Probing the non-Debye low-frequency excitations in glasses through fast quenching and random pinning

L. Angelani^a, M. Paoluzzi^a, G. Parisi^a and G. Ruocco^{ab}

It has been recently observed in numerical simulations that although they dominate the low-frequency spectrum, phonons are not the only low-energy excitations in glassy systems.

We show that, as temperature T decreases towards the dynamical crossover T_d , the low-energy spectrum is progressively populated by quasi-localized soft-modes whose density of states $D(\omega)$ follows a power law $\sim \omega^{s(T)}$ with $2 \leq s(T) \leq 4$. Considering the growing of s from Debye, i. e., s=2, to non-Debye obtained by frozen randomly a fraction p of particles, we suggest that non-Debye sector results to be magnified by approaching the dynamical transition because of the presence of dynamical heterogeneous regions of linear size ξ .

Finally, we make an estimate of ξ s a function of T comparing the spectrum as temperature decreases with the spectrum as a function of p. Our result is compatible with a power law $\xi \sim (T - T_d)^{-\alpha}$ approaching T_d .

^a Sapienza University of Rome, Physics department, Piazzale Aldo Moro 2, 00189, Rome, Italy.

^b Center for Life NanoScience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 0016, Rome, Italy.