Influence of the correlated hopping on the X-ray photoemission spectra

D. Dobushovskyi and A. Shvaika

Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine

We present results of the investigation of X-ray photoemission spectra (XPS) for the strongly correlated electron system with both local and nonlocal correlations. We consider the Falicov-Kimball model with correlated hopping, the simplest model of strongly correlated electrons, extended by the inclusion of the interaction with deep core-hole state. Despite its simplicity, the Falicov-Kimball model has a metal-insulator transition for large Coulomb repulsion and is exactly solvable via dynamical mean-field theory in infinite dimensions. XPS response at finite temperatures is connected with the core-hole propagator which is exactly expressed by the functional determinants on the Keldysh contour in time domain.

The present study is a continuation of our previous works [1-2] which considered the effect of correlated hopping on thermal transport and optical spectra. As we found previously for a wide range of the correlated hopping parameters, there are some singularities on the single-particle density of states and on the transport function ("quasiparticle" scattering time). Due to these anomalies and violation of the electron-hole symmetry, there is a huge enhancement on the thermoelectric properties and the optical conductivity exhibits a number of interesting features in the vicinity of these singularities.

We show to what extent these anomalous features can be manifested on the X-ray photoemission spectra at finite temperatures.

1. Dobushovskyi D.A., Shvaika A.M., Zlatić V. Resonant enhancement of thermoelectric properties by correlated hopping for the Falicov-Kimball model on Bethe lattice. Phys. Rev. A 95, 125133 (2017).
2. Dobushovskyi D.A., Shvaika A.M. Nonlocal correlations in the optical conductivity spectra. Condens. Matter Phys. 21, 6, 23702 (2018).
