Instabilities with respect to periodic ordering in primitive models of ionic fluids

O. Patsahana and A. Ciachb

aInstitute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svietsitskii Str., 79011 Lviv, Ukraine, E-mail: oksana@icmp.lviv.ua
bInstitute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland

As is shown by the mean-field analysis \cite{1}, the primitive model (PM) of ionic systems undergoes an instability with respect to periodic ordering in addition to a gas-liquid-like separation. This instability can be identified with the structural line indicating pre-transitional effects.

In this work, we study the effects of size and charge asymmetry on the periodic ordering in the PM using the collective variables based theory \cite{2}. As in \cite{1}, we consider the three regimes of size asymmetry: small size asymmetry, moderate and large size asymmetry, and very large size and charge asymmetry. We extend previous studies in two ways. First, we employ a non-local density approximation for the reference hard sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case \cite{3}. Second, we use the Weeks-Chandler-Anderson regularization scheme \cite{4} for the Coulomb potential inside the hard core.

Following the ideas of \cite{5}, we determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the structural lines. We show that the above-mentioned modifications produce quantitative and partly qualitative changes in the phase diagrams obtained previously.