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Abstract

A method for study of critical behaviour in non-integer space di-
mension is discussed. Critical exponents of the Ising-like and O(m)-
symmetrical systems are calculated in the case, when the dimension
of space is non-integer. Calculations are performed in the frames
of the fixed-dimension field theoretical approach. Renormalization
group functions in the Callan-Symanzik scheme are considered di-
rectly in non-integer dimensions. Perturbation theory expansions are
resurnmed with the use of Padé-Borel transformation.

1 Introduction

During last years much attention has been payed to the investigation of
critical behaviour of model spin lattice systems in the case when the dimen-
sion of the lattice is non-integer. Besides the pure academic interest such
a problem statement has several other reasons. In different models under
consideration variations of dimension of the order parameter (m) and space
(d) are used to link the results to exact ones or to results from other calcula-
tional methods (e.g. e-expansions near two and four dimensions). Besides,
there exist models, where some new phenomena appear starting from some
(non-integer) space dimension.

Moreover, the problem of non-integer space dimension has wide appli-
cation in the theory of fractals. Detailed analysis of fractal lattices has lead
to the controversial conjecture that some fractal lattices could interpolate
standard regular lattices in non-integer dimensions. From the other side,
as a result of investigation of the second-order phase transition on different
fractal lattices it appeared that lattices of the same fractal dimension are
characterized by different sets of critical exponents (see [1-4]). Now the
resulting general belief is that, in the case of fractals, neither fractal, no
any other dimension can lead to the universal dependence of the critical
exponents. The point is that the fractal description involves several factors
(beside the fractal dimension) that can vary independently of one another,
such as raminification, connectivity, lacunarity. Being scale invariant, but
not translationally invariant fractal lattices may interpolate the results for
hypercubic lattices only in the limit of zero lacunarity, where translational
invariance is recovered [1,3,5]. The universality hypothesis if it exists in the
case of fractals should be essentially reviewed [6]. '
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One should note, that the study of critical phenomena has benefited
greatly from investigation of the dimensional dependence of critical expo-
nents and other characteristics of critical behaviour. Consideration of the
space dimension (or its deviation from some definite fixed value) as the con-
tinuous variable and its choice as a perturbation theory series expansion
parameter gives the possibility to obtain results for integer d as well. Here
one should mention not only the famous ¢ = 4 — d expansion [7] whose
application in the theory of critical phenomena allowed to obtain the reli-
able values of critical exponents for a whole range of 3d models (see [8-11])
but € = d — 1 expansion, introduced for the near-planar interface [12-14]

and droplet [15] models, ¢!/2-expansion for the weakly diluted Ising model
[16, 17], etc. Expansion in the terms of inverse dimension for study of
the second-order phase transition began, perhaps, with the analysis of the
spin-1/2 Ising model on a simple hypercubic d-dimensional lattices [18].
Often the aim of investigations is the calculation of the critical exponents
of some model directly at non-integer d. In this context let us mention here
some papers devoted to such a problem statement.In the case of the Ising
model the Kadanoff lower-bound renormalization transformation was used
to obtain the values of the thermal and magnetic critical exponents for all

integral values of z = 2% between 3 and 16, this leads, naturally, to critical
exponents values for some non-integer d [19]. Later on critical exponents for
the Ising model in non-integer dimension were calculated [5] by resummation
of the five terms of the e-expansion avaible [20]. Real-space renormalization
group approach [1,3] as well as series expansions [4] were applied to this
roblem as well. Free energy of the d-dimensional Ising model was studied in
21] on the base of variational method derived from high-temperature series
expansion. Accurate values of the critical exponents between pne and two
dimensions were obtained in [22-24] by applying finite-size-scaling methods
to numerical transfer- matrix data; the transfer-matrix being written in a
fashion which enables the interpolation to non-integer dimensions.

Whereas the values of critical exponents for the Ising model in general
dimensions were obtained already by means of different methods and even
at the presence of quenched randomness [25,26,27] it is not in the case of
general value of field component number m for the case of O(m)-symmetric
model. This model was studied by 2 + ¢ expansion technique close to the
special case of the planar model,which corresponds to m = d = 2 in [28]. In
the case of arbitrary m the method based on the study of physical branch
of the renormalization group equation solution was applyed to this model
at general dimension in [29,30].

In this paper we present an alternative method for investigation of the di-
mensional dependence of the critical exponents. Qur work involves the fixed
dimension renormalization group approach at arbitrary dimension origi-
nated in [27,28], Following the idea of Parisi [31] to perform the calculations
directly in 2 and 3 dimensions we proposed to consider the renormalization
group functions directly at the arbitrary non- integer d. Such scheme of cal-
culations, avoiding the applica tion of e-expansion will be used in this article.
The results will be presented in the following order. In Sec.2 we shall briefly
describe the method applied; Sec.3 will be devoted to the computation of
the integrals arising within the calculati onal scheme under consideration;
in Sec.4 we give the estima tes of critical exponents for the Ising model and
for the model with continuous symmetry; Sec.5 contains the conclusions.



CRITICAL BEHAVIOR IN ARBITRARY DIMENSION ... 35

2 Problem statement and the renormalization
procedure

In this paper we concentrate on the two models commonly used in the phase
transition theory: the Ising model and O(m)-symmetric model !. The Ising
model has a Hamiltonian which in the absence of external magnetic field is
given by:

H=J ZS,'SJ', (2.1)

(i,d)

where spins §; = *1, and summation is over nearest-neighbour sites on a
lattice. As it is well known now [8-11] one can describe the long-distance
properties of such a model in the neighbourhood of a second-order phase

transition in the terms of continuous Euclidian field theory with the La-
grangian:

£) = [ar {5 [IVoP + mig] + 320t} (22

where m? is a linear function of the temperature, o is the bare coupling,
¢ = ¢(R) is an one-component field.

One of the ways to generalize this model is to introduce into (2.2) a
multiplet of m fields forming a representation of O(m)-group. In this case
the Lagrangian reads:

o) = [an{; v+ mdd]+ 36}, @)

where ¢ = §(R) is the vector field & = (¢!, 4%,...;6™). And in correspond-
ing spin Hamiltonian stends the scalar product of m-component vectors

§=(8,52%...,5™):
H=JY"§S5;. (2.4)
(.3)

In order to study the critical properties of the field theories (2.2). (2.3) in
general space dimension d, we use the standard procedure of renormalization
of one-particle irreducible vertex function

TNy, o, pri by oy kv md, Ao, d)

at zero external momenta and nonzero mass (see {9,1 1] for example). Asymp-
totically close to the critical point, the renormalized vertex functions

T ({k;};m2, A; d)

satisfy the homogeneous Callan-Symanzik equation [9,11]:

[maim - ﬂ(A)(% - %n(/\)] T%:’)({kj}; m%Aid)=0,  (25)

!Extension of the method under consideration for the models with quenched disorder
at noninteger d see in [26,27].
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Figure 1:

here A and m are the renormalized coupling constant and mass. The equa-
tion may be treated, in principle, for arbitrary non-integer fixed space di-
mension d. Functions () and y4() are defined as follows:

0 Aa]-1
s =--a 5], (2.6)
7o(3) = gy 22 2o, 27)

here the renormalization constant Z is given by:

_ 0
Z¢ 1 WI‘(Z)(]C; m(z)a ’\0)|k2=0'

It is implied that the bare parameters mg, Ao are expressed here in terms
of the renormalized ones. In the stable fixed point, coordinate of which are
determined by zero of 3-function, 44 gives the value of the pair correlation
function critical exponents 7. The correlation length critical exponent v can
be calculated from the consideration of the two-point vertex function with
#? insertion, I'(12)({0}; m3, Ao; d). The massive field theory normalization
condition for this vertex function implies the following definition of the
renormalization constant Zy2:

Zga = TUI({0};m, Aos d).
Using this relation, one can calculate the y-function

7o) = Oy 22, (28)

which at the fixed point gives the value of the combination 2-»=! —7 (v being
correlation length critical exponent). The other critical exponents now can
be obtained on the base of v and 7 using the familiar scaling relations.
Imposing the zero momentum renormalization conditions for conven-
tionally defined 2-pt. and 4-pt. single-particle irreducible vertex func-

tions I‘g)(k, —k;mi, Ao; d), I‘g)({k;}; md, Ao; d) one obtains the expressions,
shown by graphs on figs.1 and 2 in three loop approximation (the labeling of

[32] is preserved). To every internal line i corresponds a propagator (1+k&2),
integration over internal momenta is imposed and momentum conservation
law is carried out in every point. Finally we obtain the following expressions
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for the 3- and y-functions of the O(m)-symmetric model (2.3) (the case of
the Ising model corresponds to m = 1 of course) [33]:

Bu) = —(4 —d) [u —u? + G + ﬂ3u4] , (2.9)
Yo = —(4 - d)?T(nnl-{_—_lbsi—z)uz [2i2 + (4i2 - 3ig)u] s (2.10)
Y2 =(4—d)$i§u[1+72u+73u2]. (2.11)

We have used the change of the variables u = (m + 8)DA/6 and B(u) =
66(A)/[(m + 8)D], D being one-loop integral:

1 dk
D=y | wrm

to define a convenient numerical scale in which the first two coefficients of
B(u) are -1 and 1. The indices 2 and 3 refer to the two- and three-loop parts
of the corresponding functions:

B2 = ﬁ ((m + 2)iy + (5m + 22)(4; — 1/2)], (2.12)
1
B3 = m[(_32m2 —488m — 1424) +

+4(31m3 + 430m + 1240)i1 + (m + 2)(m + 8)(8 + 3d)iz —
—12(m + 2)(m + 8)i3 — 48(m? + 20m + 60)is —
—24(2m? + 21m + 58)i5 — 6(3m? + 22m + 56)ig —

~24(5m + 22)i7 — 12(m + 2)(m + 8)ig), (2.13)
1 .

"=y 8)(1 - 24y), (2.14)

Y3 = m—+§)—2[10(m + 8) - (44m + 280)i1 + (8 - 3d)(m + 2)i2 +
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Graph  Integral

No. value

2-U2 1

3-U3 1

4-U4 iy

5-Ud ] Graph  Integral value

6-U4 (31 8 . 8

7-U4 i3 No  gzle=o  3m

8-U4 it

9-U4 is 2-M1 0 1

10-U4 ig 3-52 iy ~3i;

11-U4 is 4 M3 0 —3ig — 2i3

12-U4 ir 5-S3 is —diy — ig
Table 1. Table 2.

+12(m + 2)is + 24(m + 8)ig + 6(m + 8)is + 18(m + 2)ig).  (2.15)

Beside the explicit dependence on the space dimension d, considered here
functions depend on d via the loop integrals i; —i5. Correspondence between

graphs of 2- and 4-point one-particle irreducible vertex function T2, 14)
and their numerical integral values #; — ig follows from the Tables 1 and 2.
Substituting integrals i; — ig into (2.10), (2.12) - (2.15) by their e-expansion
one can develop corresponding e-expansion technique in order to extract
the critical behaviour generated by the Hamiltonian (2.4). In this case
well-known €-results [34] are re-reproduced. From the other hand, being
interested in the critical behaviour at non-integer d it is possible to calculate
the corresponding values of the loop integrals 7; — g directly for arbitrary
d. We shall briefly describe these calculations in the following section.

3 Compilation of 2-pt. and 4-pt. graphs in field
theory in non-integer dimension

The simplest way to obtain the expressions for setting up the numerical
procedure is to make use of the Feynman parameters method. Note, that
initia] multiplicity of two-loop integrals is 2 x d and that of three-loop ones
is 3 x d(i.e. the first one changes from 0 to 8 and the second one from 0 to
12 when d changes from 0 to 4).

Making use of the formula for folding many denominators into one (see
[11] for example):

-

1 _ F(al +ag.--0£n) /dm1d3’2'--d$n—1 X (3.1)

ay O

al'a3?...a5"  T(a1)(ag)...T(an)

a1~1_ o —1 -1 —1
z]? zzz cxdn il -z — 29 .= L)
[w1a1 + 2203 F Tuoglnog (1 -2 — 22,0 — Tpy)ay)ortorton

here the integration over the Feynman parameters, z;, extends over the
domain:
0<; <im+22+...+201 <1,
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one can obtain the expressions for the integrals iy — ig which are given in
the Appendix. These expressions, depending on the dimension of space as
on the parameter are to be evaluated numerically for general value of d.

Numerical calculation of the multidimensional integrals was set up by
means of successive integration over each variable. Integrals were repre-
sented in the following form:

/ab dzF(z) = /_11 dz(1 — 2)*(1 + )P f(x) (3.2)

and then calculated by means of Gauss method [35]. In this case quadratures
were constructed on the base of Jacobi polynomials orthogonalized on the
interval [-1,1]. Jacobi polynomials correspond to the weight function p(z) =

(1 —2)*(1+z)” which is used in (3.2). Abscissas and weighting coefficients
were defined using the recurrence relations for orthogonal polynomials with
the help of the method applied in [36]. Because of the fact, that choice of
the exponents of the weight functions «, 3 depends on the value of external
integrating variables, it was necessary to apply formulas of high orders and
this essentially increased the running time.

The computer running time was the major factor in limitting accuracy.
Estimates of numerical accuracy were made by studying the apparent con-
vergence of the integrals with mesh size in conjunction with extensive testing
of known functions and, whenever possible, by running the same integral in
different ways.

Let us note, that, due to the form of the functions to be integrated,
running time for calculation of integrals at low dimension d was essentially
lower, if compared with the time, necessary for calculation of the same
integral with the same accuracy at high d. Nevertheless if the value of some
integral is to be defined for some fixed d with higher accuracy it can be
done, using the appropriate integral representations. The same concerns
the case, when the value of the integrals is needed for some concrete value
of d.

The dependence of the loop integrals on the space dimension d for con-
tinuous change of d is shown on the figs.3,4 and the corresponding numerical
values are listed in [49].

4 Estimates of critical exponents

4.1 Resummation procedure

As it is well known, series (2.9)-(2.11) are asymptotic and in order to obtain
the reliable information on the base of these expressions one should make
use of some resummation procedure. In order to start let us choose here
the Padé-Borel method as the simplest one. As we’ll see it works well when
the dimension of space d is not very low. It is interesting to note that
considefed here three-loop approximation allows one to proceed without
any resummation as well. The point is that as it was mentioned in [31],
considered directly at fixed dimension S-function does not possess stable
fixed point in two-loop approximation for dimensions of space less then
d = 3.5 (if m = 1). So in two-loop approximation the resummation is
needed not only to improve the results but to restore the presence of a zero
of the S-function as well.

The scheme of resummation is as follows. Starting from the function
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Figure 4: Three-loop integrals i3 - ig as the functions of space dimension d.
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f(u) which is given by its Taylor expansion:

flu) =3 e, (4.1)

320
one constructs the Borel transform:

F(ut)=Y" %(ut)j . (4.2)

iz0d

Then one represents (4.2) in the form of Padé-approximant FP(ut) (in our
case we have used [2/1] Padé-approximant) and the resummed function is
given by

FR(u) = /0 ” dte~t FF (ut). (4.3)

As it was mentioned in [39, one can construct the Borel transform for
the whole g-function as well as one can represent A-function in the form

B(u) = —u‘lf}u) and then resum the function f(u). In the last case for
the resummed function in three-loop approximation one obtains:

) = —(4 - d)u {E(z) [1 —z2z + 232Z2] + 21z — z25( — 1)} ,  (4.4)
where z = 271, 2 = —czu/cy, 2 = (e1 — es/e2)u, 22 = (cg — c1e3fe)u?,
ey = f), ¢y = fA)21 ¢5 = FB)/31, F(1), £(2) and f©) are the one- two-and
three-loop parts of the function f(u). For function E(z) we have:

E(z) = ze"Ey (),

the function ”
Ei(z) = e“’/ dte™!(z + 1)1 (4.5)
0

is connected with the exponential integral by the relation Er(z £ 40) =
—FEi(—z) F ix [38].

In the case of constructing of Borel-transform for the whole B-function,
given by the expression (2.9) one obtains:

BR(u) = ~(4 = dyuy {[1 - v&1 + ¥%6| 1 - B+ & + 2 - )6}, (46)

where y = £71, € = —bau/by, & = (b — bs/bg)u, & = (by — bybs/by)u?,
by = —1/2!, by = §,/3!, b3 = B3/4!. B, and B3 are two-and three-loop parts
of the B-function given by (2.12) and (2.13), correspondingly.

In the table 3 we compare some of our results in the case of integer
d = 1,2,3 obtained in [33] within two—(2LA) and three-loop (3L A) approx-
imations by resummation of the function —u="g(u) (referred as 2LA(1) and
3LA(1)), and by the resummation of the function §(u) (referred as 2LA(2)
and 3LA(2)), with the values of v obtained in different renormalization
group technique. ”3d, fixed” means the resummation of six-loop expan-
sion at fixed dimension d = 3[39], ”2d, fixed” means the resummation of
four-loop expansion at'fixed dimension d = 2[39], "e*”, "€” means the re-

summation of e-expansion containing terms up to ¢* and €® correspondingly
[37,20].
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d=3
m=0 m=1 m=2 m=3
ﬁ3d,d 0.588+0.0015 0.630+0.0015 0.669+0.0020 0.7051+0.0030
xXe
~ gt 0.589 0.632 0.676 0.713
~ gt 0.6284+0.001 0.66540.001  0.698+0.001
2LA(1) 0.592 0.632 0.668 0.699
(2) 0.590 0.628 0.663 0.693
3LA(1) 0.587 0.627 0.662 0.694
(2) 0.588 0.628 0.664 0.696
d=2
2d, 0.92+0.3
fixed
~ gt 0.77 1.03
2LA(1) 0.785 0.981
(2) 0.756 0.926
3LA(1) 0.742 0.914
(2) 0.754 0.941
d=1
~ g’ 1.3
2LA(1) 1.386
(2) 1.131
3LA(1) 1.052
(2) 1.147

Table 3. Comparison of our calculations with those obtained for some inte-
ger d in different RG frameworks: ”d = 3, fixed” - resummed six-loop ex-
pansion in fixed dimension d = 3 [39]; ”d = 2, fixed” - resummed four-loop
expansion in fixed dimension d = 2 [39]; "¢*”, ”€®” - resummed ¢-expansion
in €* — [37] and €* — [20] approximations; 2L A(1), 2LA(2) - our results in
two-loop approximation obtained by resumming the function B(u) (1) and
—u~18 (u) (2); 3LA(1), 3LA(2) - the same in three-loop approximation

[33].
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Figure 5: Correlation length critical exponent v obtained in two-loop ap-
proximation as a function of d. Curve 1 - m = 1, curve 2 - m = 2, curve 3
- m = 3, dashed curve - m = co.

On fig. 5 we show the behaviour of the critical exponent » for m = 1
curve 1), m = 2 (curve 2), m = 3 (curve 3) and m = oo (dashed curve).
hese values were obtained in the two-loop approximation; fixed points were

calculated on the base of the formula (4.6). Let us note that in the case
m = oo we obtain the exact result for the spherical model [41g‘ = (d-2)"1.
For the case of finite m we obtain that v as a function of d has singularity
at some d = d, and is negative for d < d.. A negative value of v implies
that the system has no transition at finite temperature. Such a critical
dimension form = 2,m = 3is d, = 2(‘42,43], for Ising model the singularity
lies at d. = 1. Values of d. corresponding to behaviour of v shown on Fig.5
differ from those obtained from rigorous considerations [42,43], ‘

Again, examining values of the critical exponents for m = I — 3 obtained

within the Padé-Borel method in two- and three-loop approximations and
comparing them for integer d with some data from Table 3, one can see that
they are underestimated passing from two-loop approximation to three-loop
one with increase of m. In the region near d = 3 these changes reflect in the
third digit after point and of course do not qualitatively change the picture of
the phase transition. The value of v is essentially underestimated near d = 2
(form = 2, m = 3) and d = 1 (for m = 1), where it leads to the qualitatively
incorrect answer about evidence of phase transition (positive and finite »).
One can see that within simple Padé-Borel resummation procedure in 3-loop
approximation the values of critical exponents are obtained with sufficient
reliability starting from d = 1.0 for m = 0, d = 1.5 for m = 1 and from
d=25form=2,3,..

One of the ways to obtain more accurate results in three-loop approx-
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imation and to ensure their correct asymptotic in the region of small d is
to improve the resummation procedure This problem will be considered in
Sec.4.3.

4.2 Influence of two- and three-loop integrals

Before improving the resummation procedure under consideration let us
discuss here one problem more, which appears in the calculations under
consideration. Namely let us find the answer for the question: what accu-
racy in determination of the loop integrals is needed in order to ensure the
required accuracy in determination of the critical exponents? The point is
that determination of the values of loop integrals for concrete value of space
dimension d is based on their representation as multidimensional integrals.
Their numerical evaluation is to be set up by means of successive integra-
tion over each variable. In this case the computer running time is the major
factor in limiting accuracy. Let us note as well, that due to the form of the
functions to be integrated, running time for calculation of integrals at low
dimensions is essentially shorter if compared with the time necessary for
calculation of the same integral with the same accuracy at high d. So the
problem of sufficient accuracy in determination of the value of leop integrals
especially in the region close to d = 4 appears.

So let us study the influence of the “input” data (i.e. changes in nu-
merical values of loop integrals for fixed d) on the "output” one (changes
in the values of fixed points and critical exponents). This programme can
be fulfilled in different ways. The way chosen here is as follows [33]. Let
us denote the physical value u which is calculated on the base of loop inte-
grals which are accurate, say, to ! digits as p®). The same value calculated
on the base of loop integrals accurate to (I — 1) digits will be denoted as
p=Y) | correspondingly. Then function §u =| p{—1) — x| will show how
the changes in the I/th digit of the loop integral do influence on the value of
. In what follows below we’ll be interested in the influence caused on the
value of fixed point u* and correlation length critical exponent v.

On Fig.6 we have plotted changes in the value of fixed point u* (cal-
culated by formula (4.4) for m = 1) caused by changes in the values of
loop integrals 4; — ig. Calculations of u* as a function of d were performed
with a step 6d = 0.1 (dotes on the plot). Values of u* calculated on the

base of loop integrals accurate to 5 digits (and denoted «*(>)) were taken to
be the reference one. Curve 4 represents dependence on d of the function

| w*@) — u*(8) |, curve 3 is the function | u*®) — u*() | and so on. Dashed
lines are the exponential approximations of the corresponding curves. The
result of performing the same procedure in the case of critical exponent
vim = 15) within the same resummation procedure is plotted on Fig.7.
Graphs 6,7 gives one the answer about accuracy of determination of loop
integrals which ensures the necessary accuracy in determination of u* or v,
correspondingly.

One more interesting feature appears if one compares the plots for §u”
and §v. In the case of critical exponent v function §v decays with increase of
d. Such a strong decay does not take place for the changes in the fixed point
value §u*. It means that one can evaluate loop integrals with lower accuracy
for high d in order to ensure necessary accuracy in critical exponents. This
fact essentially simplifies the problem of calculation of numerical values of
loop integrals especially in the region d > 3.8.

The same behaviour of §v and éu* is observed for different m and we do
not represent the corresponding graphs here.



CRITICAL BEHAVIOR IN ARBITRARY DIMENSION ... 45

1 F Au* !
: 2
107 E
1072 F 3
107 4
104 3
105
0.0 1.0 2.0 3.0 4.0

d

Figure 6: Changes in the value of the fixed point u* for different accuracy of
loop integrals versus d. m = 1. Three-loop approximation. Loop integrals
are accurate to: 1-1071,2-10"2,3-10-3,4 - 10~
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Figure 7: Changes in the value of the critical exponent v for different ac-
curacy of loop integrals versus d. m = 1. Three-loop approximation. Loop

integrals are accurate to: 1- 1071, 2-10-2,3- 1073, 4 - 10~4.
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Figure 8: Changes in the values of critical exponent v for different accuracy
of loop integrals versus d. m = 1. Three-loop integrals are accurate to: 1 -
1071,2-1072,3-1073, 4 - 104, Values of the two-loop integrals are fixed.

If one fixes the values of two-loop integrals and is interested in the influ-
ence, caused by three-loop ones, it appears that corresponding curves are of
the same type (see Fig.8 for example). But the changes caused by three-loop
integrals are slightly lower, then those caused by two-loop integrals. This
is manifested in lower amplitude of deviation of curves for §u* (or év) from
their exponential approximations (dashed curves).

The ways of resummation considered here do not make any essential
influence on the behaviour described above. On Figs. 9-10 we have shown
the changes in fixed point coordinate (Fig. 9) and in critical exponent v
(Fig.10) caused by changes in loop integrals when the resummation was
performed on the base of formula (4.6).

4.3 Estimates of the critical exponents
a) The Ising Model.

In order to improve preliminary results obtained in Sec. 4.1 let us impose
the expressions (2.10), (2.11) to yield the values of the critical exponents
of the Ising model for the cases, where results are known exactly, i.e. for
d=1(v=y=o0,p=1)and ford =2 (v =1,y = 1.75, n = 0.25). The
simplest possible way to do this is to choose the highest-order term of the
series under consideration as a free parameter and to move it in order to
obtain the results requested. The corresponding value of the higher-order
term for the B-function can be found from the condition of existence of
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Figure 9: Changes in the value of the fixed point u* for different accuracy of
loop integrals versus d. m = 1. Three-loop approximation. 1 - change in the
5th digit of two-loop integrals, 2 - the same change in three-loop integrals,
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Figure 10: Changes in the value of of the critical exponent v for different
accuracy of loop integrals versus d. m = 1. Three-loop approximation.
1 - change in the 5th digit of two-loop integrals, 2 - the same change in
three-loop integrals.
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*®

d u v 7
1.0 - 0o 1.
1.2 3.6823 2.982 777
1.4 29311 1.898 .595
1.6 2.5165 1.432 .451
1.8 2.2375 1.169 .338
2.0 2.0299 1.000 .250
2.2 1.8656 .882 .181
2.4 17295 .794 .126
2.6 1.6128 .727 .085
2.8 1.5097 .673 .052
3.0 1.4161 .630 .030
3.2 13291 .59 .013
3.4 1.2461 564 .004
3.6 1.1651 .540 .000
3.8 1.0839 .518 .000

Table 4. The critical exponents v, n and the stable fixed point coordinate
u* of the Ising model obtained from the fixed- dimension renormalization
group approach [45] are tabulated as the functions of d.

infra-red fixed point u* for d > 1 and its absence for d < 1, i.e. extremum
of the resummed f-function % being at the point of tangency to u-axis.

In the case of e-expansion such a procedure was considered in [44]. Let
us note, however one essential difference between the application of such a
scheme in the frames of e¢-expansion and in the frames of fixed-dimension
renormalization group approach. Dimension d being an expansion parame-
ter in the e-expansion techniques does not enter the coefficients of any series
under consideration. So taking the highest-order term ci as a free parameter
in a series for some function f(¢) (for any critical exponent) f(e) O(cke),
one ensures the coincidence of results only for one chosen value of dimension
d (in [44] it is d = 2). In spite of this in the scheme which is based on the
application of renormalization group equations at fixed space dimension, co-
efficients of the series over coupling constant are dimensionally-dependent
and the term of the series being of the form ¢(d)u*. This allow one to im-
pose the series under consideration to yield the requested/exact information
for several values of d(by choosing appropriate values of ci(d) for integer
d = 1,2, .., for instance). Then for the intermediate d the highest order term
cx(d) can be approximated by some fair curve. Of course the reliability of
such approximation to a great extend depends on the fact how smooth is
the behaviour of the function we are approximating,

Table 4 gives our results for the fixed point coordinate u*, correlation
length critical exponent v and pair correlation function critical exponent 7
between lower and upper critical dimension 1 < d < 4. These results were
obtained in two-loop approximation involving additional parameters into
the resummation procedure [45]

In Table 5 we compare our results obtained for some values of d with
those, obtained by the other methods: [5] - from the resummed ¢-expansion,
[21] - by a variational method derived from high-temperature series expan-
sion (the error bounds are chosen to include all published results), £\23] - from
:cihe application of finite-size scaling methods to numerical transter-matrix

ata.
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Figure 11: The Ising model correlation length critical exponent v as a func-
tion of dimension d. Squares show our results, asterisks show data of [19],
triangles show data of [29,30]. The lines are the results of the ¢ = d — 1
expansion for the near planar interface model to the orders of one loop (dot-
ted line), two loops (dot-dash line), three loops (dashed line) and four loops
(solid line) [12-14].
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1.250
1.375
1.500
1.650
1.750
1.875
2.000

4"
1.250
1.375
1.500
1.650
1.750
1.875
2.000

From [5)

v n v o U]
2.593 728 1.5-4.5 .30-1.00
1.983 616 1.6-2.6 .30-0.80
1.627 519 1.45-1.85 .35-0.65
1.353 420 1.30-1.44 .30-0.50
1.223 .363 1.20-1.26 .30-0.40
1.098 .303 1.09-1.11 .27-0.33
1.000 .250 1.0 25

From [6] From [22,23]

v 7 v ]
1.7-3.4  .758-.83 3.6832-3.7750 .7532-.7544
1.6-2.9  .635-.679 2.3535-2.3747 .6362-.6398
1.49-1.84 .567-.631 1.7547-1.7596 .5312-.5328
1.27-1.38 .450-.507 1.3780-1.3795 .4226-.4238
1.18-1.26 .396-.425 1.2234-1.2255 .3630-.3634
1.11-1.13 .312-.322 1.0902-1.0906 .3006-.3010

.247-.253

Table 5. The critical exponents of the Ising model v, 1 obtained from
the fixed-dimension renormalization group approach (columns 2,3) are com-
pared with the data, obtained from the other approaches. See the text for
a full description.
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Figure 12: The Ising model pair correlation function exponent 7 as a func-
tion of dimension d. Squares show our results, asterisks show data of [19],
triangles show data of [29,30]. The solid line is obtained from the result for
the droplet model [15].



CRITICAL BEHAVIOR IN ARBITRARY DIMENSION ... 51

Figure 13: The O(m)-symmetric model correlation length critical exponent
v as a function of dimension d. Squares correspond to m = 2, asterisks
~ correspond to m = 3, stars correspond to m = 4. In the case m = oo we
re-reproduce the exact result for the spherical model (dashed curve) [41].

On Fig.11 we compare our results for critical exponent v with ¢ =
d — 1 expansion results for the near-planar interface model ? (region of low
values of d) and with data, obtained on the base of Kadanoff lower-bond
renormalization transformation [19] and by study of the physical branch

of the exact renormalization group equation solution [29,30]. Value of the
critical exponent v for the near-planar interface model:

1 ¢ 77

22 8

is shown in the first, second, third and fourth leading orders [12-14].
Fig.12 gives the comparison of our data for critical exponent 5 with the

results, obtained from Kadanoff lower-bond renormalization transformation

[19], from the exact renormalization group equation [29,30], and with the

value of 7 for droplet model, expressed by the formula [15]:

d+n—2=8r"'" @)1 4 O(N]exp{-1 - 2C — 2/¢'},
C ~ 0.577 being Euler’s constant.

b) O(m)-Symmetric Model.

As it was mentioned above in contrary to the Ising model O(m)-sym-
metric model up to now was not intensively studied in the case of arbitrary

?Strong arguments have been given about the correspondence of the critical behaviour
of this model to that of the Ising model [12-14].
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m=2 m=3 m=4

d u* v Y u” v ¥ u* v ¥
2.0 - o0 00 - 00 fore) - 00 00
2.2 20206 1.329 2540 1.9895 1512 2.884 1.9464 1.687 3.219
24 1.7907 .971 1.878 1.7604 1.072 2.072 1.7275 1.166 2.253
26 1.6285 816 1.593 1.6043 882 1.721 1.5779 .941 1.837
2.8 1.5041 725 1.4256 1.4841 770 1513 1.4623 810 1.592
3.0 1.4024 662 1310 1.3854 .694 1371 1.3671 721 1.426
3.2 13349 618 1.226 1.3210 .638 1.267 1.3061 .656 1.303
34 12644 580 1.156 1.2534 593 1.182 1.2419 .604 1.204
3.6 1.1888 549 1.095 1.1808 556  1.110 1.1726 .62 1.123
3.8 1.1069 522 1.044 1.1022 5256 1.050 1.0975 .528 1.056

Table 6. The critical exponents v, v and fixed point coordinate u* of O(m)-
symmetric model obtained from the fixed-dimension renormalization group
approach [48] are tabulated as the functions of d for m = 2, 3, 4.

space dimension d. One more reason for considering the case m > 1 is that
in accordance with the Mermin-Wagner-Hohenberg theorem [42,43]> contin-
uous symmetry can be spontaneously broken only if the space dimension is
greater then two? | whereas for Ising model (m = 1) lower critical dimension
is d = 1. So by means of continuous change of the space dimension d one
can try to run down the mechanism of phase transition disappearance near
lower critical dimension.

Starting from the expressions for 4- and y-functions (2.9)-(2.11) in the
case of m = 2, 3,4 and performing the resummation procedure analogous to
that, applied to the Ising model in the previous section (now the additional
parameters in the resummation procedure were chosen from the assumption
that the lower critical dimension is two) one can obtain the information
about the dimensional dependence of the critical exponents. On Fig.13 we
plot the values of correlation length critical exponent v as a function of d
for m = 2,3,4,0[48)]. Again in the case m = co we re-reproduce the exact
result for the spherical model [41]. Table 6 contains the three- loop results
for the stable fixed point value u* and the critical exponents v and . Let
us note that while in [28] the singular behaviour of critical exponents in
the point d = 2 was found, one of the results of [29,30] show that critical
exponents in this point still remain analytic. Our results, involving the
information about the location of singularity at d = 2 are in accordance
with [28] in the case of d close to d = 2 and for d ~ 3 agree with those
obtained in [29,30].

5 Conclusions

In this paper we have briefly described the method for study of the critical
behaviour in non-integer space dimension. Following the idea of Parisi [31]
to perform the calculations directly in 2 and 3 dimensions we proposed to
consider the renormalization group functions directly at the arbitrary non-
integer d. The main results are as follows.

®Let us mention here the generalization of the Mermin-Wagner- Hohenberg to the case
of fractals of continuous symmetry [46].

*Exact solutions for 2d classical Heisenberg model for m = 4 and m = 3 also demon-
strate the absence of magnetic ordering (see [47] and references therein).
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1. In three-loop approximation we have obtained 3- and v -functions
directly for arbitrary value of d. Being asymptotic such series are to be
resummed in order to investigate the critical behaviour of the model under
consideration.

2. In order to obtain the values of two- and three-loop integrals i; — ig
entering the series for 8- and v-functions one can use the integral repre-
sentations given in the Appendix. The tables of numerical values of loop
integrals are given elsewhere [49].

3.Simple Padé-Borel resummation technique was chosen to extract the
main features of the critical behaviour of O(m)-symmetric model. Two ways
of representation of g-function were used. In two-loop approximation for the
dimension of space d > 3.4 these two representations lead practically to the
same values of the critical exponents, whereas in three-loop approximation
such a coincidence takes place already starting from d = 3. The discrepancies
in the fixed point coordinates calculated in such schemes are stronger.

4. Influence of the accuracy of determination of loop integrals on the
fixed points and critical exponents values was studied. It appears that
in frames of considered here resummation procedure influence caused by
changes in loop integrals values for great d is rather more weaker as for small
values of d. This enables one to take loop integrals with different accuracy
in different regions of space dimension d ensuring necessary accuracy in the
critical exponents values.

5. Critical behaviour of the Ising and O(m)-symmetric models was stud-
ied on the base of improved resummation procedure. The results are pre-
sented in Tables 4-5 and on Figs.11-13. One of the advantages of our ap-
proach is that it allows one to cover all the region of d between lower and
upper critical dimensions 1 < d < 4 in the case of the Ising model and
2 < d < 4 for the model with continuous symmetry.

6. It should be noted that the most of papers about study of critical
behaviour at non-integer d contain analytic continuation in terms of dimen-
sion d which is of purely formal character (this does not concern, of course,
the critical phenomena on fractal lattices). In particular our approach (as
well as the e-expansion technique) involves formal analytic continuation of

momentum integrals, e.g. [d%k = [k?"1dk. It has been questioned even
whether performing such a continuation one can describe a ferromagnetic
phase transition in non-integer d [40]. Thus, a good agreement of our re-
sults with those obtained by other methods (in the regions of d, where these
methods can be applied) give one more indirect evidence of mutual corre-
spondence between "space dimensions” which appear in different schemes.
7. The method considered in this paper as well as the resummation
scheme can be applied to other lattice models in non-integer dimensions,
such as model with quenched randomness, ¢-state Potts model. It would be
interesting to repeat our calculations in the above mentioned context.
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Appendix

In this appendix we'll write the integral representations for the loop
integrals, denoted in the article as iy —ig. Numerical values of these integrals
are tabulated elsewhere [49] for non-integer value of space dimension d for
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0 < d < 4 with a step §d = 0.1. Combining Feynman parameterization and
direct integration one can find the following representations for the integrals
i — g

00 d—1
v= [ A, (a.1)
o0 d-1 -
w= o || gt [ 1] o (A2
=0 [T @ [0 - o] @)
. 4—d [ g?1
== dQWfl(Q)fz(Q)’ | (A4)
is=1 [ di s i), (A.5)
- L=9-9, [ A (A6)
_ T(b-d)y °°
e e A=Y TR
X /01 dy(l — y)/o1 dw/o do[u(l —y)y + 1 — u]*~34/2 x
[&12 +u(l-y)y+1-y -, (A.7)
_1 _
=1 [T #5541 i) (A89)
Here:
y = 2/[D(d/2)T(2 - d/2)],
1
fila) = [ dalt + qs(1 - )27,
filg) = [ doall+ a1~ )2,
f@) = [ doa(1 = o)1 + a1 = ),
1
fal) = [ doa[L 4 gPa(1 - 2))/54,
6= (1-2)(1-y){yu(l - w) +u(l - ) [2(1 - y) - vg] +
+(1 - y)yzuz} + zyou(l = y)(1 — u) + v(1 — u)*(1 — ).
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