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CNRS, Univ., INRIA

I 130 PhD students
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Loria research topics

Organized in 5 departments

D1 Algorithms, Computation, Images and Geometry
ABC, ADAGIo, CARAMBA, MAGRIT, GAMBLE, PIXEL

D2 Formal Methods
CARTE, CARBONE, PESTO, DEDALE, MOSEL-VERIDIS, TYPES

D3 Networks, Systems and Services
COAST, MADYNES, OPTIMIST

D4 Knowledge and Language Management
CELLO, K, MULTISPEECH, ORPAILLEUR, READ, SMarT, SEMAGRAMME,

SYNALP

D5 Complex Systems, Artificial Intelligence and Robotic
CAPSID, BISCUIT , KIWI, LARSEN, NEURORHYTHMS
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BISCUIT = Bio Inspired Situated Cellular Unconventionnal Information
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One of my reason fore being here
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David Silver et al. (2017). “Mastering the game of Go without human
knowledge”. In: Nature 550.7676, p. 354



7

Intro RL ANN DeepRL Conclusion References

David Silver et al. (2017). “Mastering the game of Go without human
knowledge”. In: Nature 550.7676, p. 354



8

Intro RL ANN DeepRL Conclusion References



8

Intro RL ANN DeepRL Conclusion References

DQN, Mnih et al, 2015

Alphago, Silver et al, 2017
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Systems that act rationaly ?

�Artificial Intelligence: A modern approach�, Russell and Norvig 1995



10

Intro RL ANN DeepRL Conclusion References

Outline

Intro

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

Artificial Neural Networks (+ Deep Learning)

DeepRL

Deep Reinforcement Learning

Conclusion

Can we really conclude anything ?



11

Intro RL ANN DeepRL Conclusion References

Model of the problem

Environnement

Perceptions

Actions

Agent

Errors

Reward
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Example: find the cheese

Find a policy π : S −→ A that maximizes E∼π [
∑∞

t=0 γ
trt ]
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Markov Decision Process (Bellman 1957, Groupe PDMIA 2008)
Spaces

I S : states

I A : actions

Dynamics

I P(st+1|st , at) :
transitions

I R(s, a) : reward

Agent

I π(at |st) : policy

Agent

Environment

Criteria

Value Function: V π(s) = E∼π
[∑T

t=1 γ
trt |s0 = s

]
, γ ∈ [0, 1[
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Reward and Value Function
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Reward and Value Function

1 2 3 4 5

6 7 8

9 10 11

States

+1 Reward

? Action Q-Value Function

Criteria

Q-Value: Qπ(s, a) = E∼π
[∑T

t=1 γ
trt |s0 = s, a0 = a

]
, γ ∈ [0, 1[
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Learn Q, even without Model/Dynamics
Spaces

I S : states

I A : actions

Dynamics

I ((((
((P(st+1|st , at) :

transitions

I ����R(s, a) : reward

Agent

I π(at |st) : policy

Agent

Environment

Unknown

Critère

Value Function: V π(s) = E∼π
[∑T

t=1 γ
trt |s0 = s

]
, γ ∈ [0, 1[
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Q-Learning

Optimal Q-Function Q∗

I By definition: Q∗(s, a) = maxπinΠ {E∼π [
∑∞

t=0 γ
trt |s0 = s, a0 = a]}

I Property: Q∗(s, a) = E∼π [R(s, a) + γmaxa′∈AQ∗(s ′, a′)]

Q-Learning (Watkins 1989)

1. Define a exploration policy π, Init Q(s, a),∀s, a
2. Repeat until “convergence”

2.1 In st , apply π  (st , at , rt , st+1)
2.2 Update

Q(st , at)←− Q(st , at) + αt [rt + γmaxa′∈A Q(st+1, a
′)− Q(st , at)]

3. Optimal Policy: π∗(s)←− argmaxa∈AQ(s, a), for all s ∈ S

Sufficient Conditions for convergence

I Every (s, a) explored infinitely often

I
∑
αt =∞,

∑
(αt)

2 <∞
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Reinforcement Learning

The framework of Markov Decision Processes ensure that:

Repeat until “convergence”

1. chose an action in state ( rt , st+1)

2. update Q-valeur from previous state according to reward
(avec ∆Q ≈ [rt + γmaxa′∈A Q(st+1, a′) − Q(st , at)])

will lead to the optimal policy.

Problem

How can we represent/memorize this Q function when S is a continuous
(or very large) space ?
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Formal Neuron

oj = ϕ(x1.w1j + x2.w2j + · · ·+ xn.wnj − θj)
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Universal Approximator

Theorem Univeral Approximation
Formal neural networks with at least 3 layers are universal
approximators under rather weak hypothesis on the activation functions
(non-polynomial).

Cybenko 1989; Hornik 1993; Scarselli and Tsoi 1998

Input Output

0

m

m+1

n

n+1

i

j
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Supervised Learning

Gradient Descent using Back-Propagation

Examples with labels :
{
x i , t i = f (x i )

}
i∈1,...,N

Minimize error : E = 1
2

∑
N(y i − t i )2

Repeat

1. Example xi
NN
 yi

2. Gradient error
∂E

∂wij

3. Update

∆wij = −α× ∂E

∂wij
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Convolution Network

Source : https://towardsdatascience.com/

applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
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Automatic Feature Extraction

Sources:
- https://medium.com/swlh/
ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780

- Hou, Adhikari, and Cheng 2018

https://medium.com/swlh/ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780
https://medium.com/swlh/ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780
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Connexionism - Deep Learning

Reminder

Multi-layer regressor and convolution formal networks are only a small
subpart of artificial neural networks.

I neural network with at least 3 layers can learn any function

I convolution networks: extract features

I deep learning: combine previous points

I no constructive theorem/algorithm but learning algorithm quite
efficient

I need huge datasets

Deep Reinforcement Learning

Represent the Q-function with a (deep) neural network
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Deep Reinforcement Learning

“breakthrough” : DQN (Deep Q-Network) Mnih et al. 2015

Deep Reinforcement Learning

Represent the Q-function with a (deep) neural network
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DQN

+ score (r)

choice a

Simulator
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Deep Reinforcement Learning

“breakthrough” : DQN (Deep Q-Network) Mnih et al. 2015

DQN

+ score (r)

choice a

Simulator

Q-Learning
temporal diff.
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Deep Reinforcement Learning

“breakthrough” : DQN (Deep Q-Network) Mnih et al. 2015

DQN

+ score (r)

choice a

Simulator

Q-Learning
temporal diff.

back-propagation
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Deep Reinforcement Learning

“breakthrough” : DQN (Deep Q-Network) Mnih et al. 2015

Learn autoamticaly to “play”

I State: 4 x images (84x84)

I Actions : joystick

I Reward : according to score (??)
([−1, 1])

I 49 games

I number of iterations : a lot
(70 million img??)
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What about theory ?

not much can be proved nor ensured as we need:

I Markovian problem

I infinite number of trials

I approximation of Q function should be linear

I ANN can learn any function (but what structure ?)

I Backpropagation  local optimum
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Sometimes it works

Emergence of Locomotion Behaviours in Rich Environments.mov

And also DQN, AlphaGo, AlphaZero, reduce energy consumption in large
datacenters, AutoML, Dota 2, ...
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... but more often it does not !!

Irpan 2018
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... but more often it does not !!

I Not data efficient

I (Often, not the best performance reached)

I Defining the reward is a very delicate task

I Local optima

I Generalization is a hard problem (vs over-specialization)

I Very unstable, many hyper-parameters, very hard to reproduce

Irpan 2018
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What can help you ? (if you want to try)

I Easy to generate zillions of examples
I Able to “self-play” or againt yourself.

I Exist simplified expression of the problem

I Clear and easy way to define the rewards

I Reward function can be shaped to give information very often

I (Already know good features to use)

Irpan 2018
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Any “take home” message ?

Deep RL (Artificial Intelligence)

I can sometimes lead to spectacular (technical) achievements

I relies on “ancient” (grounded) knowledge
(MDP, backpropagation, CNN)

I it looks like simple ideas but with solid theoretical grounding

I but theory is very limited: non-realistic conditions

I Sometimes, motivates and inspires real scientific progress
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I can sometimes lead to spectacular (technical) achievements

I relies on “ancient” (grounded) knowledge
(MDP, backpropagation, CNN)

I it looks like simple ideas but with solid theoretical grounding

I but theory is very limited: non-realistic conditions

I Sometimes, motivates and inspires real scientific progress In

Machine Learning (vanishing gradient, exploration, goal generation, state

representation, unsupervised learning, data efficience, ...)
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Any “take home” message ?

Deep RL (Artificial Intelligence)

I can sometimes lead to spectacular (technical) achievements

I relies on “ancient” (grounded) knowledge
(MDP, backpropagation, CNN)

I it looks like simple ideas but with solid theoretical grounding

I but theory is very limited: non-realistic conditions

I Sometimes, motivates and inspires real scientific progress but also in

other fields because of “Ready to use toolkit”. Statistical physics ?
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Artificielle. (Edité par Olivier Buffet et Olivier Sigaud). Vol. 1 & 2.
Lavoisier - Hermes Science Publications.

Hornik, Kurt (1993). “Some new results on neural network
approximation”. In: Neural networks 6.8, pp. 1069–1072.

Hou, Jie, Badri Adhikari, and Jianlin Cheng (2018). “DeepSF: deep
convolutional neural network for mapping protein sequences to folds”.
In: Bioinformatics 34.8, pp. 1295–1303.



34

Intro RL ANN DeepRL Conclusion References
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