Thermodynamics of the $S=1$ Heisenberg antiferromagnet on kagome lattice

T. Hutak, ${ }^{a}$ T. Krokhmalskii, ${ }^{a}$ O. Derzhko ${ }^{a, b}$ and J. Richter ${ }^{c}$
${ }^{a}$ Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 L'viv, Ukraine
${ }^{b}$ Department of Metal Physics, Ivan Franko National University of L'viv, 8 Kyrylo \mathcal{E}^{3} Mephodiy Str., 79005 L'viv, Ukraine
${ }^{c}$ Institut für theoretische Physik, Otto-von-Guericke-Universität Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany

We discuss the thermodynamics of frustrated quantum Heisenberg antiferromagnets (HAFM) using high-temperature series [1] complemented by various interpolation schemes $[2,3]$. To be specific, we focus on the spin- 1 kagome-lattice HAFM and examine the specific heat $c(T)$ and the uniform susceptibility $\chi(T)$ for this model. For the gapped ground state the energy values $e_{0}=-1.369 \ldots-1.4416$ are reported and the gap is estimated as $\Delta=0.17 \ldots 0.28$. We use the entropy method [2] and the $\log Z$ method [3] assuming the low- T behavior $c(T) \propto \exp (-\Delta / T) / T^{2}$. If we assume $e_{0}=-1.43 \ldots-1.45$, various Padé approximants used for the interpolation yield almost the same temperature profiles $c(T)$ and $\chi(T)$. Moreover, the results using the entropy method agree well with those using the $\log Z$ method. The specific heat exhibits a shoulder-like behavior at low temperatures, i.e., starting from $T=0$ it shows a fast increase to $c \approx 0.25$ until $T \approx 0.16$ which is followed by a slow increase to $c \approx 0.3$ as further increasing the temperature to $T \approx 1$, and the typical decrease to zero as $T \rightarrow \infty$. The entropy deficit estimated from the raw series [4] is noticeably smaller than the one for the spin- $\frac{1}{2}$ case thus giving some evidence for the absence of the low- T peak in $c(T)$ for the spin- 1 kagome HAFM. The obtained $\chi(T)$ shows typical behavior growing to $\chi \approx 0.13$ at $T \approx 1$ and then following the Curie law as $T \rightarrow \infty$.
[1] A. Lohmann, H.-J. Schmidt, and J. Richter, Phys. Rev. B 89, 014415 (2014).
[2] B. Bernu and G. Misguich, Phys. Rev. B 63, 134409 (2001); G. Misguich and B. Bernu, Phys. Rev. B 71, 014417 (2005); B. Bernu and C. Lhuillier, Phys. Rev. Lett. 114, 057201 (2015).
[3] H.-J. Schmidt, A. Hauser, A. Lohmann, and J. Richter, Phys. Rev. E 95, 042110 (2017).
[4] N. Elstner and A. P. Young, Phys. Rev. B 50, 6871 (1994).

