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Abstract

Hamiltonian approach to the low-frequency dynamics of manysub-
lattice magnets has been developed. The Poisson brackets for dynam-
Ical variables are derived from variational principle proceeding from
transformations that leave invariant the kinematic part of the action.
Nonintegral terms of the action variation are interpreted as generators
of these transformations. Magnetic systems with totally broken sym-
metry with respect to spin rotations and antiferromagnetics are con-
sidered. Hydrodynamical asymptotics of Green functions are found.
In the case of description of magnet on the base of Landau-Lifshits
equations it is shown how the reduction does occur from complete set
of variables (sublattice spins) to the short description variables (rota-

tion matrix and density of total spin).

1 Introduction

Determination of the Poisson brackets (PB) for dynamic variables plays a
principal role in the Hamiltonian approach to the theory of various phy-
sical systems [1]. In contrast to ordinary mechanical systems, in case of
condensed media the PB have a nontrivial structure. This report shows
how to obtain the PB for different physical systems, proceeding from the
transformations that leave invariant the kinematic part of the action. Non-
integral terms of the action variation are interpreted as generators of these
transformations. The equations for finding of admitable transformations are
obtained. In terms of developed approach we have considered the magnetic
systems with totally broken symmetry with respect to spin rotations, and
antiferromagnetics. In each case the density of summarised spin introduced
as generator of spin rotations. Low-frequency asymptote of antiferromagnet
Green’s functions for arbitrary dynamical quantities a and b has been found
as well as the spectrum of spin waves. Futher we consider the manysub-
lattice magnet with exchange interaction as an example of the system with
total breaking of symmetry.In the hydrodynamical stage of evolution the
state of manysublattice magnetic described by orthogonal matrix of rota-
tions and density of total spin. It is shown how to get dynamical equations
for these variables starting from Landau-Lifshits equations for sublattice
spins. Solving the variational problem for finding equilibrium distribution
of spins in the space uniform case we write the form of local-equilibrium
distribution and on base of this formulate the functional hypothesis. Futher
we show how the reduction does occur from complete description of mag-
net in terms of sublattice spins to reduced description with help of rotation
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matrix and density of total spin. Introducing reduced functionals, we write
dynamical equations for reduced variables and compare them with equa-
tions, obtained in general case for system with totally broken symmetry.

2 Fundamentals of the formalism
First we give the formulation of formalism for physical systems with fi-

nite number of degrees of freedom and after that for continuum systems.
Systerus with finite number of degrees of freedom. Let us consider the La-

grange function of the system

L = Li(z,%) - H(z), (2.1)

where z; are dynamical variables, H is the Hamiltonian, L is a kinematical
part of the Lagrangian, which we take in the from

Lk(.’l:,a't) = F,(:L’) z; . (2.2)

Here Fi(z) is an arbitrary function of dynamical variables. Now consider
infinitesimal transformations

T; — i = x; + bx;. (2.3)

t2
Variation of action W = [ Ldt, connected with transformations (2.3) equals
3}

7 OH
W = G(t,) - G(t) + /dt&zj (Jj,-(a:) Z; —-67-) R (2.4)
F]
t
where
G(t) = Fi(a)bzi,  Jji= 35 - 30,

The equations of motion for variables z;, taking into account the principle
of stationary action, have the form

. OH
Jji(z) ;= 92, (2.5)
If the matrix inverse with respect to matrix Ji; does exist, we obtain
OH
b= J2 N (2)—. 2.
= Ji; () 3z, (2.6)
Let us define the PB for arbitrary functions A(z) and B(z):
0A 0B
B} = —J3(2)—— .
{A7 } axi J‘L] (x)azj’ (2 7)

therefore

i‘,’z {m,-,H}.
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It is easy to see, that operation (2.7) satisfies the conditions
{A,B} = —{B, A},{AB,C} = A{B,C} + B{A,C}
and Jacobi identity
{A,{B,C}}+ {B,{C,A}}+ {C,{A,B}} =0. (2.8)
For deriving (2.8) it is nessesary to take into account formula

aJ;; + 0Jjk | OJ

Oz, Ou; + Oz, =0 (2.9)

Hamiltonian mechanics written in terms of arbitrary variables was investi-
gated in [2% There formula, similar to (2.9) was obtained. Now consider
finite transformations

z; — 2; = ai(z). (2.10)

Transformations (2.10) are called canonical if the difference Fi(z)dz; —
Fi(2')dz! is a full differential:

oz’
(E(x) - Fj(z’)a—xj) dz; = CQ. (2.11)

The equality

OF(z) 0F;(z') 8z) 0z} Fi(z) %!
- .. =4

(i & k),

Oz Oz; Oxy Ox; 0z;0z,,
or its equivalent form
oz’ oz
w(z) = Ju(e) 22 2% .
Jir(z) = Jj(z )c‘h:,- . (2.12)

is necessary and sufficient condition for (2.11). Let us show, that canonical
transformations (2.10), (2.12) keep invariant PB (2.7). For this purpose

it is suffisient to show invariance of elementary brackets {z;,z,}. In other
words, if ,

{zi,z;} =I5 (2)
as it follows from (2.7) then

{z},2"} = Jz-;l(z'). (2.13)

(R
We note to proof the latter, that

az’. 8.1:’- -1
{zh 25} = gl ot (2)

and at the canonical condition (2.2) indeed the expression (2.13) emerges.
Introduce operator PB A(g)

- Og ,_, 0
AMg) = —Jk,}%,

o (2.14)
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where g is an arbitrary function of x. Then, from (2.7) and (2.14) it follows

Ag)f = {9, f}. (2.15)

Using operator PB, the Jacobi identity (2.8) and the general form of canon-
ical transformations (2.9), (2.12) can be written in a compact form. Noting
that Jacobi identity (2.8) can be represented in the form

A(4){B,C} = {A(4)B,C} + {B,A(4)C}, (2.16)
we obtain
[A(4),A(B))C = A({4,B})C,

where [A(A),A(B)] is the commutator of A(A) and A(B). Hence since C is
an arbitrary quantity, we get

[A(4),A(B)] = A({4, B}). (2.17)
Let us consider the transformation
2'(z) = exp(—A(g))z (2.18)

and let us show that it is canonical. Due to (16) the formula

exp (—A(9)) {f, 4} = {exp (—A(9)) frexp (-A(9)) 0}
is valid. Therefore
{z{,z}} = exp (—-A(g)) {zi,z;} = exp (—A(g)) Jigl(é:) = J,-;l(:c’).

On the other hand since
! 61"«

o' -
'{1':-,1‘9'} = 'E)E:B'E;“LJkll(z)')

then
~10.0 Azl dz; 11
Ji (@) = mmr g d (=),

what is equivalent to (2.12). We note that the transformations (2.18) are
determined by an arbitrary function g(2) which is called the generating func-
tion of canonical transformation. Consider in detail the question of invari-
ance of Hamiltonian equation under the canonical transformations (2.18),

the generating function of which obviously depends on time: g = g(z,1).

Evidently
0’ exp (—f\(y))
ot

(the derivative connected with obvious dependence on‘t is denoted as 9'/9t).
Since the following formula (see (2.17)) is valid,

exp (A(g)) A(f) exp (-A(9)) = A (exp(A(9)1)) ,

o= {z', H} + z, (2.19)
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then for partial derivative over time in (2.19) one can obtain an expression

Poxp(-h(a)) ~({‘m (exp (-A(9)) 32) "

The motion equation (2.19) taking into account (2.15) can be finally written
in the form

: 1 ,
e'={z',H'},H' = H+ [d\exp (— K (g)) %—f.
0

Consider the transformations (2.10) under which the kinematic part of La-
grangian (2.2) is invariant. It is easy to see that they satisfy the relationship

oz’
Fi(@) = Fy(a') 32 | (2.20)

and as it follows from the definition (2.11) are canonical with Q = const.

For the infinitesimal transformations z} = zx + 6zx(z) the equality (2.20)
can be written as follows

Jipbzy = ‘%f;, G = Fiézy,
or taking into on account (2.7) it reads
5Ik = {zk,G}. (2.21)

Upon this the quantity G being nonintegral term of the action variation (see
(2.4)) which plays role of a generator of considered infinitesimal canonical
transformations. This quantity can be obtained from the equation

~1/,18InG
Fi(z)J5 (=) agk =1
If the considered transformations are the symmetry transformations (i.e.,

the Hamiltoni~n H is invariant under such transformations), then the gen-
erator is independent of time. Indeed,

G={G,H}=-{H,G}=¢H,
where § H is the Hamiltonian variation connected with the transformations
(2.21). Hence, if §H = 0, then and G-0. Note that since the system La-

grangian is defined with accuracy up to the full derivative over time of the
arbitrary function f(z)

g, H(2) '
L—L'=L+=2>, (2.22)

then the transformation (2.22) leads to the transformation of functions Fy(z)

Fi(z) — Fi(z) = Fi(e) + 2.
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Upon this the tensor J;; remains invariant and a class of variations éz; lea-
ving invariant the kinematic part of Lagrangian extends and is determined
by the relationship

Jijbe; = 2 (G + £Lba;).

For finite transformations (2.10) the invariance condition of the kinematic

part of Lagrangian (with taking into account the indefiniteness (2.22)) is
written as follows

F(e) = Fi(e) gl + 202 U@

o (2.23)

The transformations (2.10),(2.23) are canonical with @ = f(a) — f(z).
Continuum systems. We define the Lagrangian by the expression

L = Li(p,) = H(p) = [ daFa(; ¢) Pa (z) - H(p),

where F, (z;¢(2’)) is an arbitrary functional of dynamical variables ¢4 (2).
Consider the infinitesimal transformations of field ¢4 (z):

Pa(z) = 9o(2) = Palz) + pa(), §pa(z) = o (Z; (p(:c',t)). (2.24)

Here &, is certain independent explicitly of time functional of the functions
¢(z,t). Under the transformations (2.24) the Lagrangian variation takes
the form

6L = 252 4 [ do'pp(a’) ([ dzdpalz, 23 9) P (2) - 5257)
where

G(p) = [ doFa(z; 0)ipala),  Jup(a,a'sp) = Selie) _ Shalese)

iz
From the principle of the stationary action § [ Ldt = 0 it follows that the
¢

1
motion equations for field component ¢,(z) has the form:

ba (@) = [ U300 5o (2:25)

Define PB of arbitrary functionals A and B of dynamical variables ¢, by
the equality:

5A 6B

—J " o)——. .
oal) " gy 220

Then the motion equations (2.25) take the Hamiltonian form:

o (z) = {palx), H}.

{A,B} = /dzd:r:'
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Consider the finite transformations

#al2) = Palz") = o (21 0a(2"). (2.27)
We call the transformations (2.27) canonical if the condition
/ dz Folz; 0)ba(z) / dz Fo(z; o )ol(x) = 6Q(e) (2.28)

is satisfied. Here Q(¢) is the certain functional of ¢. It is easy to see that
given condition can be written in the following equivalent form

ooy 5o (x1) b9, (22) o
Jaﬁ(fb,.’l) ,‘P) - /d(l)]dfl& 690(,(93) 590,6(13,) Jf\u(xhz%(p)' (229)

As in case of systems with finite number of degrees of freedom it isn’t hard to
verify that PB (2.26) are invariant under canonical transformations (2.27),

(2.29). Now consider the transformations (2.27), conserving the kinematic
part of the Lagrangian. Such transformations satisfy the relationship

bpp(a’; ¢)
Fu(z; =/dw'F oy )= 2 2.30
(2:) () (2.30)
and with account of (2.28) are canonical with @(¢) = const. For infinitesi-
mal transformations (2.24) the equality (2.30) is written as folows
[ de'dap(a, o 0)0a(e') - 5297,
or, taking into account (2.26) does in the form
bpa(2) = {pa(z), G}. (2:31)

Here G is the generator of the infinitesimal canonical transformations, which
should be obtained from the equation

[ dzda' Fo(2; ) 55 (2,2"; 0) oy = 1.

Extension of the considered class of variations can be achieved by adding the
full derivative over time from the arbitrary functional x(¢) to Lagrangian;
the corresponding equation for extended class of variations takes the form

[ de' Jap(2,2; 0)8pp(a") = g5t (G + [ da' 3208560, (")) -
‘ 4

For finite transformations (2.27), the invariance condition of kinematic part
of Lagrangian with account for indefiniteness in the choice of L

L— L'= L+ [de 2 ¢, (z)
is written in the form
bep(a’ie) | x(¢)  Ex(y)
Fo(z;9) = /dm'F 'y ) L2 + - .
(z3¢) s(=5 ) bpa(z) bpalz)  bipa(z)

Transformations 32.27), (2.32) are canonical with @ = x(¢’) — x(¢).

Below we apply the above approach to some physical systems and con-
sider the cases of magnetic system with totally broken symmetry and anti-
ferromagnetic media (see [3,4]).

(2.32)
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3 Systems with totally broken symmetry

In this section we apply developed formalism to magnetic systems with
totally broken symmetry with respect to spin rotations in spin space. It
is well known [5,6], that for adequate description of thermodynamics and
kinetics of systems with spontaneously broken symmetry it is necessary to
introduce into the theory additional thermodynamic parameters which are
not connected with conservation laws but caused by the physical nature of
phase state. In the case of magnetic systems with totally broken symmetry
under spin rotations such dynamical quantities are the rotation angles ¢,
realizing parametrization of three-dimensional rotation group of spin space
or connected with them real orthogonal rotation matrix a(y) (ed = 1),
which in terms of parameters ¢, can be written in the form

a(p) = exp(-€¢),  (€¥)ap = EapyPr-

Further it will be covenient for us to consider the matrix a as the matrix of
arbitrary affine transformation.
Represent the kinematic part of Lagrangian in the form

Li= [daLe Ly = eap(@) g (3). (3.1)

Here variables a,g and c,pg being the generalized coordinates and momenta
of magnetic with spontaneously broken symmetry. Introduce the spin of the
system as generator of uniform arbitrary small rotations characterised by
angles 6p,. Since under rotation, described by matrix b, matrices a and ¢
are transformed according to. the formulae:

~

a—d =ab, ¢ — ¢ = be, (3.2)

we have
6a0p = Eqpy-Barybpu, 6Cap = EqanCyplipy. (3.3)

It is easy to see that transformations (3.3) leave invariant the kinematic
part of Lagrangian and the generator

G = ba / P8 oy o (2 )25 (3.4)
corresponds to them. With these into account one obtains:

Sa(®) = eapyeyu(®)aup(z). (3.5)

In what follows belove it is convenient to introduce tensor g,g according to
equality .
G = Coryllng. (3.6)

Then the expression for spin density expressed in terms of antisymmetric
part of g, reads:

1
Sa(z) = Eauuwggu(m)’ gffu = E(guu - guu)~ (3‘7)
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Antisymmetric part of tensor g, as it follows from (3.7) is uniquelly defined
by spin density
1

Jap = 5 aBySy- (3.8)
Noting, that
930 = Jap(63a) = 3 (g0 + 950, (3.9)
one can write )
9ap = fap — 5EabySy- (3.10)

From (3.1), (3.6), (3.10) it follows that density of kinematic part L, of
Lagrangian hase the form:

1 -1 :
Ly = (faﬂ = 550«013'1)%;?1 0o - (3.11)

Thus, dynamical quantities of magnet with totally broken symmetry are
the spin density so(z), matrix a,s(z) of arbitrary affine transformations

and symmetrical matrix fos(z). Now let us obtain the PB for dynamical
variables sy, aqg, fag. It is easy to see that the variations

baqgs(z) = xap(z), deqp(z) = 0. (3.12)

where the functions x,g(z) are independent of variables aop and cqyg, leave
invariant the kinematic part (3.1) and the generator

G = / Preas(2)gpa(z) (3.13)
corresponds to them. Let us represent variations baqp and dcyp in the form
baap(z) = {aap(2),G},  bcap(z) = {cap, G} (3-14)
Then equalities (3.12), (3.14) yield the following PB:
{aap(2), cun(2)} = bandpud(z = 2'),  {eap(2),cunla’)} =0.  (3.15)
We now consider together with density L; the density L',
| Ly, = ~ap(2) éga (o). (3.16)

Variations N
deqp(z) =Xap (:L‘), 50,(,5(:12) =0, (3.17)

where ¥ is independent from aqg, ca, conserve L';. Representing banp, 0cqp
in the form (3.14) with the generator

G = —/dsxaag(z) ;,@a (z), (3.18)
we shall obtain PB, not entering into (3.15):
{aap(2), au(2)} = 0. (3.19)
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Taking into account (3.6), (3.15), (3.19) one can obtain the PB for variables
aaﬁ(w)s gaﬁ(x):

{9a5(2), 9u(2)} = (Jau(®)dpu — 9us(2)0)é(z — '),

{aap(@), 9uu(2)} = cau(2)dpud(z — ') (3.20)
Variables s4(x), fap(z) are connected with variables g,g(z) by relationships

(3.7), (3.9). From here and from (3.20) we can find the PB for dynamic
variables s4(z), aaa(), fap(z):

1
{fap(z)s fw("")} = < (evayOpu + Euprbor + Eupyban + Eparbpy) X

‘ o(@)ile ),
{sa(2), Je(x)} = (fop(z)ebpa+ fep(2)eppa) b(z = 2'),
{sa(2), sp(2")} Eapysy(2)b(z — 2'),
{aap(@),5u(z")} = cuppaas(z)é(z —2'),
{aap(2), frp(2")} = %(65.7%,,(:::) + Jﬂpaav(a”)) §(z — 2'). (3.21)
Alge(eb§a (3.21) contains as its subalgebra the algebra of variables s,(z) and
agp():

I

{sa(2),85(2")} = eapyss(z)b(z - '),
{aap(), su(z")} €upB0ap(T)8(2 — '), (3.22)

where a,p(z) is considered as real orthogonal matrix (a a= 1) (It is easy

It

to see that equality {ang Eﬁw,sy} = 0 is consistent with bracket of vari-
ables $,(z),asp(z)). Just this situation was cousidered in [3]. Note that

algebra (3.20), which is necessary for deriving the brackets (3.21), can be
obtained directly, if one writes the kinematic part L; of Lagrangian in terms
of variables g,3, ¢ap and finds transformations, conserving L. As it follows

from (3.1)
Ly = Spg(2)w(z), wap(x) = azy(e)aqs().

It is easy to see that density L, is invariant relatively to arbitrary affine
transformations, described by matrix b. Really, since a — a' = ab™1, then

g— g =bgh~!, w— W =bwb,
and
Ly = Spg(e)w(z) = Spg'(z)w'(2).
Let us consider arbitrary small transformations
bap(2) = bap + €ap(2), | Eap | 1.

For variations dg(2), da(a) we shall find

bg(z) = [e(x), 9(2)],  Sa(z) = —a(a)e(2). (3.23)
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Taking into account that according to general formulae generator G
equals:

G=- f PSpg(z)e() (3.24)
and representing 6g(z), da(z) in the form
b9(z) = {9(2), G}, 8a(z) = {a(2), G}, (3.25)

one can obtain, comparing (3.33) and (3.35) with account of (3.34), the PB
(3.20), derived earlier on the base of algebra (3.14), (3.17).
Thus, from (3.21) the motion equations for variables s,(z), asp(z),

fap(z) read:

: §H 6H
5a (z) = (fup(m)faﬁp + fﬁp@)eaup) m + 50!57%%(“’) +
+ a (z)———‘s—H——
Eafplvp 5ayﬁ(:v)’
; 1 6H
fup (®) = 1 (5u#t16'vﬁ + €xpaduy + Evpaluy + 5wa66l/) m%(fv) +
6H 1
+ (fup(m)eﬁ‘w + fﬂp(m)smp) 6—3.,—(m_) ~3 (6,\”11,,5(9:) +
6H
+ 6A[3auu($))m, (3.26)

| SH o0H
Aop (m) = €upﬁaap($)m + %(6ﬁ’Yaap(w) + 6ﬁpaa'v(x)) 6f'yp(z)'

Dynamic equations (3.36) and general functional expression for energy den-
sity e(z) = e(z;s(z'),a(z’), f(z')) describe nonequilibrium properties of
magnetic systems with arbitrary character of space nonuniformities and
they are very complicated for analysis. Investigation of these equations is
considerably simplified in long-wave limit when space nonuniformities of dy-
namic variables are small. Considering that energy density is a function of
quantities s, a, Va (and variable f is cyclic) or is the function of quantities

$,a,wk (Wek = %sagqa)kaam , where @ is the matrix of rotations [3]:

e(z,5(z"),a(z")) = e(s(z),wx(2), a(x)) (3.27)

let us derive dynamical equations in local form (on contrary to (3.26) where
the non-local form is given). Further we shall assume that energy den-
sity satisfies invariance property with respect to uniform spin rotations,
described by matrix b:

£ (:c; bs(z), a(z") 3) = e(m, s(z'), a(a:')). (3.28)
Due to (3.38) we have

e(s,wk,a) = g(as, awg, 1) = €(8, wy ), (3.29)
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where 8 = as,w; = awg. According to (3.22) one should find equalities
{sa(@), wp(2)} = apa(2')Vib(z - 2'), {sa(2), 35(2")} = 0
leading to invariance of quantities s,w, with respect to global spin rotations
{Sa, war(2)} = {Sa,84(2)} = 0.
These expressions correspond to invariance of energy density:
{S8a,€(2)} = 0.

Using (3.36) and energy density (3.39) one can obtain dynamical equations
for magnets with spontaneously broken symmetry in long-wave limit

. de . Je 0 Oe
So= —Vkm,fa— —nggm,aaﬁ— aapspﬁfyg- (3.30)

Due to the definition of energy density (3.39) it is worthwhile to choose
quantities s,wy, as the independent variables. The equations follow:

da,(?: apﬁsap'yb%s;v éa: —Vkﬁai azk)
34 = ‘Vk'a_z—:: + €apy (épa%: +Q_ﬁk%) . (3.31)

From equation of motion for matrix a in (3.41) it follows the equation for
Cartan form wy:
O¢ Oc

Wak = —kaz + Eaﬁfyggkg. (3.32)

Complete system of equations (3.31) determines dynamical properties of
magnets in the case when the dissipative processes are neglected. Note that
we have considered a dynamical variable number being even everywhere in
the above formalism. However, there can exist physical systems, dynamics
of which can be described by odd number of variables (for example, dynam-
ical variables of purely spin systems are three components of spin density
5q(z)). Such cases can also be included to the above formulated scheme if
there exists more general PB system containing given algebra of odd num-
ber of dynamical variables as its subalgebra exists. So in incited exemple
the PB system (3.21) contains the algebra of variables s,(z) as its subal-
gebra. Then considering that all rest variables are cyclic one can construct
the Hamiltonian dynamics of pure spin systems with obtained in the more
general system of PB for the spin densities s,(z).

4 Antiferromagnet (AFM)

Let us represent the kinematic part of the Lagrangian in the form
Lk = /ds.’l,‘Lk, Lk = m(w) l (:I}), (4.1)

where [,(z), m4(2) are generalized coordinates and momenta of AFM. A
spin density s,(2) and vector of antiferromagnetism [, (2) enter into num-
ber of dynamical variables describing AFM states. Let us introduce spin
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density s,(z) as a function of generalized coordinates /,(z) and momenta
mq(z). With this purpose we define total spin of AFM S, = fd3zsa8z)
as a generator of infinitesimal homogeneous rotations of magnet. Unde
infinitesimal rotations d¢., the variations §my(z), 6l,(z) read

dma(2) = capybppmy(z), bla(z) = €apybpply(). (4.2)

It is clear that variations (4.2) leave invariant the kinematic part of La-
grangian and the generator

G = bpp [ d>zeapyma(z)ly(z)

corresponds to them. In accordance with above metioned remark

Sa = /dszsa(z), 5o(z) = eqpylp(z)m,(2). (4.3)

According to (4.3) we obtain the generalized momentum m,,

1
m = 1—2(8 x 1+ 7). (4.4)

Second term in (4.4) agrees with a fact that the quantity m, is determined
from the relationship (4.3) only with accuracy up to a collinear vector L
From (4.1), (4.4) it follows, that the kinematic part of Lagrangian of AFM
can be represented in the form

Lk=fd3.z‘Lk, Lk:%;(sx1+7l)i.

Thus the spin density s (x), the vector of antiferromagnetism I,(z) and the
parameter v(z) are the dynamical variables of AFM, and the connection ls =
0 between vectors 1 and s follows from (4.3) (such restriction corresponds to
consideration of two-sublattice magnetics with equivalent sublattices). Let
us obtain PB of generalized coordinates I, and momenta m,. How it is easy
to see the variations

bla(z) = ga(z),  bma(z) =0, (4.5)

(here functions g4(x) are independent of variables [, m,) satisfy the equa-
tion (3.5), and the generator

G = / Prma(z)ga() (4.6)
corresponds to them. Representing variations él,,§m, in the form
6lo(z) = {l(2),G},  my(z) = {ma(2),G}, (4.7)
and taking into account for (4.5), (4.6), we obtain the follow PB
{la(2), mp(a)} = bapb(z — '), {ma(2), ms(z")} = 0. (4.8)

Now if we consider together with density L (see(4.1)) the quantity L}
Ly = —)(z) 1 () (4.9)
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which differs from (4.1) by the full derivative d%(lamo,), then as it is easy to
see the variations

bmo(z) =94 (z),  bla(z) =0, (4.10)

where 5,1 (z) is independent from l,, m,, satisfly equation (3.5). The gen-
erator of transformations (4.10) fakes the form

G= —/d%za(z) 7o (2). (4.11)

Agaﬁn representing variations dmg, 6l in the form (4.7) and taking into
account equalities (4.10), (4.11) we get one more PB not involved in (4.8):

{la(2), lg(2")} = 0. (4.12)

We express s,(z) and v(z) in terms of the generalised canonical coordi-
nates and momenta l,(z), ma(z) in order to obtain the PB of variables
la(z), so(x),v(x). As it follows from (4.4)

s(z) =1(z) x m(z),  7(e) =1z)m(z).

Now using algebra (4.8), (4.12) of variables l,, m, we find PB of the vari-
ables I4(), sa(z), v(x)

{la(2),85(2")} = eapyly()b(z - 2'),
{sa(2),36(2"s; = capyss(2)é(z —2'),

{la(2),7(2)} = la(2)é(z — '), (4.13)
{Sa(x)’ ‘)’(IL")} = 0,

{v(x),7(=)} = 0.

Using (4.13), we product the dynamical equations of AFM in the form

la("”) = Eaﬁvﬁalw(m) + %%jla(m)’
: §H 1 y
S (2) = oy (7275y(2) + 55 1(8)), 7 (2) = ~malyla(#)(4.14)
Investigation of these equations is considerably simplified in long-wave limit
where space inhomogeneties of dynamic variables are small. Considering

that energy density is a function of quantities s,!, VI (and variable ~ is
cyclic) or is function of quantities s, 1, vi(var = —capylpVil,) [4):

6(z,3,(z'),l(z')) = E(s(w),l(z),vk(w)) (4.15)

let us derive the dynamical equations in local form (in (4.14) the nonlocal
form is given). Further we shall assume that energy density satisfies the
invariance property with respect to uniform spin rotations, described by

matrix b:
e(@;bs(a"), bl(a")) = (2, 8(a"), U(=")). (4.16)
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Using (4.14) and energy density (4.15) one can obtain dynamical equations
of antiferromagnet in the form [4]

= -V, O¢e e Oe e . O¢

= - m— ——— = —— - 4.
Ovuk kasa Ok o= Capy dsg by (4.17)

The equation for v, follows from the equation of motion for the vector of
antiferromagnetism:

de O¢
[ —_— & — ; o = afde — l . .
Vak MV 935 + e gqasﬁv,yk Hapg = bap. — lalp (4.18)

Complete system of equations (4.16) determines dynamical properties of
antiferromagnetic in the case when the dissipative processes are neglected.

5 Hydrodynamical asymptotics of the Green
functions and spectrum of spin waves.

The retarded two-time Green function specific to quasilocal operators a and
A
b is
) . ’ A Nt
Gop(z,t;a’, t'y = —if(t — ¢t )Spw[a (z,t),b (', ¢ )] (5.1)

where w denotes the equilibrium statistical operator. An external field
£(z,t) interaction is supposed to be described by the relation

V(t) = [ dz&(z,t)b(z,1).

The linear response of the quantity a to an external disturbance is
o0
bag(z,t) = [ dz' [da'€(a’,t)Gu(z — 2!t - t).
—00

The corresponding Fourier transform takes the form
bag(k,w) = Gap(k,w)E(k, w). (5.2)
The low-frequency asymptotic expression for the Green function of the sys-
tem can be derived from (5.2). In order to do this let us note that in presence
of the external field the equations of motion specific to quantities s, and I,
take the forms
So = “szrg:—k + Tevy

lo= “-'aﬁv%l’ﬁ' Nees (5-3)
where sources '770( and 7, are defined by the expressions

—_ 3b ab ab ab
Na = feaﬂw(ss_ﬂs'v + éﬁl‘v + Busx '”'yk) - Vi (fa——vuk) y

Ma= ffaﬁ'rﬁ%lﬁ-
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The equations have been derived on the basis of the equation of motion
(4.14), where variable v is cyclic and

H=[dz(e(2) +o(2)), ()= E=)b(s(2), U(=), vx(z)).-

Here v(z) denotes the density of the Hamiltonian of the system-external
field interaction. Linearizing egs. (5.3) with respect to the deviations
6s(z,1), él(z,t) of the quantities s(x,t) and I(z,t) from the equilibrium state
Pk = 0,84 = 0,v4k = 0 and using the Fourier representation of the obtained
equations one can derive

~ b0 + k2 lu gy bl = s,
— (wbau + apy [£500 + 5Edla] ) Oh = Eaprsgislnbss =TTa, (5.4)
where
Mo = € (5aﬁ1587%l1 - Zkz'ar?;%) ;
;"a: Eeaﬁw%lv'

A solution of the system of equations takes the form

L e OB
08y = A(k,w){Ak Ha"@s,, w(eaﬁalﬁ - zklaTai)},
_ £ ab Ob ' ob
él, = A(k,w){wsaﬁ(?sﬁ + B(Bla + zk,eagaTm) } (5.5)
Here
18% 1 0%
= w? —_ 2 - —— - — —— e
Ak,w)=w?— ABK?, A 507" 2Hﬁ763ﬁasw

and g4 = €qpyly. In this derivation was takin intu account that due to
rotation invariancy of ¢ and from equalities p, = 0,5, = 0,v4 = 0 it

follows that 1525 — 111 8t _ _ (. In the first order on k and w (where
Bass — 2B Fsg0l,

kl € 1,wr, € 1 and [, 7, are some microscopic quantities, like mean free
path or relaxation time), response of quantity a (which is a functional of
dynamical variables) to distrubance of an external field can be written in
the form

da

0ly

oo

va'

Comparing it with (5.2), taking into account (5.5) and noting that v, =
th; X

X&Eq36la, one can derive the low-frequency asymptotical expression for the
Green function specific to dynamical variables a and b:

6a(k,w)=—a(?£—6.sa(k,w)+ 8la(k, ) + 2 §onik,w).

Gap(k,w) = Zjﬁ_wj{%naps% - ‘t&'apgf; + k’aaTz.'} X

b - 3b 3b 1 0a 8b
X{%HO"YBT, + ZEafym—q + klm} - Fﬁ;mnaﬁ. (56)
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From (5.6), in particular one can obtain

Ak?
Gaa(krw) = Alk,w) o
w
Glaso(Frw) = teap gz
B
Glaylﬁ(k,w) mnaﬁ. (57)

Putting in (5.7) w = 0, it can be seen that the singularity 1%2 is specific to the
Green function G, 14, in complete correspondence to Bogolubov theorem [7]:

g
Ak?’

Gz,,,lﬁ(k,O) =

At k = 0 singularities in terms of w are specific to the Green functions G, s,
and Gi,,14

Eaf B
Glawa(Ow) =125, Glaty(0,0) = 1lap.

Note that in the one-particle approximation the Green function specific to
Pauly operators of a two-sublattice anysotropic Heisenberg antiferromagnet
with spin 1/2 has been considered in [8]. Equating A(k,w) from (5.4) to
zero, one can obtain spectrum of spin waves of the antiferromagnet systems

w?= c"’kr",c2 = AB

which coincides with the results of [9]. The temperature dependence of the
Spifl v\]lave velocity has been investigated by means of microscopic approach
in {10].

6 Dynamics of manysublattice magnets with ex-
change interaction

In section 2 we have studied systems with totally broken symmetry with
respect to spin rotations, dynamical variables of which, in particular, are
the density of total spin s(z) and rotation matrix a(z). In this section we
consider manysublattice magnets with exchange interaction. Low-frequency
dynamics of such systems just is described by parameters s(z), a(z). It is
explained by the fact that at sufficiently large times due to exchange inter-
action rigid spin complexes are formed, orientations of which is assigned by
rotation matrix a(z). It is interesting to obtain dynamical equations coming
from some more general equations in the same way as the hydrodynamic
equations can be derived from kinetic equation for one-particle distribution
function. As such more general equations we shall choose Landau-Lifshits
equations and after determining the form of local-equilibrium solution we
shall show how the reduction from complete description of magnetic in terms
of sublattice spin densities to the reduced one with the help of parameters
a, s is carried out. Let the state of manysublattice magnet is described by
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the densities of sublattice spins s,(z)(e¢ = 1,...,n;n is a number of sublat-
tices). Landau-Lifshits equations, describing the dynamics of spin densities
sq(z), have the form:

§H (s(2"))
0sq(z)
Here H is the Hamiltonian which is a functional of sublattice spins, R, is

the dissipative term. In the case of pure exchange interaction (which we
shall see only aftewards) total spin is conserved and consequently:

) / Falseh] =0, 3 / PR, = 0. (6.2)

Local-equilibrium distribution of spins s,(2) must be defined from minimum

8.= [8a, hq] + Ry, hy(2) = - (6.1)

condition of the energy functional H(sb(w’ )) under the fixed distribution of
spin demsity s(z) = 3" sq(2). From here we come to the next variational
a

problem

6{M(su(=")) + / 2 3(2) Y sa(2)} = 0 (6.3)
where X(z) is the corresponding Lagrange factor. Varying (6.3), we get

6H(sb(z’)) .
W = —/\(z) (64)

and the Lagrange factor is to be found from the relationship
ZSa(z) = s(z). (6.5)
In accordance with stated above let us choose the relaxation term R,(z) in
the form A
Ra(z) = 3 o (hb(z) - A’(z)) , (6.6)
b

(compare with the relaxation term in movement equation of magnetic mo-
ment in Landau- Lifshits form {11]). Supposing that }_ R, = 0 see (6.2))
' a

we have

- -1
N@)=t S Tahy(z), 7=3 7Tw. (6.7)
ab ab

Here ?ab is the matrix of  positively  determined  quadratic  form
IR Tas V5 > 0). Then according to (6.1), (6.6) we get
ab

H = zfdaws-g% 8, (z) =
= -3 [d% (ha(:z) = X(2)) Tab (hb(w) - X(2)) <0,
ab
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that corresponds to energy dissipation in system. Consider asymptotic (¢ >

TryTr ~ ﬁ is relaxation time) space-uniform solutions of (6.1). If the

Hamiltonian is limited from below then solution of (6.1) at t > 7, satisfies
Eqgs. (6.4), (6.5) due to monotonic decay (because H = 0 at ¢ 3> 7,), which
in spaceuniform case has the form

de(s - .
Ta—(g;ﬂ = =), Za:sa =s;(AN = A), (6.8)
where £(s) = ¢(z,s3) is the energy density. Since R, = 0, then from (6.1)
we have .
8,= [84, hy], hy = A, (6.9)
Due to exchange character of interaction
de
3 [SG,E] =0 (6.10)

a

and, consequently
5: = /\S, 8= 0,

As density of energy depends only on scalar products s,s;,s2, then most
general solution of (6.8) has the form

. l[e‘ ,s]..S'
Sp = §b(s) = %S + ab(S)% + ﬂb(s)léz:z]l + 7b(s)| [; s],8 |,
015]y

Tas)=s. (6.11)

where & is the arbitrary unit vector and as(s), Bs(s), 1s(s) are the functions
of s =| s |, uniquelly defined by exchange Hamiltonian X and satisfying the
relationships:

2as(s) = 2 Auls) = Em(s) = 0.
Let a be the arbitraf’y matrix of rotations. Then according to (6.11)

sp(s) =a s;(as) = s(s) g~ Zsb(s) =s. (6.12)
b

Matrix a can depend on time. This dependence, as follows from (6.9), is
defined by equation:

o= —QoyEnppdp. (6.13)
Let e(a,s)=¢ (?i sb(as)). Then according to (97)

Oc O¢ Ospa 08y =~
ds zb: Ospa 88 _/\“; 3s = N (6.14)
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Consequently, equation (6.13) can be rewritten in the form:

: O¢
aAng= aa,yg.yﬂp—a-;;. (615)

Let us formulate functional hypothesis. We shall consider that in space-
nonuniform case at times t 3> 7, spin densities of sublattices depend on
time also only via parameters a(z,t),s(z,t)

$a(Z,t)tr, — Sa (z; a(z’, t),s(z’, t)) (6.16)
and

3. Sa(25a,8) = s(z).

Physically such consideration corresponds to the fact that at suffciently large
times due to strong exchange interaction complexes of spins are formed,
which practically are not deformed and orientation of which is assigned by
the rotation matrix a.

In the main approximation by space gradients from the form of local-
equilibrium solution (5.13) for s,(z; a,s) we have

Sq (w; a(:c’),s(m')) =a (z,1)s, (a(z,t)s(:c,t)) + ... (6.17)

There exists close analogy of our consideration with the description of ki-
netics and hydrodynamics of ordinary liquid. It exact equation of evolution
is the Boltsman equation for one-particle distribution function f gz) In our
case the analogy of this equation is Landau-Lifshits equation for sublat-
tice spins s,(z). Further at times larger than relaxation time, distribution
funtion becomes a functional -¢ densities of additive movement integrals
(hydrodynamic parameters) and dependence from time of function f is con-
tained only in these densities. For our case for times t > 7, sublattice
spins sq(z) become the functionals of parameters a(z),s(z) and depend on
time only via a(z,t),s(z,t). In what follows below. we shall limit ourselvs
by consideration of low-frequency phenomenas, (wr, < 1), then reduction
occurs in description of manysublattice magnetic state from complete set
of variables s,(z) to parameters a(z),s(x). Let us introduce, by definition,
reduced spin s’(z) according to equality

s(2) =4 (1), (s(2)), s=as. (6.18)
For s'(z) we have
Zajs;(:c) = s(z).

If some functional of sublattice spins s,(z) is assigned then reduced func-
tional can be received from them by the substitution s,(z) — sf(z):

F(w;sa(w’)) — F" (x;a(z'),s(z')) = F(z;s;(w')). (6.19)

In particular, if density of energy functional e (z;s,(2')) is assined then
reduced density is determined by the formula

e (x; a(z"), s(z')) = s(z; s;(z')). (6.20)
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In the small gradient approximagion we have
a(z) @ (z') = el==2NV+y) s le'-2)uls) w(iz)=aVa.

Therefore we can take the expregsion

er (z;g(z’),s(z’)) FE (z; elz'-)al(z)g (§(w'))) .

as the reduced energy density. Let us obtain the movement equations for
short description parameters a(z), s(z). Poisson brackets for sublattice
spins s,(z) are of the form

{saa(z), 358(2")} = babEapqyb(2)6(z — 2'). (6.21)

Let us determine PB for dynamjc variables a(z),s(z) by formulae:

{sa(®), s(=")}Y Eapysy(2)é(z - 2'),
{aap(z), s,(2")Y EupBlap()6(z — '),
{aep() )Y = 0. (622

Derivation of algebra (6.22) was given in section 2. Prime above figure
brackets in (6.22) and below means that corresponding PB are calculated
in terms of short description parameters a(z),s(z); if prime above brackets
is absent then such brackets are calculated interms of sublattice spins s,(z),
applying algebra (6.22). Let us introduce reduced PB denoted by {...,...}",
which are to be calculated in terms of manysublattice spins s,(z) with
subsequent substitution of reduged quantities s7(z) insteed of s,(x). The
nextrelation holds:

{sa(2), 8jp(a")}’ = {sa(2), s1a(")}"

It follows now that reduced PB of density of summarised spin s,(z) with
arbitrary functional F(z;s,) of sublattice spins equals to PB of spin density
8o(z) with reduced functional F7(z;a,s), calculated with help of algebra
(6.22) ' '

{sa(2), F (2,542} = {sa(2), F"(2'; a(z")s(s") } . (6.23)

Using this statement it is easy to get the movement equation for s(z). Really,
Sa (1) = {3a(z), H}.

When ¢t » 7, bracket {..,,...} in the main approximation (in sence of ex-

pansion (6.17)) leads to the bracket {...,...}". Substituting reduced bracket
according to (6.23) we get

bo (2) = {sal2), Yy W = [ dPeem (2;0(2"), 8(2")).

or

63;543) = Eqofy (6_‘9%37@) + E;S(Tm_)a”(x)) . (6.24)



78 A. A IsayeEv, M. Yu. KovALEVSKY, S. V. PELETMINSKY

Now let us pass to derivation of movement equation for rotation matrix. In
the space-uniform case, according to (6.15), we have:

. O¢"(a,s)
aaﬁz aa'YE’YﬁPT' (625)

Using the principle of locality of quasi-equilibrium state this relationship
in the space-nonuniform case (in small gradients approximation) can be
rewritten in the form:

o (2) = en(2)erpo g . (6.26)

or in terms of PB (6.22):
25 = {a(e), 7).

Thus, closed system of equations for quantities s(z,t), a(z, t) is determined
by formulae (6.24), (6.26). These equations coinside with equations (3.40)
of section 3 and the Hamiltonian densities of equations (6.24), (6.26), (3.40)
which are connected by relationship (6.18).
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