High-field low-temperature properties of distorted diamond chain
Oleg Derzhkoa, Johannes Richterb, and Olesia Krupnitskac
aInstitute for Condensed Matter Physics NASU, Lviv, 79011, Ukraine
bUniversit"at Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany
cDepartment for Theoretical Physics, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine, E–mail: krupnitskaolesya@gmail.com

In the present paper we consider the spin-1/2 antiferromagnetic Heisenberg model with the Hamiltonian

\[H = \sum_{(ij)} J_{ij} \mathbf{s}_i \cdot \mathbf{s}_j - \hbar S^z, \quad S^z = \sum_i S_i^z \]

on a distorted diamond chain, see below. The ideal diamond chain is obtained by setting \(J_1 = J_3, J_m = 0, \) and \(J_2 > 2J_1. \) The high-field low-temperature thermodynamics of the ideal diamond chain can be obtained within the frames of the independent localized magnon picture [1]. We extend the independent localized magnon description for small deviations from ideal geometry. The obtained (approximate) analytical results for the high-field magnetization curve at low temperatures are in a reasonable agreement with exact diagonalization data for finite systems of 18 sites. We also discuss the high-field magnetization curve for the azurite \(\text{Cu}_3(\text{CO}_3)_2(\text{OH})_2, \) which can be regarded as a model compound of distorted diamond spin chain [2] with the set of exchange constants \(J_1 = 15.51 \text{ K}, J_2 = 33 \text{ K}, J_3 = 6.93 \text{ K}, J_m = 4.62 \text{ K} \) [3].