(p) (wnr) = Es(p) (wn’)) (58)
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contains contributions from the scattering processes involving exchange
by bosons: doublons and magnons. These immediately gives for the grand
canonical potential (47) the following analytical expression

Q(p = Zln wn)ug(p) (wn)) (59)

—@ > (G (@n) = Ergpy(Wn)) Upyp) (Wnr wnr [0)

X (Gyp) (W) = By (wm)) 5
and for Green’s function for atomic problem we get 4-pole expression:

CWlwn)= Y gt : (60)

p=02t4 Zo(p) (n) = Jo(n)

0
where irreducible parts Z,,)(wy,) are solutions of the set of integral
equations (o =1,/)

E;(lp) (wn) = g;(lp) (wn - Z Ua'a'(p wnawn’|0) ( 7(p) (Wn’) _Ea—(p) (wn’))

with

1
G5 Wnpt) = .
a(p)( " ) H;(lp)( ’) - Ja—(wn')
Now, electrons with opposite spins do not move independently as it is for
the alloy-analogy approximations. Within this approximation, for mean
values (10) we obtain

1 dQ) dQ,

= = — — = wWrM ,
Ndp’ dp’ J=const zp: )
1 dQ) dQ,

- _N% - dh J=const - ;wpm(p)7

where
Rp) = — d—up e const
- _—+ BZ o) Wn) = Eo(p) (W) (62)

dﬁTi(P) (wnwnr |0)
dp

N Z (Gt (Wn) = Epp)(wn))

X (G y(p) (W) = Eyp) (W)
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and
- —% + % %; - (Go(p) (wn) = Eo(p) (wn)) (63)

1 —_ dﬁTi (wnwn/ |0)
5 > (G (@n) = Enpy (wn) —H2 o

nn’

X (G () (@) = Eyp) (W) -

Here ~
dUs (p) (wnwn'|0) _ [ F2U? g3 (wnin) forp=0,2
du B 0 forp=o,0
and
dﬁa&(p) (wnwn’ |0) o 0 for p= 0, 2
dh T\ F20U%g, (wn—n) forp=o0,6"

5. Conclusions

A finite-temperature perturbation theory scheme in terms of electron
hopping which is based on the Wick’s theorem for Hubbard operators
and is valid for arbitrary value of U (U < o0) has been developed for
Hubbard type models. Diagrammatic series contain single-site vertices,
which are irreducible many-particle Green’s functions for unperturbated
single-site Hamiltonian, connected by hopping lines. The applying of the
Wick’s theorem for Hubbard operators have allowed to calculate these
vertices and it is shown that for each vertice the problem splits into
subspaces with “vacuum states” determined by the diagonal (projection)
operators and only excitations around these “vacuum states” are allowed.
Vertices possesses finite U — oo limit when diagrammatic series of the
strong coupling approach [5,6] are reproduced. The rules to construct
diagrams by the primitive vertices are proposed.

In the limit of infinite spatial dimensions the total auxiliary single-
site problem exactly (naturally) splits into subspaces (four for Hub-
bard model) and a considered analytical scheme allows to build a self-
consistent Kadanoff-Baym type theory for Hubbard model. Some ana-
lytical results are given for simple approximations. The first one is an
alloy-analogy approximation, when 2-pole structure for Green’s function
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is obtained, which is exact for Falicov-Kimball model. The next approx-
imation besides Hartree-Fock type contributions involves scattering pro-
cesses from the exchange by bosons and results into the 4-pole structure
for Green’s function. The applicability and limitations of the proposed
approach and considered approximations can be cleared out only by the
numerical calculations and it will be the subject of the special investiga-
tion.
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