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Abstract

The thermodynamical functions, static spin correlation functions,
transverse dynamical spin correlation function and connected with it
transverse dynamical susceptibility have-been obtained for 1D s=1 /2
anisotropic XY model in transverse field with Dzyaloshinskii-Moriya
interaction using Jordan-Wigner transformation. It has been shown
that Dzyaloshinskii-Moriya interaction essentially influences the cal-
culated quantities.

1 Introduction

In 1961 E.Lieb, T.Schultz and D.Mattis in ref. [1] pointed out one type of
the exactly solvable models of statistical mechanics so called 1D s = % XY
model. Rewriting the Hamiltonian of such chain

H=Y [1+7)sisiu + (1-pslely], -1<v<1, (L)
J

[s?, sﬁ,] = Wims), 0,0,y =z,y,z+ cyclic permutations (1.2)
£
J

H =33 [(vsfsh +5fs50) + hee] (1.3)
J

with the help of the raising and lowering operators sT = STt zsjy- in the form

they noted that the difficulty of diagonalization of the obtained quadr@tic
in operators s*, s~ form (1.3) is connected with the commutation rules that

these operators do satisfy, namely, [31-', s,‘*,‘l] = 6im (1 - 25} 3s;). Really,

they are similar to Fermi-type commutation rules for operators at the same
site and to Bose-type commutation rules for operators attached to different

sites
' {3;, s;’ =1, (s;’)2 = (s;)2 = 0; |
(1.4
[.sj—, sj,;] = s;-f, s,*,;] = [.sj‘, .s,;] =0, j#m.
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That is why one should perform at first Jordan-Wigner transformation (see,
besides ref. [1], also refs.[2-4]) :

=87, ¢;= s;P, 1= P-_1sJ_, j=2,...,N,
CT:s'l*', C;’--—S+P] l_P] 13;-7 J=2,...,N, (1.5)
where Jordan-Wigner factor is denoted by P; = i _(~2s2). The intro-

duced operators really obey Fermi commutation rules. From (1.5) it follows
that

= stPLsT = stsr, cict =sisf, cfet =stst, ¢
ch, s] P; =sfs;, cjcf =378, ¢fcj =887, cjcj =878,
. _ (1.6)
since P} = [7,-;(—2s})* = [T7=1 4(s3)* = 1, and the commutation rules at

the salne site remam of Fermi- type Conmdpr then a product of c-operators
at different sites

Yem = st H( 2s7) H( 25%)s,, = s} ]_:I( 257)8m, (1.7)

putting here for definiteness n < m. Since s;-t(—2s§) = :tsf‘ and (—235)8;': =
$sf, and consequently

emet = s, H( -2s%)st = —sf H( —257)s ., (1.8)
j=n
one gets ¢fc, = —cmel. Similarly one finds that ¢} ¢} = —ctct, cnem =

= —¢mCn. Thus the introduced in (1.5) operators are Fermi-type operators
{Cj, c?’} = b1, {Cj', c;"} ={cj, a}=0. (1.9)

Since P? =1, P; = exp(2ar Y _ st s7) (because exp [:i:m YiaG+ s;)] =

= Hj=1(_2351))a s;-*s; = c;'cj-, it is easy to write the inverse to (1.5) trans-
formation ‘

i=1 J=1

sy =, $; =¢j exp(Ler E cten) = exp(der Z C._"’_Cn)Cj, i=2,...,N,
n=1 n=1
i-1 i-1

st =¢f, s;-r = cj' exp(ter Z ctey) = exp(far Z c,i'cn)c;", ji=2,...,N.
n=1 n=1

(1.10)
Returning to the Hamiltonian (1.3) one notes that the products of two
Pauli operators at neighbouring sites transform into products of Fermi op-

erators:
efeli si(=2s9)sf = sfsha,
¢ Ci+1 = 3;("23;)3]11 = 87841 (1.11)
cicfyy = s7(-280)sf,, = —s; 3;L+1, :
CiCi+1 = 3;(_235)3;+1 = 8; Sit1r
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Usually bearing in mind the study of thermodynamical properties of the
system that requires the performance of thermodynamical limit N — oo,
the periodic boundary conditions are implied

SNyl =87, a=2z,y,2. .(1.12)
In accordance with this in (1.3) appear products of the following form

sfskir = shst = sfsfy = of { TI051 (—252) = cf ek P, P = Py,
3]+\,-s,”v+1 = cic} P, s,?,s?(,H = —cTen P, SNSN41 = —cien P
(1.13)
Gathering the similar terms one finds the following representation for the
ring:
H=H 4+BPt=H*Pt+H P (1.14)

Here

H* = %Z [(*ycjcﬁ_l +efeim)+ h.c.] , (1.15)

N
=1

2

the difference between H+ and H~ is only in the implied boundary condi-
tions: for H* they are antiperiodic

ef = —chiny ¢ = —cipn, (1.16)

and for H~ they are periodic

ef =clin: ¢ = cign; (1.17)
B=Ht-H =- [('yc}'{,ci" + c]*\',cl) + h.c.] is the boundary term; P* =

(1 & P)/2 are the orthogonal projectors (Pt + P~ = 1, (P*)? = pP*,
P*PF = (), besides this [H*, P] = [H%, P¥] = 0. For the open chain
with free ends (then in the sum in (1.1) the summation index spans values
j=1,...,N —1) the Hamiltonian after fermionization has the form

N-1

H=33 [(7cjc]-++1 +ctejn) + h.c.] : (1.18)
1=

Formulae (1.14), (1.15) or (1.18) realize the reformulation of the initial
Hamiltonian (1.1) in terms of fermions. They are the starting point for
further study of statistical mechanics of models like (1.1). Besides it appears
[5,6] that for calculation of free energy -

f= —%Nli_tpw [% SPeXP(—ﬂH)] (1.19)

or static spin correlation functions

<SG >= A}Enm {Sp [exp(—ﬂH)s?l’ ...3;'""] /Spexp(—ﬂH)}
(1.20)
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the boundary term may be omitted and hence one has to consider a system
of free fermions. It is more difficult to calculate the dynamical correlation
functions. Really,

s%(t) = exp(1Ht)s] exp(—Ht) =
= exp(tH *t)s? exp(—2H1t) Pt + exp(sH "t)s? exp(—tH "t)P~ =
= Ptexp(1H7t)s? exp(—Ht) + P~ exp(1H ~t)s? exp(—1H 1)
(1.21)
(owing to the following relation that is valid for arbitrary function of H =

H*P* + H=P~: f(H) = T SO+ P+ + H Py = 302 L0
X[(H¥)"PY+(H-)"P~|=f(HY)Pt+f(H™ )P~ = Pt f(H")+ P~ f(H™))
in contrast to

sf’y(t) =

= exp(eH 1) s7¥ exp(—tH 1) P~ 4+ exp(eH t) 5] Y exp(—1H 1) Pt =

= Ptexp(eH*t)s7" exp(—2H ~t) + Pexp(eH "t) s;°¢ exp(—zH"“z)l. )
In accordance with (1.21) the pair transverse correlation function in ‘the
thermodynamical limit can be written as

Sp [exp(—ﬂﬁ_) eXP(’H_t)sjfXP(_ZH_t)sf+n] (1.23)
Spexp(—0H™)

and hence may be calculated with c-cyclic Hamiltonian. Whereas the pair
longitudinal correlation function in accordance with (1.22) in the thermo-
dynamical limit can be written as

< 85 ()85 4n >=

Sp [exp(—ﬁH") exp(zH‘t)s‘; exp(—tH~t)0O~ (t)3f+n]
Sp exp(—BH™)
(1.24)

where O~ (t) = exp(1H ~t) exp (—¢«(H~ + B)t). The calculation with c-cyclic
Hamiltonian that neglects the boundary term B yields the approximate
result that, in particular, is incorrect in the limit of Ising model (y = 1)
(see [7], for instance). It is interesting to note that the calculation of the
four-spin correlation function in the thermodynamical limit involves only
c-cyclic Hamiltonian

< 87 (t)sipn >=

Sp XPp —IBH_ exp 1H—1)s% s% exp —ZH_t 8% g%
< 8% ()s% (t)s 87, >= F ( ) exp( )55, 5% exp( )% 14]'
n J2 13704 Sp eXp(—ﬂH-)

(1.25)
Thus here as in the case (1.23) one comes to calculation of the dynamical
correlation functions of the system of non-interacting fermions (see [8]). The
calculation of the pair longitudinal correlation function, in spite of a great
number of papers dealing with this problem, remains an open problem of

statistical mechanics of 1D s = XY models. Among other interesting and

principal questions of the theory of 1D s = % XY models one may mention
the investigation of nonequilibrium properties of such models (see [9], for
example) and the examination of the properties of disordered versions of

such models (see [10], for example).
It is necessary to stress the essential features of the present consideration:
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¢ the dimension of space D=1;
e the value of spin s = %;

e interactions occur only between neighbouring spins (otherwise the Ha-
miltonian will contain the terms thtat are the products of more than
two Fermi operators);

¢ only  and y components of spins interact and the field that may be
included should be transverse (the interaction of z components, for
instance, leads to the appearance of the terms that are the products
of four Fermi operators in the Hamiltonian).

In connection with this it is easy to point out the model that has more
general than in (1.1) form of interspin interaction, and that still allows the
described consideration. Really, considering the additional terms in the

Hamiltonian that have form Zj (J“’ysfsgﬂ + Jy”sgsf_l_l) one notes that

after fermionization they do not change the form of the Hamiltonian (1.14),
(1.15) or (1.18), and lead only to changes in the values of constants. The
Hamiltonian of the generalized 1D s =  anizotropic XY model in transverse

field that as a matter of fact will be studied in the present paper is given by
H=Q3 s +3 (72586740 + TPV + J¥TSYSE, |+ JHsYsY )
J 3

(1.26)

Before starting the examination of this model it is worthwhile to mention

its possible physical application [11]. For this purpose let’s perform the
transformation of rotation around axis z over an angle «

Y

T — g% Y si ) — _g% §j Y 5% = g%
sy = .EJ cosa—i—.fi ana, 3@ = ~sJ.sma -|:st cosa, S$i= f” (1.27)
s =87 cosa —§; sina, 85 =8 sin  + 85 cosa, s7 = 8.

Then rewritting at first new terms in sum in the Hamiltonian (26) in the
form

JE 4 Jve N L i
2 (Sjsgﬂ + 535j+1) R— (3j3?+1 - S?Sj+1) » (1.28)

taking into account that the terms (sfs? 41— 898t +1) are invariant under
transformation (1.27) and that

TX & ¥ JEY4JVE [ 2 Y Yo yyo¥¥
JHsTsi + T (8T8 88T ) + IVl =

zy . . ~ay
(J” cos? o + L2 sin 20 4 J sin? a) 3787, +

[J¥Y g - JEY 4 JY* svgY SYzz
+ ( 0} sin 2¢ + 2 COs 2a) (SJ 3]'+1 + Sj5j+1) +

. Ty yr . N Y ~
+ (J“’ sin? a — L2 gin 20 4 J¥ cos? a) 5,

(1.29)

and choosing the parameter of transformation a from the condition (J=v+
+J¥%) cos 2a—(J** — J¥) sin 2a = 0, one will have

H=Q3 08 + 3 [778585 + JU5al,, + D@, - #55,,)], (130)
J J
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where Jeuy gus
J* = J*% cos?a + —'5— sin 2 + J¥ sin® a,

JY = J* sin? o — 2251 5in 2a 4+ JW cos? q (1.31)
o Jov_Jys _ JEvgguE
D =L20" 0 tan2a = Yty

One easily recognizes z component of vector [§; X H\}P in the term that is
proportional to D that is the so called Dzyaloshinskii-Moriya interaction. It
was at first introduced phenomenologically by I.E. Dzyaloshinskii [12] and
then derived by T.Moriya [13] by extending Anderson’s theory of superex-
change interactions [14] to include spin-orbital coupling (see, for example,
ref.[15]). The model with relativistic Dzyaloshinskii-Moriya interaction to-
gether with ANNNI model are widely used in microscopic theory of crystals
with incommensurate phase [16,17]. In the classical case Dzyaloshinskii-
Moriya interaction may lead to the appearance of the spiral spin structure.
The possibility of the appearance of spiral structure in quantum case has
been studied in ref.[11] where for this purpose pair static spin correlation
functions have been estimated.

Except the above mentioned paper [11] the problem of statistical me-
chanics of 1D s = 1 XY type model with the Hamiltonian (1.26) or (1.30)

as to our knowledge has not been considered yet !. In the present paper
an attempt to fill up this gap by the generalization for this case of the
well-known scheme has been made. In section 2 the transformation of the
Hamiltonian to the initial form for further examination of statistical proper-
ties is presented. In section 3 the thermodynamical properties of the model
are considered, and in section 4 it is shown how to calculate the static spin
correlation functions. The dynamics of transverse spin correlations and the
transverse dynamical susceptibility are studied in section 5. The conclusions
form section 6.

2 Transformation of the Hamiltonian

In the spirit of above described approach the Hamiltionian of the model
(26) at first should be rewritten with the help of the raising and lowering
operators in the form that is similar to (1.3)

H=0FTN (sfs; - 4)+

+ T, (']++3;r3;r+1 +It s s+ T s s + J__SJ'_SJ'_H) v (2.1)
J+Ht = [Ja:a: — Jyy — z(ny + Jyx)] /4 = (J—-)*,

THT = [J52 4 T (S - JEE)] 4= (T

here the periodic boundary conditions (1.12) are imposed. The Hamiltonian
of the model (2.1) after Jordan-Wigner transformation (1.5), (1.10) will have
the form that is similar to (1.14), (1.15)

H=HtPt+H P,

N N
o1 _
ALY (c;cj = 3) + 2 (refeh + I e (22)
i= =1
—J ety — T o) (2.3)

In ref.[18] on the base of the model with Hamiltonian (1.26) the problem of the validity
of the Bose commutation rules approximation for spin operators has been examined.
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besides H~ is c-cyclic and H* is c-anticyclic quadratic forms in Fermi op-
erators. After Fourier transformation

1 N —1K] 1 N P
Ct = W E _1=l e “5,76;!-, Cx = W E J=l ezﬁjcj, 2 4
C“"::Lz: e“‘jc'*' c:LE: e"iﬂjc ( : )
7 vN K K 7 v'N K L)

with K = k= = 2rn/N for H~ and k = kt = 2n(n + 1/2)/N for H,
n=-N/2,-N/2+1,...,N/2—-1 (for N even),n = —(N =1)/2,—(N -
1)/24+1,...,(N —1)/2 (for N odd) H* can be rewritten in the form

= 2 8 et i (1ot 4 )]

Tx x z 2'5
6 =P 4 eff), =04 J—%‘J—”cos K, ) = J—y;isin K. (25)

Here we made use of the following relations:
deetet, = dosinketet,, Y e e =1 D sinkege s (2.6)
K a1 L] K

Bogolyubov transformation completes the diagonalization of the quadratic
forms:

ﬂn = ZxCx + ynctm :th = y:ncn + zinctm

¢x = (—2% B+ 9BY,) /B, cF, = (v2u8x — 2uB2) /Ay (27)
Ag = Yoyt — 225, # 0.

B-operators remain of Fermi type if
Tk

Ty
lzal® + el =1, =4

K Y-x

= 0. (2.8)

The transformed Hamiltonian contains the operator terms being propor-
tional only to 87 3, if

) 4 ysink (J++””—'° —J y"‘) = 0. (2.9)

Yx T—g
The condition (2.9) and the second condition in (2.8) yield
T _ ' €£+) Féx
Yo 2|J+*|sink

£ = \/(f/(:r))z + 4|J++|2sin? &. (2.10)

exp (—rarg J 1Y),

Taking into account the first condition in (2.8) one finds that for lower sign
in (2.10)
Th = 2|JHF|sink exp(—rarg J*F)/\/26(Ec — €H),

211
Yn = \/(gre - 5»(e+))/2£n; ( )
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besides A, =1, B, = ) 4 &,. For upper sign in (2.10)

r, = —2t|J | sink exp(—rargJ¥H)/\/28.(Ex + &),
ye = \/(Ec + &7 /264

(2.12)

besides A, =1, E, = ef;) — &.. Thus in a result of Bogolyubov transfor-
mation (2.7) one gets

HE =3 E.(8F8c—1/2), {Bx, B} = bxr, {Bss B} = {BF, B} = 0.

(2.13)

It is important to note that in contrast to anisotropic XY model because
of inequality J*Y # J¥* one has E, # E_,. This is connected with the ab-
sence of symmetry with respect to spatial inversion. Really, the Hamiltonian
of the model (1.26) H(Q, J==, J=¥, J¥*, J¥¥) under the action of spatial in-
version, that leads to change of indexes jto —jor N—j, j+1to N —j—1,
transforms into H (€, J¥%, J¥=, J=Y J¥).

It is shown in fig. 1 how the presence of Dzyaloshinskii-Moriya interac-
tion influences the dependence of E, = efc_) + &, on Kk in de Gennes model
(1:D=0, =0, 1:D=J" Q=0 2: D=0, Q=J%,
2" D =J", Q= J%). In fig. 2 the same is depicted for the case of
isotropic XY model.

It is worthwhile to note that the spectrum of elementary excitations in
the model under consideration as it follows from the expression for ground
state energy (3.3) is given by |E,|.

3 Thermodynamics.
Let’s calculate the free energy per site in the limit N — oo in order to study
the thermodynamical properties of the model under consideration. One can
use c-cyclic Hamiltonian for such calculation [5,6] and thus
1 .. 1 -
f=-=lim |=InSpexp(—-BH7)|. (3.1)
—o |\ N

The diagonalized quadratic in Fermi operators form H~ involved in (3.1)
has the form (2.13), and owing to this one easily obtains the desired result

. {_jlvlnspexp [_/;;Eﬁ (ﬂm—%)” _

| R 1 1
_EI\}I—I»noo{—ATmSp l:_[exp [—ﬂE,c (ﬂf[ﬂn - 5) ]} =

I E, 1. |1 E,
_EI\}I—I»noo [ﬁln (]_;_[ 2coshﬁ2 )} = ——E]\}l_rpm [7\/'- gln(Q cosh ﬂ2 )] =

11 8E, -
~33r -Wdli In (‘2 cosh 5 ) (3.2)

il
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Knowing the free energy (3.2) one finds the energy of the ground state
1 L
= h_'rr;of =~ ). dk | ELl, (3.3)
the entropy
s-ﬂz =or / dr In (2coshﬂE ) ! d BE. anh'BE",

2 ar J_ 2 2
- (3.4)

the specific heat

c= —ﬂg-; = %/_: dx ('B§K>2 (cosh ﬂf‘)’z, (3.5)

the transverse magnetization

18, af 1 OE, BE,
<NJZ=;SJ~ >—E——~E ETY) tanh 2 (36)

the static transverse susceptibility

_ 3<#Zv=1 s;-> _
X _1 ™ ana?z - E w 8B \? E,.\ "2 (3.7)
= —3- [, de S5 tanh % - 's% fI.dk (—5?,&) (cosh %) .

In order to illustrate the influence of the additional interactions on ther-
modynamical properties let’s present the results of numerical calculations of
the specific heat (3.5) as a function of temperature (figs. 3,4(1: D=0, Q=
0, ':D=J**, Q=0; 2: D=0, Q=J%, 2':D=J%*, Q=J%))
and of transverse magnetization (49) as a function of transverse field (figs.
56 (1: D =0, g =1/J*, 1 :D=J® g =1/J° 2:
D=0, pg=1000/J%*, 2 :D=J* f= 1000/J”)) and of tem-
perature (figs. 78 (1: D=0, Q=0, 1l':D =J%, Q=0 2:
D=0, Q=J%, 2':D=J* Q= J%)) for de Gennes model a,nd for
isotropic XY model in the presence of Dzyaloshinskii-Moriya interaction.

-4 Static spin correlation functions -

Let’s introduce the static spin correlation functlons for the investigation of
the spin stucture in the model under consideration. Due to the possibility
of their calculation with the help of ¢-cyclic Hamiltonian the initial formula
for their evaluation can be rewritten in the form

< $Pl..sin >= A}Enoo {Sp [exp(—,BH').s‘;-’ll ...s?ﬂ“] /Sp exp(—ﬂH‘)} .
(4.1)

Let’s introduce then ¢-operators that owing to (2.7), (2.11) are the linear
combinations of 3-operators:

80] = C+ te¢;= 2ox ()‘fnﬂ: * “fnﬂ-ﬂ) ’

! 4.2
Tz, £ yn) Wix = 75 o exp (2rarg JH) + ], 42

i

+
Ajli
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The spin operators can be presented in terms of p-operators:

1 n—1 1 n—1 1
sp=511 (efer) ek, st = = 11 (efe7) oms o2 = L)
3=1 i=1

p-operators obey the following commutation relations
{‘Pj_v ()0]_} - 0’ {S‘o;‘_a (Pj-} = 261'_7" {‘P:7 ‘P]—} = —26ij7 (44)

besides ((,o;'goj_)z =1 and

[cpf, so;-*cp}] = 26;¢7, [50?%-‘, 90;*90;’] = 0. (4.5)

That is why the calculation of static spin correlation functions after substi-
tution of (4.3) into (4.1) and exploiting of (4.4), (4.5) reduces to application
of Wick-Bloch-de Dominicis theorem. The theorem states that the mean
value of the product of even number of ¢ operators with the Hamiltonian
H~ (2.13) is equal to the sum of all possible full systems of contractions of
this product; if the number of ¢ operators in the product is odd the mean
value of the product is equal to zero. The full system of contractions of the
product of even number of Fermi-type operators forms so called Pfaffian
the square of which is equal to the determinant of antisymmetric matrix
costructed in a certain way from elementary contractions [19,20]. Thus let’s
consider the calculation of elementary contractions. One has

ot oo + .+ + + 3+ +
< ¥; Pitn = Z (/\J'MNJ'+7W€2 < 'Bﬂlﬂ_’i? > +y’jn1 )‘j+n,52 < ﬂ—ﬂlﬂnz >)

R1,K2
| (46)
(here evident relations < G BF >=< B_,,8-x, >= 0 were used). Since

< ﬂ:-lﬂ—ﬂ2 >: 6’511_’42/(1 + eﬁEﬂl) = 6”11_”’2fﬂl’

4.
< P B, >= 8ry €2 (1 4 €PBea) = 8y iy €% frys (4.7)
where f. = 1/(1 4 ¢#Ex) and in accordance with (4.2)
Mebhin—x = e (14 80) 5 pf_ A . = we™ (14 Sk),
bt N S = 2|J++]sin(ajr7g Jt ‘)+siryuc (48)

L3

one has
1 1kNn 2 .
< ‘P;_(Pj+n >= Nze (1+5x)— -]VZSm (kn)(1 4 8k)f (4'9)
K 1]
Similarly one finds that

- - 1 RN 21‘ H
<P Py = —NZe (1-S.)+ ﬁZsm(nn)(l - SO)fe  (4.10)
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and

(4.11)

~

— 717 T, etrn (E%z_) + "Cn) - 72V P [cos(nn)fg—) — sin (Kln)cn] Sy

+) (+) )
— 71V zn emn(%;’s‘_ + ZCN) + 7%. En [cos (K,n)sg;— + sm(nﬂ')c] fn, (4.12)
C. = 2|J*+ | cos (arg J'H')sinﬁ-

K

The essential simplifications in expressions for contractions (4.9)-(4.12) take
place in the case of model (1.30), that is when J*¥ = —J¥% = D. Then

< so_;';'cpzﬂ >= bn0 + 37 2k sin (kn) tanh % = E(n),
< 97 Pign >= —E(n),
< @F o7, >= % T, cos (kn + ) tanh % = G(n),

< ¢; el >=—G(-n),

(4.13)

where cos 9, = e,(;+)/¢‘,',¢, sint, = 2J** sink/E,. i
Let’s return to the evaluation of equal-time spin correlation functions
and consider, for instance, < s¥s%,, >. For this correlation function with

the utilization of (4.3)-(4.5) one derives

1 - _ -
< 85854n >= 159 90]'++1<Pj+190;’+2 X ‘(lp_-j*.+n—1¢j+n—1¢;-+n >, (4.14)

and after exploiting Wick-Bloch-de Dominicis theorem in r.h.s. of (4.14) for
its square one gets the following expression

[4 < 555z 5] = (4.15)

0  -EQ) ..~E(n-1) -G(-1) -GE- ) ... —G(-n)
E(1 0 ..—E(n-2) —GO) -G(-1) ...~G(-n+1
E2§ E(1) ...—E n—33 _GB ~G(0) ...-GE_n+23
E(n—1) E(n-2) ... 0 G(n-2)-G(n—3)... —G(-1)
G(-1) G0) ...G(n-2) 0 E(1) ... E(n-1)
G(-2 G(-1) ...G(n-3) -EQ 0 oo E(n=-2
Gy Ga) et IBG —Rwy o Beld
GCn) Glent ). GL1) —B(n-1)-E(m-2... 0

In a similar way for other pair spin correlators one obtains

[41 < sfsi >]2 = (4.16)
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0 -E(1) ...-E(n—-1) —E(-n) -G(-1) ...-G(-n+1
Eélg 0 ...—EEn—2;—E§n— lg —Ggog voomG(-m 42
E(2 EQ1) ...-FE(n-3)-E(n-2) -GQ1) ...-G(-n+3
E(-1) Bn-9)... 0  ~B(1) ~G(n-2).. *5§°§
E(n) Em-1)... E(1) 0 -G(n-1)... =-G(1) |
G(-1 G0) ...Gn-2) G(n-1 0 eo. E(n—-2
G§—2§ G(-1) ... GEn—B; GEn—-Q% -EQ1) ... E n—3;
G(-nt G(-n+2)... GO) GO) -Em-2... 0
< 8785, >=0; (4.17)
A<ty >]2 = (4.18)
0 -E(1) ...-G(1) -G(0) =-G(-1) ...-G(-n+1)
E(1 0 Lo-G(2) -G(1 -G(0) ...-G(-n+2
B2 B ak) —at)  —an) el
G(:l) G(2) 0 Eél) EEQ) E(n)
G(0) G(1) -E(1 0 E(l) ... E(n-1)
G(~1 G0) ...—E(2) —-EQ 0 ... E(n-2
G(—2; G(~1) ...—E(3 —EEQ; ~E(1) ... E{n- 3§
G(=n+1)G(-n+2)...~E(n)~E(n—1)-E(n—2)... 0
4 < stst,, 5] = (4.19)
0 —-E(1) ...-E(n-1) -G(1) -G(0) ...-G(-n+2)
E(1) 0 ..—E(n-2) -G(2) —G(lg ...—G(-n+3)
E(2) E() ...-E(n-3) -G@B) -G(2) ...-G(-n+4)
E(n:— 1) E(n:~ 2) O -—G’(n) —G(;z - 1). —65(1)
G(1) G(2) ... G(n) 0 E(1) ... EEn - 1§ ’
G(0) G(1) ...G(n-1) =E(1) 0 ... E(n-2
G(-1) GO) ...Gn-2) -E(2) =-E(1) ... E(n-3
G-+ 2)G(=n+8)... G(1) —E(n-1)-E(n-2)... 0
<$isiL, >=0; (4.20)
< 85874n >= 0, (4.21)
< sish, . >=0, (4.22)
S O O S A
1< sisky, >| = G0 —clen) 0 By |- (29
-G(n) -G(0 E(n) 0
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010 7 16 < s¥s?,; >2

0.05
0.00 !IIIIIIIIIIIII]IIIIIIIIIIIlII"[l/(:B‘]xw)
0.0 1.5 3.0
Figure 9: 16 < s¥s%,; >? vs. 1/(8J*%); Jw = 0.
2
0.10 - 16 < s7siiq >
0.05 —
0.00 llllllllll[lll||IIIIIIIIIII|I]1/(ﬂJ$x)

0.0 1.5 3.0 -

Figure 10: 16 < s7sf,; >? vs. 1/(8J%%); JW = Jo=,
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2.10
).05 —
] 1 -2 - 2
).00 LS O O S sy A A B I D B D A D N O A 1/(ﬁ‘] )
0.0 1.5 3.0

Figure 11: 16 < s%s¥,, >? vs. 1/(BJ*%); JW =0.

.05

T 1 2 Tz
J.00 lIIIII|IIIIlll[IlIIIIIlIIIlllll/(IBJ)

0.0 1.5 3.0

Figure 12: 16 < s%s¥,, >% vs. 1/(8J%%); J¥W = J*=,
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02 716 < s7s%,; >?

- |
i 2!
4 \
] \
. \

0.1 | !

T o\

OO IIIl||||l||||l|||ll||l||llIII]Q/Jxx
0.0 1.5 3.0
Figure 13: 16 < s¥s?,, >2? vs. Q/J%%; JW = 0.

02 —— 16 < s¥s7,; >?

1 2 [
1 \

0.1 —

0.0 r11111||11|||||llllltllllivllgg/‘]m:
0.0 1.5 3.0

Figure 14: 16 < %5, >? vs. Q/J%; Jw = Jow,
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0.4 7 16 < s¥s¥,,; >?

0.2

T
0.0 ITTIIITIII!IllTlIllllllIIIIlIlQ/J
0.0 1.5 3.0

Figure 15: 16 < s%s¥, | >? vs. Q/J®; J¥W = 0.

0.4

L]

z Y 2
16<s]-sj+l >

0.2

0.0

llllllllllIIlI|III]IIII|IITII|Q/JII
0.0 1.5 3.0

Figure 16: 16 < s%s%,; >% vs. Q/J*%; JW = J*=.
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In figs. 9-12 the temperature dependences (1: D =0, Q = 0, 1’:D=
J, Q=0 2:D=0, Q=J%2, 2:D=J%= (= J®®) and in figs.
13-16 the dependences on transverse field (1: D=0, §=1/J%%, 1':D =
J*=, B=1/J* 2:D=0, =10/J%, 2:D=J° f[= 10/J°%)
for some pair spin static correlation functions are shown. It is necessary to
underline the peculiarities caused by the presence of Dzyaloshinskii-Moriya
interaction. First, only < s%s%,, >, < s¥s?, . > < 8787y, >,< 83s¥,, > are
equal to zero, but not < sf-sg 4n > and < s;’sf- +n >+ Thelast two correlators
tend to zero when J*¥ = J¥ = 0. In this case E(n) = 0 for n # 0 and
hence (4.16) and (4.18) may be rewritten as determinants of matrices with
only non-zero rectangle (but not square) submatrices on their diagonals;
such determinants are equal to zero. Second, the dependence of pair static
correlation functions on 7 is nonmonotonic (in accordance with ref.[11] this

fact indicates the appearance of the incommensurate spiral spin structure).

5 Dynamics of transverse spin correlations and
dynamical transverse susceptibility

Let’s consider the dynamics of transverse spin correlations calculating for
this purpose the transverse time-dependent (dynamical) pair spin corre-
lation function < s3(t)s?,, >. Due to the possibility of exploiting for its

calculation c-cyclic Hamiltonian H~ (2.13) the evaluation of this correlation
function in accordance with (4.3) and (4.2) reduces to estimation of dynam-
ical correlation functions density-density for the system of non-interacting
fermions
4 < si(t)siy, >=
= Cramsua< [N (1) F 1, By (O] [Ny B, (0) = 115, Bery ()] x
+ - - -
X [MrmsaB + 1o B [N B = immy Bor ]| >=
_ + - — Ex, +E, )t
- me,ﬂsﬁ;[—’\jm ’\jﬁzu;-+n,~s”j+n,n4< ﬂzﬂtzﬂ;sﬂ;jﬂ > ¢!(Bm+Eia) +
+,\;-;1“;n2 /\ﬂ:l'",ﬂs”ﬂnm < ﬂ;'g"“zﬁ;‘;ﬂ_“ > e’(E"l _E_Nz)t—
.- - I 29 11
_/\inlﬂjnzﬂi+"v“3 ’\i+n’ﬂ4 < ,H,;"lﬂ_mﬁ—naﬂ:; < eiEE 1 E 2;1‘_
—”._7;_&1 ’\.1"%2/\]*'_+n,'€3/“".7'+n,'i4 < ’B""I’B:;'B:S’B"“ > ¢ ‘E~2 E—KI t+
Fha Ajma By tmms Ay < Bt B BB, > etFra=Fom )t
- - —(E-x,+E_4
_“};1 /'LJ'NZ A.-1.*:""'7'1""'3 j+n,K4 < ﬂ_nlﬂ_n2ﬁ;€3’5;& > e 1( 1+ 2)t] )
(5.1)

In rhs. of (5.1) only non-zero averages of -operators are written down
and the following relations '

BE(t) = B exp (1Ext), Bu(t) = fx exp (—1E,t) (5.2)

were used. The averages of S-operators can be calculated using Wick-Bloch-
de Dominicis theorem, e.g.

< /6:1 /B:cl;ﬁ—ns :B—m >=

. 6/';1,—-'13 6K2,"*€4 6"1,*54 6"2»""\73 —_ (53)

- 1 + eﬁE"l 1+ eﬁENQ 1 + e’BE"l 1+ eﬁE"2 -
= _—f'ﬁ f""’ 6"“""3 6"%—”4 + fﬂl fﬂz 651,—'&1 6*2,—:63
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etc. After computation of these averages one finds that the coefficients

near the averages contain the following products A} put, ., /\]-++nmu}:_n,

ATy Nbnbimns Mebitn—ns Minhions Nibin - Apn by s
They can be found with the help of (4.2). For simplicity in what follows

their values will be used in the case when J%¥ = —J¥ = D, Then
+ — 1 - I -
A.}E”j*"’ﬁ_’ﬁ - Nlre = ,\jn/’l’j+n.—n,
)\.i_'*'n»"”]'y—ﬁ = lwemﬂ = Aj+n,n#jr;n’ , (5 4)
/\jﬂﬂ'_.ig—n,—n = 7¥e-2(nn+1/)n), ’\j+n,nru‘j,—n - 71vet(rm—¢,‘),
Nyebfpn,—e = me WV, ATt = felntde),

Gathering (5.1)-(5.4) together one derives the desired expression for trans-
verse time-dependent correlation function for the model (1.30)

4 < 85(1)85 4y >=

- 1 cosh (_’E"t +kn + %) ’ 1 . sinh (u/;,C + @.125'_~) 2

) -YV— " cosh(%) ] ¥ [ﬁ ” cosh (@‘-) -
~ . sinh (—zE,;t +kn + W + Q%) -

B _-N— " cosh (%) ] X
- . sinh (—zEﬂt +1kn — 1), + @_g_n) -

X L—N_ ~ cosh (_p%) | (5.5)

Although E,. and cos ¥, sin 9, in (5.5) are determined by formulae (2.13),
(4.13) for the case J® = —J¥ = D the obtained result covers the case
(1.26) as well. Keeping in mind formulae (1.27) and (1.31) one should
simply use J=* cos? a + L2 sin 20+ J% sin? a instead.of J*, J*¥sin? a—
ﬁy—'z,ﬂﬂsin 20 + J¥ cos? o instead of JY, and M instead of D with
tan2a = (J*¥ + J¥®) [/ (J*® — J¥). If one puts D =0 in (5.5) it transforms
into the well-known result obtained by Th.Niemeijer [21]. The depicted in
figs. 17-20 dependence of the transverse dynamical autocorrelation function
(5.5) on time (8 =10/J*%; 1: D=0, =0, I':D=J", Q=0

2. D=0, Q=J%, 2':D=J%, Q= J°) shows substantial changes
caused by Dzyaloshinskii-Moriya interaction.

The dynamical susceptibility

N
i Hwrie 1 o
Xoa(K,w) = Z emn/o de'+ )t; < [sj (8) S?+n] > (5.6)

: n=1

is of great interest from the point of view of observable properties of the
system. The obtained result (5.5) permits one to calculate the transverse
dynamical susceptibility. Really, taking into account the translation invari-
ance one gets
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4 Re < s%(t)s% >

0.25 HOL

0'25 ] T T ) ) T { l\l T T T T T T T ) 1 T T ' T T IV—F—| Jz:t
0.0 8.0

Figure 17: Re < si(t)s? > vs. J®t; JW =,

1 Im < s%3(t)s? >

0.25 HOY -
] s

025 T T |\ T /l I T T i T T H T I T T I ) I\~ | T T T T ] met
0.0 8.0

Figure 18: Im < s}(t)s? > vs. J*t; JW = 0.
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0.25

-0.25

0.25

Re < s%(t)s? >

Jw’illlllllllllllLIllJl\l||l

Jza:t
LI I I A I O B R O

0.0 4.0 8.0

Figure 19: Re < s§(t)s} > vs. J*t; JW = J*2.

Im < si(t)s? >

TRV VRO S N N N O SO U S Y A

D o I 0 0
0.0 4.0 BDJ:c:nt

Figure 20: Im < s3(t)sF > vs. J™%t; JW¥ = J*%,
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< [s#(1), st >=< sz-(t)sj_,_n >~ < s¥(-t)si_, >=
=1 [ - 15 g - BEx]| _
=1y 2kcos(kn — E.t)| |7 X.sin (kn — Ect) tanh 5
-1 [lezncos (kn — Ext — 1) tanh ﬂ;—‘] A .sin (kn — Ect + )| +
+ | ccos (kn — Ext + 1) tanh ‘82&] Fsin (kn — Ect — 1) } .
(5.7)

Using for summation over sites in (5.6) the lattice sum & TN e = 6.0
evaluating the integrals over t of the form

o0 dt t{wtFictee)t — _—’l'_ .
/o ¢ w4+ F +1e’ (58)

bearing in mind the definition of functions cos,, sin ¥x, and performing
thermodynamical limit one obtains:

_ 1 gn 1+cos (ptfp—r) | 1—cos (Yptihp—x)
XZZ(K:,U-’) =~ Br f—r dp [Ep_K—Epp-uf—w + —E,;_,,(—g'p—z-u: - (5 9)
_ 1+cos (¢P+¢P+K) _ 1-cos (¢p+¢p+n)] tanh @E .
—EprxtEp—w—ic E_perxtEp—w—1e 2

Using the relation

1 1
F—w—w PF,,—-w + wwd(F, — w), (5.10)

for real and imaginary parts of transverse susceptibility one gets final ex-
pressions

Rex,,(k,w) = #’P flr"r dp ii+ECOS(¢p+¢P_K)+ 1—cos (Ypt+vp—r) _

p_,c-—Ep—w —E,c_,,—Ep—w (5 11)
_ L4cos (dpt+ps) _ 1—cos (¢P+1/’P+x)] tanh 2Ee )
—EppntEp—w E_pwtEp—w 2

Imy,(K,w) = %ffﬂ- dp { [1+ cos (v, + $p—n)] 6(Epmr — E, —w)+
+ [1 - cosgi,bp + Yp-r)]6(—Eu_p — E, — w)—
— {1+ cos(¥p + Yp4n)| 6(—Epyn + E, — w)—
=1 = co8 (% + $p4n)] 6(E—por + E, — w)} tanh 222,
5.12
These are the main results of the present paper. ( )
It is useful to look at the particular case k = 0. In this case one has

: 1
Xex (0,0) = g5 [T, dpsinop, [—p—ple — (5.13)
- E—E——l ] tanh 222 '
ptE—p~w—1e 20

and for the imaginary part:
1 G 2 ,BEp
I'mx,.(0,w) = _Z/ dpsin®1,6(2€, — w) tanh 5 - (5.14)
-

In the case of isotropic XY model with Dzyaloshinskii-Moriya interaction
sin ¢, = 0 and I'my,,(0,w) = 0 as one should expect because in this case
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1 —Imx..(0,w)
1.0
0.5
) Jzz
0.0 |||||||||||Hx||||1||||11—III1|rlxllll||;w/
0.0 0.5 1.0 1.5 2.0

Figure 21: —Imx,.(0,w) vs. w/J*%; Q/J** = 0.25.

4 —Imx,.(0,w)
1.0 —
_{
0.5'1
- 1 e — —
— -~ -
- / \\
— / 2 .
] /
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. 3
OO lllllllllllllllllll'llllIllll|l||||l||||w/Jzz
0.0 0.5 1.0 1.5 2.0

Figure 22: —Imyx..(0,w) vs. w/J*%; §/J*® = 0.5.
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[Ef;l si, H ] = 0. In the case of de Gennes model with Dzyaloshinskii-

Moriya interaction when &£, = /Q? + QJ cos p + J2/4 one can integrate in
(5.14) over p using the relation

§(p —
626, ~w) =3 ;”lT_gfr) (5.15)
Po 3p

where by po = po(w) the solutions of the equation 2£,, —w = 0 are denoted.
This equation can be written in the form

W — J? - 402

cos pg = 107 , (5.16)
and when w satisfies inequalities
w?—J?% - 402
- 1< — < 1
1< 07 <1 (5.17)
or for Q,J >0
|J =20 <w < J+29, (5.18)

equation (5.16) has two solutions in the region of integration py > 0 and
—po . Besides 0£,/0p = —QJ sin p/2&,, sin , = J sin p/2€,, so that in the
case of de Gennes model with Dzyaloshinskii-Moriya interaction one gets
the following final result

Iszz(O’w) =
= —_i]flss_‘s/')zﬂ (tanh?%”tanh%ﬂ),ifw—m] <w< J+29,

0, otherwise.

(5.19)
The presented in figs. 21,22 results of the numerical calculations of fre-
quency dependence of Imx.,(0,w) (5.13) for de Gennes model with Dzyalo-
shinskii-Moriya interaction (8 = 10/J%%; 1:D =0, 2:D = 0.5J%%, 3:
D = J*%) show that the presence of this interaction dramatically changes
the frequency dependence, This fact seems to be of great importance in
connection with the possible experimental prove of evidence of Dzyalo-
shinskii-Moriya interaction on the base of experimental measurements of
Imy,.(0,w).

Conclusions

Let’s sum up the results of present study of statistical mechanics of 1D
s = % XY anisotropic ring in transverse field with Dzyaloshinskii-Moriya

interaction. This interaction keeps the model in the class of 1D s = % XY
models because after fermionization of the Hamiltonian one is faced with the
quadratic in Fermi operators forms. However, after their diagonalization one
finds that the spectrum E, no longer is even function of x. This leads only
to some technical complications in computations. The obtained thermody-
namical functions and static spin correlation functions essentially depend
on the value of Dzyaloshinskii-Moriya interaction. For instance, these in-
teraction decreases the transverse magnetization at certain transverse field
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in de Gennes model and in isotropic XY model (figs. 5,6). They lead to
appearance of non-zero spin correlators < sfs? 4+n > and < s’;sf +n > and
to nonmonotonic dependence of pair spin correlation functions on n. The
evaluation of transverse dynamical correlation function and the correspond-
ing susceptibility shows that Dzyaloshinskii-Moriya interaction essentially
influences on the dynamics of transverse spin correlations (figs. 17-20) and
drastically changes the dynamical susceptibility (figs. 21,22).

It is necessary to note in addition that if J*¥ = J¥* = 0 all obtained
results transform into the corresponding results for anisotropic XY model.

Poclly, in this it — & — /e&H2 +4(J++)2sin? k and Fy = E_g
The thermodynamical functions due to this simplification because of parity
of integrands contain 2 fJ d ! ..) instead of [7 dk(...). in contraction-
(4.9)-(4.13) < @foh, > bn0, < @7 P71 > —bno, < ¢FOTn ~
%fg'ckcos(mn+qpﬁ)tanhgl;—" = G(n), < <p;<pj’+n >— —G(-n) so .nat
4< s¥sT,. >, 4<s¥st, >, 4< sisiy;, > (but not their squares) can
be rewritten ¢ : N x N determinants and < sfsﬁn >=< s¥s¥,, >=10. The
transverse dynamical correlation function transforms into the corresponding
expressions obtained in ref.[21].

Our investigations follow earlier works [18,22-29] considering the deriva-

tion of exact results in statistical mechanics of 1D s = % systems with

Dzyaloshinskii-Moriya interaction.

At last it should be mentioned that for a quite a lot of magnetic and
ferroelectric materials, showing nearly 1D behavior above their ordering
temperatures, a variety of experimental data are now available [30-40] and
thus theoretical investigations of statistical mechanics of 1D spin models
may be of great interest for clarifying whether the properties of such simple
spin models are capable to caricature the measurements.
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participants of the Ukrainian-French Symposium ”Condensed Matter: Sci-
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ipants of seminars of Laboratory for the Theory of Model Spin Systems of
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