

"Deep Reinforcement Learning" Sometimes it works, but more often it does not !!

Alain DUTECH

INRIA - LORIA, Nancy

6th of July, 2019 - StatPhys 2019, Lviv

Lobratore lorrain de recherche

Intro	2
00	00

ANN 0000000 DeepRL 000000 Conclusio 00 References

Loria Laboratory

C

00000

ANN 2000000 DeepRL 000000 Conclusio 00 References

Loria research topics

RI

Organized in 5 departments

- D1 Algorithms, Computation, Images and Geometry ABC, ADAGIo, CARAMBA, MAGRIT, GAMBLE, PIXEL
- D2 Formal Methods

CARTE, CARBONE, PESTO, DEDALE, MOSEL-VERIDIS, TYPES

- D3 Networks, Systems and Services COAST, MADYNES, OPTIMIST
- D4 Knowledge and Language Management CELLO, K, MULTISPEECH, ORPAILLEUR, READ, SMarT, SEMAGRAMME, SYNALP
- D5 Complex Systems, Artificial Intelligence and Robotic CAPSID, BISCUIT, KIWI, LARSEN, NEURORHYTHMS

0000

ANN 0000000 DeepRL 000000 Conclusio 00 References

Loria research topics

Organized in 5 departments

D1 Algorithms, Computation, Images and Geometry ABC, ADAGIo, CARAMBA, MAGRIT, GAMBLE, PIXEL

D2 Formal Methods

CARTE, CARBONE, PESTO, DEDALE, MOSEL-VERIDIS, TYPES

D3 Networks, Systems and Services COAST, MADYNES, OPTIMIST

D4 Knowledge and Language Management CELLO, K, MULTISPEECH, ORPAILLEUR, READ, SMarT, SEMAGRAMME, SYNALP

D5 Complex Systems, Artificial Intelligence and Robotic CAPSID, BISCUIT, KIWI, LARSEN, NEURORHYTHMS

BISCUIT = Bio Inspired Situated Cellular Unconventionnal Information Technology.

RI ANN References Alain DUTECH Artificial Intelligence Cognitive Decision **Sciences** Theory **Robotics** Neurosciences

INRIA researcher at LORIA, Nancy, France...

ANN 0000000 DeepRL 000000 Conclu 00 References

5

One of my reason fore being here

Intelligences Artificielles

Colloque Cathy Dufour 2018

Site web : https://poincare.univ-lorraine.fr/fr/manifestations/colloque-cathy-dufour-2018

Vendredi 16<mark> novembre</mark>

<u>I. Marcovici</u> : Automates ce<mark>llulaires et phénomènes</mark> d'auto-organisation : le rô<mark>le de l'aléa</mark>

9h55

<u>T. Boraud</u> : Une histoire na<mark>turelle des aptitudes</mark>

11h00

<u>F. Alexandre</u> : L'Intelligenc<mark>e Artificielle apprend-elle</mark> de ses erreurs ?

11h 35 - DISCUSSIO

Intro OOO RL 00000000 ANN 0000000 DeepRL 000000 Conclusion

References

Outline

Intro

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

Artificial Neural Networks (+ Deep Learning)

DeepRL

Deep Reinforcement Learning

Conclusion

Can we really conclude anything ?

Intro	
0000	

ANN 0000000 DeepRL 000000 Conclusion

References

Outline

Intro

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

```
Artificial Neural Networks (+ Deep Learning)
```

DeepRL

Deep Reinforcement Learning

Conclusion

Can we really conclude anything ?

References

Intro

0000

References

David Silver et al. (2017). "Mastering the game of Go without human knowledge". In: *Nature* 550,7676, p. 354

Intro	F
0000	0

ANN

DeepRL

References

Intro	
0000	

ANN 0000000 DeepRL 000000 Conclusior 00 References

RL
0000000

Intro

0000

ANN 0000000 DeepRL 000000 Conclusi 00 References

9

Systems that act rationaly ?

"The exciting new effort to make computers think <i>machines with minds</i> , in the full and literal sense" (Haugeland, 1985)		"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)	
"[The automation of] activities that we asso- ciate with human thinking, activities such as decision-making, problem solving, learning " (Bellman, 1978)		"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)	
"The art of creating machines that perform functions that require intelligence when per- formed by people" (Kurzweil, 1990)		"A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes" (Schalkoff, 1990)	
"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)		"The branch of computers cerned with the automat behavior" (Luger and Stu	science that is con- tion of intelligent bblefield, 1993)
Figure 1.1 Some definitions of AI. They are organized into four categor			
	Systems that think like humans.	Systems that think rationally.	
	Systems that act like humans.	Systems that act rationally.	

«Artificial Intelligence: A modern approach», Russell and Norvig 1995

RL ANN •0000000 000)

eepRL

Conclusion 00 References

Outline

Intro

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

```
Artificial Neural Networks (+ Deep Learning)
```

DeepRL

Deep Reinforcement Learning

Conclusion

```
Can we really conclude anything ?
```

RL ○●○○○○○○ ANN 0000000 DeepRL 000000 Conclusion

References

Model of the problem

 RL
 ANN

 00
 0000000
 000

00

DeepRL 000000 Conclusion 00 References

Example: find the cheese

tro RL ANN 000 0000000 000

NN 000000 DeepRL 000000 Conclusio 00 References

Example: find the cheese

ro RL A

ANN 0000000 DeepRL 000000 Conclusio 00 References

Example: find the cheese

Find a policy $\pi: \mathcal{S} \longrightarrow \mathcal{A}$ that maximizes $\mathbb{E}_{\sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$

tro RL ANN 000 000000 0000

NN 000000 DeepRL 000000 Conclusio 00 References

Example: find the cheese

Find a policy $\pi: \mathcal{S} \longrightarrow \mathcal{A}$ that maximizes $\mathbb{E}_{\sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$

Intro	RL	ANN	DeepRL	Conclusion	Refe
0000	0000000	0000000	000000	00	

Reward and Value Function

Criteria

Value Function: $V^{\pi}(s) = \mathbb{E}_{\sim \pi} \left[\sum_{t=1}^{T} \gamma^t r_t | s_0 = s \right]$, $\gamma \in [0, 1[$

RL
00000000

Reward and Value Function

ANN 0000000 DeepRL 000000 Conclusio 00 References

(14)

Value Function States Action 10 11 1 Reward

Criteria

Value Function: $V^{\pi}(s) = \mathbb{E}_{\sim \pi} \left[\sum_{t=1}^{T} \gamma^t r_t | s_0 = s \right]$, $\gamma \in [0, 1[$

RL
00000000

Reward and Value Function

NN 0000000 DeepRL 00000C Conclusio 00 References

(14)

Criteria

Q-Value: $Q^{\pi}(s, a) = \mathbb{E}_{\sim \pi} \left[\sum_{t=1}^{T} \gamma^t r_t | s_0 = s, a_0 = a \right], \quad \gamma \in [0, 1[$

Intro	RL	ANN	DeepRL	Conclusion	References
0000	00000000	0000000	000000	00	

Learn Q, even without *Model/Dynamics*

Spaces

- S : states
- \mathcal{A} : actions

Dynamics

- $P(s_{t+1}|s_t, a_t)$: transitions
- ▶ <u>R(s,a)</u> : reward

Agent

• $\pi(a_t|s_t)$: policy

CritèreValue Function: $V^{\pi}(s) = \mathbb{E}_{\sim \pi} \left[\sum_{t=1}^{T} \gamma^t r_t | s_0 = s \right], \qquad \gamma \in [0, 1[$

tro		
000		

00000000

Q-Learning

Optimal Q-Function Q^*

RL

- ▶ By definition: $Q^*(s, a) = \max_{\pi in\Pi} \{ \mathbb{E}_{\sim \pi} [\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, a_0 = a] \}$
- Property: $Q^*(s, a) = \mathbb{E}_{\sim \pi} [R(s, a) + \gamma \max_{a' \in A} Q^*(s', a')]$

Q-Learning (Watkins 1989)

- 1. Define a exploration policy π , Init $Q(s, a), \forall s, a$
- 2. Repeat until "convergence"
 - 2.1 In s_t , apply $\pi \rightsquigarrow (s_t, a_t, r_t, s_{t+1})$
 - 2.2 Update

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t [r_t + \gamma \max_{a' \in A} Q(s_{t+1}, a') - Q(s_t, a_t)]$

3. Optimal Policy: $\pi^*(s) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} Q(s, a)$, for all $s \in S$

Sufficient Conditions for convergence

Every (s, a) explored infinitely often

•
$$\sum \alpha_t = \infty$$
, $\sum (\alpha_t)^2 < \infty$

ANN 2000000 DeepRL 000000 Conclusio 00 References

Reinforcement Learning

The framework of Markov Decision Processes ensure that:

Repeat until "convergence"

- 1. chose an action in state ($\rightsquigarrow r_t, s_{t+1}$)
- 2. update Q-valeur from previous state according to reward (avec $\Delta Q \approx [r_t + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_t, a_t)])$

will lead to the optimal policy.

ANN 0000000 DeepRL 000000 Conclusio 00 References

Reinforcement Learning

The framework of Markov Decision Processes ensure that:

Repeat until "convergence"

- 1. chose an action in state ($\rightsquigarrow r_t, s_{t+1}$)
- 2. update Q-valeur from previous state according to reward (avec $\Delta Q \approx [r_t + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_t, a_t)]$)

will lead to the optimal policy.

Problem

How can we represent/memorize this Q function when S is a continuous (or very large) space ?

Intro 0000 RL 00000000 ANN •000000 DeepRL 000000 Conclusion 00 References

Intro

Outline

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

Artificial Neural Networks (+ Deep Learning)

DeepRL

Deep Reinforcement Learning

Conclusion

Can we really conclude anything ?

Intro	RL	ANN	DeepRL
0000	0000000	000000	000000

Conclusion 00 References

19

Formal Neuron

$$o_j = \varphi(x_1.w_{1j} + x_2.w_{2j} + \cdots + x_n.w_{nj} - \theta_j)$$

Intro	RL	ANN	DeepRL
0000	0000000	0000000	000000

nclusion

References

Formal Neuron

$$o_j = \varphi(x_1.w_{1j} + x_2.w_{2j} + \cdots + x_n.w_{nj} - \theta_j)$$

ro	RL
000	0000000

ANN 0000000 DeepRL 000000 Conclusio 00 References

Universal Approximator

Theorem Univeral Approximation

Formal neural networks with at least 3 layers are **universal approximators** under rather weak hypothesis on the activation functions (non-polynomial).

Cybenko 1989; Hornik 1993; Scarselli and Tsoi 1998

• RL 00 000000

000

ANN 0000000 DeepRL 000000 Conclusi 00 References

Supervised Learning

Gradient Descent using Back-Propagation

Examples with **labels** : $\{x^i, t^i = f(x^i)\}_{i \in 1,...,N}$ Minimize error : $E = \frac{1}{2} \sum_N (y^i - t^i)^2$

Repeat

1. Example $x_i \stackrel{NN}{\leadsto} y_i$ 2. Gradient error $\frac{\partial E}{\partial w_{ij}}$ 3. Update

$$\Delta w_{ij} = -\alpha \times \frac{\partial E}{\partial w_{ij}}$$

• RL 00 000000

000

ANN 00000000 DeepRL 000000 Conclusio 00 References

Supervised Learning

Gradient Descent using Back-Propagation

Examples with **labels** : $\{x^i, t^i = f(x^i)\}_{i \in 1,...,N}$ Minimize error : $E = \frac{1}{2} \sum_N (y^i - t^i)^2$

Repeat

1. Example $x_i \stackrel{NN}{\rightsquigarrow} y_i$ 2. Gradient error $\frac{\partial E}{\partial w_{ij}}$ 3. Update

$$\Delta w_{ij} = -\alpha \times \frac{\partial E}{\partial w_{ij}}$$

• RL 00 000000

000

ANN 00000000 DeepRL 000000 Conclusi 00 References

Supervised Learning

Gradient Descent using Back-Propagation

Examples with **labels** : $\{x^i, t^i = f(x^i)\}_{i \in 1,...,N}$ Minimize error : $E = \frac{1}{2} \sum_N (y^i - t^i)^2$

Repeat

1. Example $x_i \stackrel{NN}{\leadsto} y_i$ 2. Gradient error $\frac{\partial E}{\partial w_{ij}}$ 3. Update

$$\Delta w_{ij} = -\alpha \times \frac{\partial E}{\partial w_{ij}}$$

⊳ RL 00 0000000

Supervised Learning

ANN

0000000

DeepRI 0000 Conclu: OO References

Gradient Descent using Back-Propagation

Examples with **labels** : $\{x^i, t^i = f(x^i)\}_{i \in 1,...,N}$ Minimize error : $E = \frac{1}{2} \sum_N (y^i - t^i)^2$

Repeat

1. Example $x_i \stackrel{NN}{\leadsto} y_i$ 2. Gradient error $\frac{\partial E}{\partial w_{ij}}$ 3. Update

$$\Delta w_{ij} = -\alpha \times \frac{\partial E}{\partial w_{ij}}$$

⊳ RL 00 0000000

Supervised Learning

ANN 0000000 DeepRL 00000 Conclu 00 References

Gradient Descent using Back-Propagation

Examples with **labels** : $\{x^i, t^i = f(x^i)\}_{i \in 1,...,N}$ Minimize error : $E = \frac{1}{2} \sum_N (y^i - t^i)^2$

Repeat

- 1. Example $x_i \stackrel{NN}{\leadsto} y_i$ 2. Gradient error $\frac{\partial E}{\partial w_{ij}}$
- 3. Update

$$\Delta w_{ij} = -\alpha \times \frac{\partial E}{\partial w_{ij}}$$

ntro	RL
0000	0000000

ANN 0000000

DeepRL 000000 Conclusion 00 References

Convolution Network

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Input

Filter / Kernel

Source : https://towardsdatascience.com/ applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

ntro	RL
0000	0000

Convolution Network

000

ANN 00000000

DeepRL 000000 Conclusion

References

1x01x1 1x1 0 0 0x01x1 1x01 0 0x10x01x11 1 0 0 0 1 1 0 0 0 1 1

Input x Filter

Feature Map

Source : https://towardsdatascience.com/ applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Intro	RL	ANN
0000	0000000	0000

0000

DeepRL 000000 Conclusion

References

Convolution Network

Source : https://towardsdatascience.com/

Source : https://towardsdatascience.com/

Sources:

- https://medium.com/swlh/
- $\verb"ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780"$
- Hou, Adhikari, and Cheng 2018

ANN 0000000 DeepRL 00000

Conclusion 00 References

Connexionism - Deep Learning

Reminder

Multi-layer regressor and **convolution** formal networks are only a **small** subpart of artificial neural networks.

- neural network with at least 3 layers can learn any function
- convolution networks: extract features
- deep learning: combine previous points
- no constructive theorem/algorithm but learning algorithm quite efficient
- need huge datasets

RI

ANN 000000

Connexionism - Deep Learning

Reminder

Multi-layer regressor and convolution formal networks are only a small subpart of artificial neural networks.

- neural network with at least 3 layers can learn any function
- convolution networks: extract features
- deep learning: combine previous points
- no constructive theorem/algorithm but learning algorithm quite efficient
- need huge datasets

Deep Reinforcement Learning

Represent the Q-function with a (deep) neural network

Intro 0000 RL 00000000 ANN 0000000 DeepRL 000000 Conclusion 00 References

Outline

Intro

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

Artificial Neural Networks (+ Deep Learning)

DeepRL

Deep Reinforcement Learning

Conclusion

Can we really conclude anything ?

000000

ANN 0000000 DeepRL 0●0000 Conclusio 00 References

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

Deep Reinforcement Learning

Represent the Q-function with a (deep) neural network

RL OC

000000

ANN 0000000 DeepRL 0●0000 Conclusic 00 References

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

	RL
00	00000

000000

ANN 0000000 DeepRL 000000 Conclusi 00 References

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

26

References

26

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

Intro	RL	ANN	DeepRL	Conclusion	Refere
0000	0000000	0000000	000000	00	

26

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

000000

ANN 2000000 DeepRL 000000 Conclusio 00 References

Deep Reinforcement Learning

"breakthrough" : DQN (Deep Q-Network) Mnih et al. 2015

Learn autoamticaly to "play"

- State: 4 × images (84×84)
- Actions : joystick
- Reward : according to score (??) ([-1,1])
- ► 49 games
- number of iterations : a lot (70 million img??)

0

NN 0000000 DeepRL 000000 Conclusio 00 References

What about theory ?

not much can be **proved** nor **ensured** as we need:

- Markovian problem
- ▶ infinite number of trials
- approximation of Q function should be linear
- ANN can learn any function (but what structure ?)
- ► Backpropagation ~→ local optimum

Intro 0000 RL 200000000 ANN 0000000 DeepRL 000€00 Conclusio 00 References

Sometimes it works

Emergence of Locomotion Behaviours in Rich Environments.mov

And also DQN, AlphaGo, AlphaZero, reduce energy consumption in large datacenters, AutoML, Dota 2, ...

0 000

000000

ANN 0000000 DeepRL 000000 Conclusi 00 References

8^{15CUID} 29

... but more often it does not !!

Irpan 2018

ANN 0000000 DeepRL 000000 Conclusio 00 References

29

\ldots but more often it does not !!

Not data efficient

- (Often, not the best performance reached)
- Defining the reward is a very delicate task
- Local optima
- Generalization is a hard problem (vs over-specialization)
- Very unstable, many hyper-parameters, very hard to reproduce
 Irpan 2018

29

References

... but more often it does not !!

Irpan 2018

 http
 RL
 ANN

 0000
 00000000
 00000000

DeepRL 000000 Conclusion 00 References

What can help you ? (if you want to try)

- Easy to generate zillions of examples
 - Able to "self-play" or againt yourself.
- Exist simplified expression of the problem
- Clear and easy way to define the rewards
- Reward function can be shaped to give information very often
- (Already know good features to use)

Irpan 2018

Intro 0000 RL 00000000 ANN 0000000 DeepRL 000000 Conclusion

References

Outline

Intro

Some context

RL

Reinforcement Learning (Q-Learning)

ANN

Artificial Neural Networks (+ Deep Learning)

DeepRL

Deep Reinforcement Learning

Conclusion

Can we really conclude anything ?

DeepRL 000000 Conclusion

References

Any "take home" message ?

Deep RL (Artificial Intelligence)

- can sometimes lead to spectacular (technical) achievements
- relies on "ancient" (grounded) knowledge (MDP, backpropagation, CNN)
- ▶ it looks like simple ideas but with solid theoretical grounding
- but theory is very limited: non-realistic conditions

Sometimes, motivates and inspires real scientific progress

ANN 00000 DeepRL 000000 Conclusion O References

Any "take home" message ?

Deep RL (Artificial Intelligence)

- can sometimes lead to spectacular (technical) achievements
- relies on "ancient" (grounded) knowledge (MDP, backpropagation, CNN)
- it looks like simple ideas but with solid theoretical grounding
- but theory is very limited: non-realistic conditions

Sometimes, motivates and inspires real scientific progress In Machine Learning (vanishing gradient, exploration, goal generation, state representation, unsupervised learning, data efficience, ...) tro RL 000 0000000 ANN 0000000 DeepRL 000000 Conclusion O References

Any "take home" message ?

Deep RL (Artificial Intelligence)

- can sometimes lead to spectacular (technical) achievements
- relies on "ancient" (grounded) knowledge (MDP, backpropagation, CNN)
- ▶ it looks like simple ideas but with solid theoretical grounding
- but theory is very limited: non-realistic conditions

Sometimes, motivates and inspires real scientific progress but also in other fields because of "Ready to use toolkit". Statistical physics ?

Références I

ANN 0000 DeepRL 000000 Conclusion

References

	RL
00	000

Références II

000000

ANN 0000000 DeepRL 000000 Conclusion 00 References

- Irpan, Alex (2018). Deep Reinforcement Learning Doesn't Work Yet. https://www.alexirpan.com/2018/02/14/rl-hard.html.
- Mnih, Volodymyr et al. (2015). "Human-level control through deep reinforcement learning". In: *Nature* 518.7540, p. 529.
 - Russell, S. and P. Norvig (1995). Artificial Intelligence: A modern approach. Prentice Hall.
- Scarselli, Franco and Ah Chung Tsoi (1998). "Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results". In: *Neural networks* 11.1, pp. 15–37.
- Silver, David et al. (2017). "Mastering the game of Go without human knowledge". In: *Nature* 550.7676, p. 354.
 - Watkins, C. (1989). "Learning from delayed rewards.". PhD thesis. King's College of Cambridge, UK.