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● Examples of experimental systems with spontaneous inhomogeneities

● Generic shape of competing interactions between spherical particles 
leading to self-assembly (the mermaid potential)

● Self-assembled structures from simulation studies for the mermaid 
potential

● Origin of similarity between amphiphilic and colloidal self-assembly

● Effects of fluctuations – illustrations, simple examples and discussion 

● Development of the DFT with the fluctuation contribution obtained by 
the FT methods

● Comparison with simulations



  

Schematic phase diagram of oil-water-surfactant mixture

1. Amphiphilic self-assembly 

Examples of systems with spontaneous inhomogeneities



  

Generic phase diagram and structure of block copolymers

M. W. Matsen and M. Schick

does not mix with 

f=[A]/([A]+[B])



  

A. I. Campbell et. al., Phys. Rev. Lett. 94, 208301 (2005)

Cluster formation in colloid-polymer mixtures, confocal microscopy.
Interactions: depletion attraction + electrostatic repulsion

11 2 3< <colloid 
volume fraction

T. H. Zhang et.al. 
Phys. Chem. Chem. Phys., 
11, 10827 (2009)

 polymer
(invisible) 

charged 
colloidal 
particle

2. Colloidal self-assembly

First experimental observation: A. Stradner et. al., Nature 432, 492 (2004). 



  

V(r)

Effective interaction potential between two lysozyme particles 
in water, determined within the MSA approximation from 

scattering experiments at room temperature. Solvophobic 
attraction and screened electrostatic repulsion

 

 Shukla et al,  PNAS 105 5075 (2008)
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Attractive head

Repulsive tail

Mermaid potential: short-range attraction, long range repulsion (SALR).
A shape similar to a mermaid that begins to dive. 

Generic shape of effective interactions in the colloidal self-assembly

Politically incorrect name, but a female Warsaw citizen is excused



  

C. Patrick Royall, “Hunting mermaids in real space: known knowns, known 
unknowns and unknown unknowns”, Soft Matter,  14, 4020 (2018)

         SALR is very difficult to pronounce, I’ll use “mermaid potential”

 



  

columns

layersspherical 
droplet

Structures from simulation results for the mermaid potential

2
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                Case I:   

                   Case II:

cylindersSpherical droplet
cylindrical
bubble

spherical bubble

colloid volume fraction

  large clusters,

 small clusters,

A. Archer and N. Wilding PRE 76, 031501 (2007)  

A. de Candia et al. PRE  74, 010403 R (2006).



  

                   Case III: giant clusters, 
M. Sweatman                                                    

Case IV: clusters in a mixture,
G. Zarragoicoechea, A. Meyra

Note the analogy between the clusters in the mermaid systems
 and micelles in the amphiphilic systems.

Note also that  the local density inside the clusters 
is much larger than between them. 



  

Amphiphilic systems 
(block copolymers)

 Mermaid (SALR) systems

droplets                                   bubbles

A. Ciach 2008
A. Ciach & W.T. Godz 2010

Despite quite different forms of the interaction potentials,
phase behavior in the two types of systems is very similar.

Why?

f

Phase diagrams in MF approximation



  

Attractive head

Repulsive tail

Men point of view                                   water point of view

Don’t be misled by the apparent analogy!

Amphiphilic molecule



  

F L[]=∫d r [ f r −
2

2
∇ r 2


4

4 !
∇

2
r 2]

Phenomenological functional of the local concentration difference
 between the polar and organic components      

Periodic structure is stable for              

The functional first postulated by Brazovskii in 1975, 
 by  L. Leibler in 1980 to describe block copolymers

 and by Teubner & Strey in 1987 and Gompper & Schick in 1990 
to reproduce structure factor of microemulsions. 

Can a similar functional describe the mermaid-potential systems, 
and if so, what is the relation of the phenomenological parameters 

with the mermaid potential?

20



Amphiphilic self-assembly



  

~ψ (k)

ψ (z)

is the amplitude of the plane wave of density with the wave vector k

z

We consider local deviations from the overall volume fraction     , 

ψ(r )=ζ(r)−ζ0

0

β ΔU [ ζ ,ψ ]≈
β

2
∫ d k~ψ (k)

~V (k)~ψ (−k)

The excess internal energy associated with the inhomogeneities 
in Fourier representation has the form



  

~V (k )

 Dashed line: the approximation
~V (k )≈

~V (k0)+v (k2
−k0

2
)

2

k0=0

k0       is the wavenumber of the density wave leading to the largest energy 
gain compared to the constant density. The waves with the largest energy 
gain are the most probable ones.

For attractive potentials, 

Typical mermaid potential in Fourier representation 
(solid line) has a minimum at k0>0



  

ΔU≈
1
2∫

d r [V 0 ψ (r )2−V 2(∇ ψ (r ))2+V 4(∇
2
ψ (r ))2 ... ]

V 0=
~V (k 0)+vk 0

4

By Fourier transforming back to the real space we obtain for the above 
approximation for the interaction potential the excess internal energy

          
Where                           ,  

and the oscillations of      are energetically favorable

V 2=2 k 0
2v>0,

ζ

V 4=v

~V (k )≈
~V (k0)+v (k2

−k0
2
)

2

 
If only the most probable waves are taken into account, we can use the 
approximation 

  In the Fourier representation                 in the real-space representationk2
→−∇

2



  

                                We introduce the functional
                                                               

Where                                                         is the grand potential. 

From the above approximations for the excess internal energy         
and using the local density approximation for the entropy S we obtain 

which is the same as the functional 
for the amphiphilic systems!

Whether a phase separation or a formation of inhomogeneous distribution 
of particles may occur depends on the sign of the second moment of the 

interactions. 
Minimum of this functional gives most probable structures.

FL [ψ]=∫d r [ f (ψ(r ))−
βV 2

2
(∇ ψ(r ))2

+
βV 4

2
(∇

2
ψ(r ))2]

FL [ψ]=β(Ω[ζ0+ψ]−Ω[ζ0])

Ω[ζ ]=U [ζ ]−TS [ζ ]−μ N

β ΔU



  

The case of weak order in mean-field 

Weak order means that in the periodic phases,          is a superposition of 
plane density waves in different directions, each with the wavenumber          , 

and           is characterized by:

the space-averaged value    , 

the amplitude of the oscillations 

and the symmetry (geometric factors    ), 

ψ (r)
k=k0

ζ0

Φ

√2 Φ̄
ζ (z)=ζ 0+ ψ (z)

z

in the lamellar phase

ζ0

κ nΦ
n
=

1
V u

∫V u
d r ψ (r)n κ2=1κ n

ζ (r)

In ordered phases the clusters or layers are periodically distributed in space. 

2 π /k0



  

The case of weak order in mean-field 

Weak order is expected at relatively high T, 
where thermal motion has a disordering effect.    

FL(ζ 0 ,Φ)

V
=
FL(ζ 0)

V
+β

~V (k 0)
Φ

2

2
+∑n≥2

an(ζ 0)

n!
κ nΦ

n

The functional becomes a function of    ,     and       , 

and in MF it takes the lowest value at the equilibrium state.

In fact for the G phase we need two shells to get two networks.

Φ κ nζ0



  

      Simulation results 
 Y. Zhuang and P. Charbonneau (2016)

Note the same sequence of the ordered phases at low T, 
and the discrepancy at high T.

In simulations the ordered phases loose stability upon heating one by one,
but in the mesoscopic theory 

all the phases are stable up to the same temperature.
What is the reason? 

Phase diagram obtained
in the above approximation 
 



  

Density Functional Theory results

D. Pini, A. Parola (2017), 
local density approximation 

In the MF mesoscopic field theory and in the DFT, the topology of 
the phase diagram is the same, but in simulations it is different. 

Why the high-T parts of the phase diagrams in simulations 
and in the MF-type theories are qualitatively different?  

M. Edelmann and R. Roth (2016), White bear 
version of the fundamental measure theory 



  

Typical states (snapshots):

Disordered inhomogeneous phase.            Disordered homogeneous phase 

Many pairs of attracting  particles,
few pairs of repulsing particles 

Much fewer pairs of attracting 
particles and much more pairs of 
repulsing particles. 

Physical (heuristic) arguments.



  

but different positions of the clusters 
in different states, lead to a constant 
density after ensemble averaging.      

Many pairs of attracting particles, few pairs of repulsing particles in each state, 

For a constant density, the contribution 
from the attractive part of the 
interactions is much smaller, and the 
contribution from the repulsive part of 
the interactions is much larger than in 
the majority of the individual states.

U [ζ ]/V=
ζ

2

2 ∫d Δ rV (∣Δ r∣)

In the MF theories 



  

In MF, the tail matters much more 
than the head due to a large area of 
the shell at large r. 

In majority of states, the head 
maters much more than the tail  

Internal energy in the disordered phase (no periodic order)

U [ζ]/V=2 π ζ
2∫1

∞

d r r2V (r )

r2V (r)

Few pairs at such 
distances, negligible 
contribution from the tail



 
  The MF-type DFT is based on the average density.

 The average value is not sufficient to describe a system with large 
fluctuations.

 
The simplest and commonly used quantity that measures the deviations  

of instantaneous states from the average value is the variance.

 We need a theory for the inhomogeneous system in terms of both, the 
average density and its variance that allows to:

Calculate the variance          for different (stable/metastable) phases

Calculate the contribution to the grand potential associated with 
 

⟨ψ
2
⟩

⟨ψ
2
⟩



  

   For an illustration, consider a highly simplified case of two states with a 
single cluster in a different position in each state.  

ψ(z)=ζ(z)−ζ0

ψ
2ψ

〈ψ〉=
1
2

(ψ+ψ)=0

〈ψ
2
〉=

1
2

(ψ
2
+ψ

2
)=ψ

2
>0

A measure of inhomogeneity

If          in each state (homogeneous system)  we have                        .

What distinguishes the disordered homogeneous and inhomogeneous
 states is 

〈ψ〉=0=〈ψ
2
〉ψ=0

〈ψ
2
〉



  

Field-theory results for block-copolymers (Hartree approximation) 
Podneks and Hamley,  (1997) 

Isotropic phase coexists with L, H and B phases as in experiment. 
                                           Two-phase regions? 



  

We combine the density functional 
theory with the Brazovskii field theory. 

The former allows to include the 
microscopic contributions to      with  
frozen fluctuations on the mesoscale.

The latter allows to include the 
contribution from the fluctuations 
associated with inhomogeneities on 
the mesoscopic length scale 
(formation and/or displacements of the 
clusters).

Ω



  
 

Construction of the theory 

βΩco[ζ ]=
β

2
∫d r1∫ d r2 ζ(r1)V (r )ζ(r2)+∫ d rβ f h(ζ (r))−βμ∫ d r ζ(r )

βΩ[ζ]=βΩco[ζ ]−log∫Dϕ exp(−βH f [ζ ,ϕ ])

βH f=βΩco [ζ+ϕ ]−βΩco [ζ ]

f h(ζ (r))

〈ϕ 〉=0

δβΩ[ζ]

δζ
=

δβΩco [ζ]

δ ζ
+〈 δH f

δ ζ 〉=0

where               is the reference-system free-energy density. 

In equilibrium,              and the extremum condition has the extra term

The grand potential  

Standard (MF) DFT               mesoscopic fluctuations around
(frozen fluctuations)            (formation/displacements of the clusters) 

ζ(r )



  

β H f [ ζ , ϕ ]≈
β

2 ∫d k~
ϕ (k)

~V (k )
~
ϕ (−k)+∫ d r∑n>1

An[ ζ ]

n!
ϕ (r)n−β μ̄ [ζ ]∫ d r ϕ (r)

An [ζ ]=
1
V u

∫V u
d r an(ζ (r)) an(ζ(r ))=

dnβ f h(ζ (r ))

d ζ (r)n

V u

We assume that the periodic structure is destroyed by long-wavelength 
fluctuations, and make the approximation

where                                                       

and        denotes the unit-cell volume of the periodic structure         .

~V (k )≈
~V (k0)+v (k2

−k0
2
)

2

ζ (r)



  

βΩ[ζ]=βΩco [ζ ]−log∫Dϕ exp(−βHG [ζ ,ϕ ])+〈ΔH 〉

ΔH≪HG

ΔH=H f−HG

C̃ (k)−1
=〈ϕ̃ (k) ϕ̃ (−k)〉

Ω[ζ]

ϕ
6

C̃ (k)≈β Ṽ (k)+A2[ζ]+
A4 [ζ]

2
〈ϕ

2
〉+
A6[ζ ]

8
〈ϕ

2
〉

2

⟨ ϕ
2
⟩≈ α

√~C (k0)
α=

k0

4 π √
kBT

v

βHG [ζ ,ϕ ]=
1
2∫d k ϕ̃ (k)C̃ (k) ϕ̃ (−k)

In the self-consistent one-loop Hartree approximation for the        theory,

 

for the mermaid potential 

 In the Brazovskii field theory,         can be approximated by

 where                                                               ,

  and                                           ,             provided that  



  

In this approximation,          is a functional of     

          

                

                     

                     
                   is the grand potential of the homogeneous system with the 
constant volume fraction     .
          
The first correction term comes from the decrease of the internal energy 
in the presence of the density wave with the wavenumber          
and the amplitude           . 

The remaining terms come from the decrease of the entropy associated with 
clustering.   
                 

βΩ[ζ]

V
=

βΩco [ζ ]

V
+β

~V (k 0)⟨ϕ
2
⟩+A2 [ζ ]⟨ϕ

2
⟩+

3 A4 [ζ ]

8
⟨ϕ

2
⟩

2
+
A6[ζ ]

12
⟨ϕ

2
⟩

3

Ω[ ζ ]

k=k0

β Ωco [ ζ 0]/V
ζ0

ζ(r )

where 
 

In equilibrium,          takes the global minimum.

In the disordered phase                 , and:ζ(r )=ζ0

α
2
≈[β

~V (k0)+A2[ ζ ]+
A4 [ ζ ]

2
⟨ ϕ

2
⟩+
A6[ ζ ]

8
⟨ ϕ

2
⟩

2
] ⟨ ϕ

2
⟩

2

Ω[ζ]

√⟨ ϕ
2
⟩



  

βΩco(ζ0 ,Φ)

V
=

βΩco(ζ0)

V
+β

~V co(k0)
Φ

2

2
+∑n≥2

an(ζ0)

n!
κnΦ

n

We compare            in the disordered phase in the presence of fluctuations, 
with the MF approximation for the weakly ordered phase. 

             

. 

βΩ(ζ)

V
=

βΩco(ζ0)

V
+β

~V co(k0)⟨ϕ
2
⟩+a2(ζ0)⟨ϕ

2
⟩+

3 a4(ζ0)

8
⟨ϕ

2
⟩

2
+
a6(ζ0)

12
⟨ϕ

2
⟩

3

〈ϕ
2
〉Φ

2
/2

Ω[ζ]

The aggregation of particles influences the internal energy in a similar way 
when the aggregates are localized or not, with           and            playing 
analogous roles.

In the same way the fluctuation contribution can be included for the periodic 
structures. In the case of weak order (high T) the phase diagram can be 
found easily 
  

Weakly ordered in MF with the amplitude       (standing density wave) 

Disordered, with fluctuations ⟨ ϕ
2
⟩

Φ



  

∂βΩco(ζ0 ,Φ)

∂ ζ0
+⟨ ∂H f (ζ0 ,Φ)

∂ ζ0
⟩=0

∂βΩco(ζ0 ,Φ)

∂Φ
+〈 ∂H f (ζ0 ,Φ)

∂Φ 〉=0

μ(ζ0)Φ(ζ0) p(ζ0)

p(μ)

ζ0 we obtain            ,          , and pressure           , and by eliminating     , we 
obtain         for each periodic structure. From these curves we finally get the 
high- T part of the phase diagram and the EOS.
To compare with simulations, we assumed the interaction potential of the 
shape:

In the case of weak order, the equilibrium condition reduces to 2 equations
for each set of the geometric factors

r

V (r)



  

lamellar

cylindrical
   voids

bcc 
crystal 
of voids

disordered

The one-shell approximation for the lamellar phase is valid only at high T, 
where the hexagonal and cubic phases are not stable. At lower T, strong 
deviations from the sinusoidal shape were observed in DFT (Pini & Parola).  
The metastable hexagonal and cubic phases appear with decreasing T in 
the same order as in simulations.

Densities not studied in the simulations

This theory in the one-shell approximation

This region can 
be compared 
with simulations 
performed only 
for low densities



  

The high-T part of the phase diagram for the same interactions and the 
same density range as in the simulation studies.

simulation                                                 theory 

The ordered phases are present at higher density than in MF in both  
cases. In the theory, the ordered phases appear at lower temperature. 
It might be associated with the finite-size effect in simulations, where 
the long-wavelength fluctuations are suppressed by the size of the 
simulation box. The question of the stability of the hexagonal and cubic 
phases beyond the one-shell approximation remains open.



  

EOS

Thin lines concern the corresponding phase in the region of its metastability.
Note the small compressibility of the ordered phases 

even in the case of small density. 

Disordered

   Lamellar   hexagonal

bcc



  

Summary

The universality of the sequence of ordered phases in self-assembling 
systems follows from the fact that they can be described by the Landau-
Brazovskii functional. This is analogous to universal features of phase 
transitions in uniform systems described by the Landau functional.

The average value of the energy differs significantly from the energy 
calculated for the average density.  Fluctuations around the average density 
have to be taken into account to find stability regions of different phases, 
and to predict properties of the inhomogeneous phase with no translational 
order. The relevant fluctuations in the disordered phase concern cluster 
formation, i.e. occur on the mesoscopic length scale.

When the fluctuation contribution is included, a better approximation for the 
internal energy and the entropy is obtained. 
When weakly ordered phases are predicted by MF, we may expect 
a disordered phase with inhomogeneous distribution of particles. 



  

Part II

Simple SALR models in 1D and 2D systems  

●Ground states in 1D and 2D
●Equation of state in 1D
●Phase diagram in 2D
●Effects of confinement:
anomalies and structural reorganizations 



  

Simple generic lattice model of SALR systems in 1D. 

Attraction J
1
  between the first and repulsion J

2
   between the third 

neighbors, excluded multiple occupancy of lattice cells. 
It can describe charged particles in long tubes, or adsorbed at tubules. 



  

Ground state (T=0)  in 1D
in the reduced chemical potential and the repulsion-to-attraction ratio variables

The energetically favored structure in the absence of thermal motion 



  

 Pressure must overcome the repulsion between the clusters to induce 
decrease of volume (increase of density). Large increase of pressure is 

necessary to increase the density at low T.
 

At high T the particles are more randomly distributed and the pressure 
changes more gradually with density

Structure at low T and density 1/2

Structure at low T and density >1/2

repulsion between some clusters appears when the distance 
between them is smaller than the range of repulsion. 

Effect of the self-assembly into clusters on pressure



  

Equation of state in the 1D model. 
Exact results by the transfer matrix method

Anomalous increase of 
pressure for decreasing T
 at fixed density ~0.6

Very small compressibility 
at the density corresponding 
to the periodically ordered 
clusters (no repulsion). 
For             pressure must 
overcome the repulsion.

Very large
compressibility

ρ>0.5

 J. Pękalski, A. Ciach, N. G. Almarza J. Chem. Phys. 138, 114903 (2013)

T∗
=kBT /J 1



  

Simple generic model of the SALR systems in 2D
V r 

−J1

J2

r

Repulsion to attraction 
ratio:  J=J

2
/J

1

attracts       (first neighbor) and repels       (third neighbor) 



  

Ground state (T=0)  in 2D
in the reduced chemical potential and the repulsion-to-attraction ratio variables

V', HC' and OR' are “negatives” of V, HC and OP respectively

. J. Pękalski, A. Ciach, N. G. Almarza J. Chem. Phys. 140 114701 (2014)



  

Degeneracy of the GS at the coexistence 
between the 

 vacuum – OR and OR - lamellar phases 

The entropy per lattice site does not vanish, and the surface tension 
between the two ordered phases vanishes at the phase coexistence. We 
interpret  this state as a  disordered inhomogeneous phase coexisting with 
the two ordered phases. This disorder is not induced by thermal motion! 



  

Phase diagram in the 2D model obtained by MC simulations

F is an isotropic fluid with no translational order
ML is the molten lamella phase with orientational and without translational order
L is the lamellar phase with both orientational and translational order
OR is the cluster phase with hexagonally ordered rhombuses
 

 N. G. Almarza, J. Pękalski, A. Ciach J. Chem. Phys. 140 164708 (2014)



  

T

Slit with attractive walls, the chemical potential favors stripes  

Width commensurate 
with the period

Width incommensurate 
with the period

N. G. Almarza, J. Pękalski and A. Ciach, Soft Matter, 12, 7551 (2016)



  

            Hexagonal confinement, attractive walls

        Ground states for different sizes

Maps of average density (left columns) 
and typical snapshots (right columns, in blue)



  

Average densities in a presence of a triangular wedge.

Spirals with a chirality depending on the orientation of the wedge
are formed, except from the hexagons with no central defect
(with appropriate edge lengths).

J. Pękalski, E. Bildanau, A. Ciach, to be published



  

Summary of part II

●Self-assembly leads to various anomalies, such as:
-vanishing surface tension between ordered phases at T=0
-increase of pressure for decreasing T or increasing volume

●Confinement can have both disordering and ordering effects

●Ordered patterns absent in the bulk may occur in confinement

●Globally chiral structures with designed chirality can occur 
spontaneously in closed systems with symmetry of the boundaries 
broken by a tiny obstacle
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