First-principles study of charge states of point defects in Ti:sapphire co-doped with nonisovalent atoms
D.V. Fila,b and L.Y. Kravchenkoa

aInstitute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky av., 61072 Kharkiv, Ukraine, E-mail: fil@isc.kharkov.ua
bV. N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine,

Ti ions in titanium-doped sapphire may exist in different charge states and demonstrate a tendency to form pairs, triples and larger defect clusters \cite{1,2}. The laser efficiency of Ti:sapphire is affected by a residual infrared absorption in the emission band of the Ti:Al\textsubscript{2}O\textsubscript{3} laser. The residual absorption is caused by Ti3+-Ti4+ pairs. In this connection, the reduction of the ratio of the concentration of isolated Ti3+ defects to the concentration of Ti3+-Ti4+ pairs is a challenge problem.

We analyze the role of co-doping in a control of the charge state of Ti in Ti:sapphire and an influence of co-doping on the formation of Ti–Ti pairs. We consider co-doping with carbon, nitrogen and fluorine. The analysis is based on the density function theory approach implemented in the open-source DFT-package SIESTA \cite{3}.

It is found that carbon defects have high formation energy and do not affect the charge state of Ti defects. In view of low formation energy of substitutional N\textsubscript{O} defects, co-doping with nitrogen yields negative effect: the concentration of Ti3+-Ti4+ pairs increases. In contrast, co-doping with fluorine atoms that form F\textsubscript{O}+ defects may result in an essential decrease of the concentration of Ti3+-Ti4+ pairs. We determine the conditions at which a large ratio of Ti3+ to Ti3+-Ti4+ can be achieved.

The band structure of Ti:sapphire co-doped with fluorine is calculated. It is established that co-doping with fluorine does not result in an appearance of additional impurity levels in the band gap, and, therefore, fluorine admixtures do not influence optical properties of Ti:sapphire.