The structure and stability of two-dimensional colloidal alloys
A.D. Lawa, D.M.A. Buzzab, T.S. Horozovc
aMax-Planck-Institut f"ur Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany
bSurfactant & Colloid Group, Department of Physics, The University of Hull, Hull, U.K.
cSurfactant & Colloid Group, Department of Chemistry, The University of Hull, Hull, U.K.

We study both experimentally and theoretically the structure of mixed monolayers of large (3 µm) and small (1µm) very hydrophobic silica particles at an octane/water interface as a function of the number fraction of small particles. We find that a rich variety of two-dimensional hexagonal super-lattices of large and small particles can be obtained in this system experimentally due to strong and long-range electrostatic repulsions through the nonpolar oil phase. These represent the first experimental results for long-range order in a 2D binary colloid system. The structures obtained for the different compositions are in good agreement with zero temperature lattice sum calculations and finite temperature Monte Carlo simulations [1]. Our theoretical analysis also reveals that the melting behaviour of the superlattice structures is very rich, proceeding via a multi-stage process, with melting temperatures that have a very strong and non-monotonic dependence on composition [2].