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Abstract

The generalized hydrodynamic equations for a magnetic liquid mo-
del in an inhomogeneous external field using Zubarev’s method of
nonequilibrium statistical operator are obtained. In this model the
”liquid” subsystem is treated as classical one and the ”magnetic” sub-
system is described by means of quantum mechanics methods. The
properties of linearized hydrodynamical equations are analysed for a
weak nonequilibrium case. The equations for the time correlation func-
tions and forthe collective mode spectrum are derived. We stud also
some limiting cases when the dynamic variables of one of subsystems
can be neglected.

1 Introduction

An actual problem of the modern theory of liquids is the problem of micro-
scopic description of dynamic properties for a system of particles possessing
localized magnetic moments. These systems are also of interest in the theory
of magnetism since liquid magnets could have ideal soft-magnetic properties
due to their isotropy. Though the existence of ferromagnetism in equilib-
rium liquid state have been di. ussed from experimental point of view, such
a possibility is supposed to be proved in principle [1] and the experiments
with AuzzCoyr [2,3] confirm availability of short-range spin order in a fluid-
system. Another aspect of the investigations in this field is related to the
study of magnetic colloid suspensions {4,5], namely their general dynamic
properties and the influence caused by the "magnetic” subsystem, especially
of an external magnetic field. The question about the mutual influence of
the "magnetic” subsystem and the "liquid” one for liquid metals (in par-
ticular transitional 3d-metals [6,7]) can be also studied on a base of the
approach we propose here. v

Until recently, theoretical description of magnetic liquid dynamics was
based in large part on phenomenological approaches or on the Green-func-
tion method for some simple models . The analysis of the ferromagnetism
existence in equilibrium liquid state was done for some simplified models
in papers [6,8). Using functional integration method, the investigation of a
free energy, a "liquid” equation of state and spin wave spectrum for liquid
and amorphous magnets model was carried out by Vakarchuk, Rudavskij
and Ponedilok [9-—11]. In their papers the influence of magnetic interactions
on the structure of liquid was also studied. Subsequently, the theory was
generalized to the case of two-component liquid magnets by Vakarchuk and
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Margolych [12,13]). Some dynamic properties of liquid ferromagnets, namely
high-frequency behavior and oscillation spectrum were considered on basis
of phenomenological equations of motion by 1.O.Akhiezer and 1.T.Akhiezer
(14,15]. One should also recall the papers [16-18] where the equilibrium
statistical theory for description of the phase behaviour of ferro- (dipolar-)
fluids was developed.

A physical system where the proposing approach can be applied is a
ferrofluid, i.e. a suspension of small (about 100 A) particles carrying per-
manent magnetic (dipolar) moments [19]. There exist the voluminous liter-
ature on this subject but it is important to note some papers that are close
to the discussed problem. The equilibrium properties of ‘a ferrofluid were
studied by Kalikmanov [20] and Groh and Dietrich [18]. The investigation
of rotational diffusion on basis of a generalized Smoluchovski equation was
performed by Felderhof and Jones [21]. Some problems of transport phe-
nomena for the diluted suspension of ferroparticles were considered by Rubi
and Miguel [22].

To ascertain the fields of application of macroscopic dynamic equations
and the relations between various theoretical approaches one has conse-
quently to derive the exact hydrodynamic equations and equations for the
time correlation functions proceeding from microscopic description and then
to analyse them in detail. This paper is just dedicated to solve the problem
for a model of monoatomic magnetic liquid.

In the present paper the generalized hydrodynamic equations for a mag-
netic liquid in external inhomogeneous magnetic field are cbtained [29,30]
by Zubarev’s method of nonequilibrium statistical operator [25,26]. We
consider as an example the model proposed in [8] and generalized later in
[9]. For the case of small deviations from equilibrium state the generalized
hydrodynamic equations are derived, and their general analysis is carried
out. It is shown that in the limiting cases when the dynamic variables of
one of subsystems (liquid or magnetic) could be neglected, the well-known
hydrodynamic equations (magnetic hydrodynamics [23,24] or molecular hy-
drodynamics [27,28]) are reproduced. The equations for the time correlation
functions and the collective mode spectrum of the system are obtained as
well.

2 Description of the model

Let’s consider a system of N magnetic particles with spin S, in aliquid state
in an external inhomogeneous magnetic field. Hamiltonian of such system
can be written in the form

Aty = Hy + Hg(2), (2.1)
where
MNopd o1
Hy = 22__+§}:«1>(|r,,|) (2.2)
S

is a classical part of the Hamiltonian describing the "liquid” subsystem as
simple classical liquid. For subsequent calculations the potential ®(|ry|)
is to be specified and can be chosen as a Lennard-Jones potential, soft or
hard sphere one, etc. Hamiltonian of the "magnetic” subsystem can be
considered either as classical or quantum one. Here, as pointed out above,

we choose for Hg(t) the Hamiltonian of a quantum Heisenberg model. The
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general results which will be obtained here concern the other forms of spin
interactions as well. In particular, the spin interaction may be a dipolar
one (Stockmayer model) or, for example, the Hamiltonian of "magnetic”
subsystem may be chosen as Ising-like one, etc. For the Heisenberg model
of spin interaction we have

As(t) = 3 T I(raSs8 - [de (B, (23)
f#

where B(r,t) is an external inhomogeneous magnetic field. It is assumed
that field B(r,t) may vary in time but rather slowly, and the typical time of
its variation is much larger than the other relaxation times of the system.
The second term in the right-hand part of (2.3) describes interaction of

spins with an external magnetic field B(r,t) where m(r) is the density of
magnetic moment

N
m(r) = Z Ssb(r—ry). (2.4)
f=1

The Liouville operator of the system can be written as follows

iL =LY +iL5(1), (2.5)
where
oL Xpa 3
il = fz_:] et 512151.—/{‘1)(7'11) - J(’rﬂ)SfS(} X
N
*(797 = 757) + fE_:l a2 (B(rs;1)S1) 55,

is a ®liquid” part. In the second and third terms ofthe operator iL¥ we have

the contributions from a spin Hamiltonian, and iL5(t) is a "spin” part of
the Liouville operator

iLS(1)A = i[Hs(1), A] = $[Hs(t)A - A Hs(2)].

However, it should be stressed that for actual calculations it is often more
convenient to consider a "liquid” subsystem as quantum one and to perform
the classical limit only afterwards,

Among variables corresponding to an abbreviate description of hydro-
dynamic stage, the conservative quantities have to be considered, namely,
the densities of particles’ number #A(r), momentum p(r), total energy 5“(13,
and magnetic moment m(r), where

N

i(r) = Z 6(r —ry), (2.6)

=1

N
p(r) = Z psé(r—ry), (2.7)
f=1
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N 2 N
é(r) = Z{% + % Z [‘ZI)(’I'ﬂ) - J(Tf()SfS[]}ﬁ(r - l'f), (2.8)
f=1 I(I#f)

‘and m(r) is defined above. The Fourier transforms of dynamic variables
can be found using the definition

A(k) = [dr A(r)exp(ikr).
The set of so-called orthogonal dynamic variables { P,} with properties
(Pm Pﬁ) = ’Saﬁ(i)m P,,)

can be introduced by a linear transformation. Here

1
(4,8) = [ dr(A,p5Bos"o (2.9)
0

is an equilibrium correlation function, and (. ..)o means averaging with equi-
librium statistical operator pg. One can realize the transition to such set of
dynamic variables by Schmidt’s orthogonalization procedure to initial op-
erators with the definition for the scalar product in the form (2.9). As the

results, the orthogonal set of dynamic variables P, = {R, p, b, m} consists
of the variables

R(k) = (1 = Pm)i(K), (2.10)
fz(k) = (1= Pu)(1 - Pr)é(k), (2.11)
where
Povero= o ta(=K)o (k) ia(-K))5 ! (k) (2.12)
k
and

Prew = 2 (- R(=K))o (R(K), R(-K))g" R(k)  (2.13)
k

are the projection operators. For obtaining the last expressions we used the
equalities (p(k), &(—k))o = 0 which are valid in the case of classic treatment
of the "liquid” subsystem if & = {7, ¢, m}.

Now, the matrix of static correlation functions &(k) =|| &,5(k) || con-

structed with the use of a vector-column {P,} = {8, p, k, i} has the diag-
onal form

Pap(k) = (P(k), PH(~K))ap = Bap( Pa(k), Pa(-k)). (2.14)

Here f’+(k? is a vector-line. The dependence of dynamic quantities on wave
vector k will be further omitted and only when necessary it will be indicated
obviously.
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3 Nonequilibrium statistical operator

Nonequilibrium state of a system is described by the nonequilibrium statis-
tical operator p(x™;t) which is a solution of Liouville equation

d 3
ézp(xN; )+ iLp(x";t) = 0, (3.1)

where iL is the Liouville operator, and xV = {p,r,S}V.
Nonequilibrium statistical operator p(xV;t) is normalized to unity

Sp p(xV;t) =1, (3.2)
where

N
Sp () = o f BN S5,y (- )

To determine the nonequilibrium statistical operator p(x";t) from the
Liouville equation (3.1) one has to pose the boundary condition correspond-
ing to physics of the system under consideration. Let us suppose the
nonequilibrium statistical operator p(x"V;t) is equal to quasi-equilibrium
statistical operator p,(x/V;t) at initial moment of time ¢ = o, i.e.

p(xN; t)lt:to = pq(xN; tO)- (33)

The initial time tp tends to minus infinity at final stage of the calculation,
the thermodynamic limit having been performed. For a construction of

pq(xN ;t) we have to restrict ourselves a priori to a set of physical quan-
titles determining an abbreviate description of the nonequilibrium state.
Using Zubarev’s method [25,26] of nonequilibrium statistical operator, the
retarded solutions of the Liouville equation (3.1) with the boundary condi-
tion (3.3) can be found. The same result can be obtained from the Liouville
equation with an infinitesimal source (¢ — +0) in the right-hand side

%ﬁ@”ﬂ%+ﬁm&Nﬂ)=—dﬂfﬁﬂ—pﬂfﬁﬂb (3.4)

which destroys the symmetry of the Liouville equation with respect to time
inversion t — —1.

The quasi-equilibrium statistical operator p,(xV;t) can be found from
the condition of the informational entropy extremum under the additional
conditions that the mean values of dynamic variables are fixed and with
preservation of the normalization

Sp po(x";t) = 1. (3.5)

At our case this means that the average values of densities of particles’
number (#(r))?, momentum (p(r))’, total energy (£(r))* and magnetic mo-
ment (rh(r))! or the corresponding quantities for the orthogonal dynamic
variables R, p, h, and th are fixed. As a result, for the quasi-equilibrium
statistical operator p,(x";t) we obtain the expression

pa(xN;t) = exp{-2(t) = 3 P Fa(t)} = exp{-S(1)}, (3.6)
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where

®(t) =In Sp exp{- ZPaFa(t)} (3.7)

is so-called the Massieu-Planck functional. The set of intensive quantities
{F4(t)} can be determined from self-consistency conditions

(Pa>t = (pa)f; = Sp papq(xN;t)- (3.8)

The quantities { Fo(t)} are connected [29,30] with a local chemical potential,
a local temperature, a mean hydrodynamic velocity and an internal mag-
netic field by the linear transformation providing transition from the initial
set of dynamic variables {7, p, £, i} to the set of orthogonal dynamic vari-
ables {R,p,h,h}. In the all above and next expressions it is supposed
that integration over coordinate r (in the case of the space representation
of dynamic variables) or the summation over wave-vector k (in the case of
Fourier transforms of dynamic variables) are performed together with the
summation over a.
The equation (3.4) can be rewritten in the form

0 . .
(o +il+ Qap(xN1) = ~(ar 4 il) po(xit),  (39)
where
Ap(xN;t) = p(xN; 1) = po(xM;1).

Since the operator py(xV; t) depends on time only via F,(t) (or (P,)?), one
can introduce the projection operator P,(t) according the definition

d a
57Pa(x"51) = =Py (1) ilp(x;1). (3.10)
The operator Py(t) is known as the Kawasaki-Guntion projection operator

and acts only on the statistical operators. For p,(xV;t) in the form (3.6),
P,(t) has the following structure

Py ) = {pa(x"s1) - T E8Ek(Pa)}Sp (.) +

+2:—(’;gi%sp Ba(..) (3.11)

and possesses the following properties
Pa(t)p(t) = po(t),  Py(t)pq(t) = py(t).
With consideration of (3.10) the Liouville equation takes the form
(04 (L= Py()ik + e} Aplxs 1) = ~(1= Py)ilp(xVit).  (3.12)
Hence, a formal solution for the nonequilibrium statistical operator is
p(xN;t) = py(xN;t) —

— [ O = Py)E(E)py (kY )t (3.13)
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where
i
T(t,¢) = expy {~ / dr(1 = Py(r))il(r)} (3.14)

is a generalized operator of time evolution with regard to projecting. Let us
consider in (3.12) the action of P, and iL operators on the quasi-equilibrium
statistical operator p,(x™V;t). Taking into account the structure of the Li-
ouville operator (2.5), the result of its action can be written in the form

Py(t)ilpy(xN;t) = = T Fu(t) X
X zdr [pq(xN;t)]TP(t)ﬁa[pq(xN;t)]l"", (3.15)

where .

P, =iLP,. (3.16)
The equality

Po [dr(o ()7 & (py(os 1))~ =
= ({ldr(pq(xN;t))r PX (pq(xN;t))l"’ (3.17)

has been used here, where X is an arbitrary dynamic quantity depending
on coordinates of phase space, and P is the Mori projection operator

PO = (it g (R = () (3.18)

with properties

P(t) P(t) = 'P(t), P(t) (1 - P(t)) =0, P(t)Pa = Pa-

By contrast to the Kawasaki-Guntion projection operator, the operator
(3.18) acts only on the dynamic variables (or dynamic operators). Finally,
taking into account (3.13) and (3.15), the nonequilibrium statistical opera-
tor can be written in the form

t
p(xNt) = po(xN;t)+ [ dt'et=t) T Fo(#') x
—0 o

X ({ldf [g(xN s t)]™ T(t, ") [a(¥')[pg(xN; )], (3.19)
where . o s
Io(t) = (1 = P(t))iL(t) P, (3.20)

are the generalized fluxes. The operator of evolution T'(¢,t') is now defined
in terms of the Mori projection operator P(t)

t
T(t,) = eapy{— / dr(1 - P(r)) il(r)}. (3.21)
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The nonequilibrium statistical operator (3.19) describes the nonequilib-
rium hydrodynamic state of a magnetic liquid with the Hamiltonian (2.1) if
the dynamic variables are chosen as discussed before. An external inhomo-
geneous magnetic field B(r, ) is present in non-explicit form in p,(x";t) and
also in the Liouville operator L(t). The nonequilibrium statistical operator
is represented in the terms of generalized dissipative fluxes (3.20) describing
transport phenomena in a magnetic liquid. In accordance with the hypothe-
sis of an abbreviated description of hydrodynamic state, the nonequilibrium
statistical operator is a functional of the observed quantities varying in time
(the mean values of particles’ number, momentum, and energy densities as
well as the magnetic moment density). Hence, one should derive the trans-
port equations for them, i.e. the generalized hydrodynamic equations for
a magnetic liquid, in order to have self-consistent description of dynamic
properties of the system.

4 Nonlinear transport equations

To obtain transport equations for average values (2,)!, the equalities

o . A
a(Pa)t = (POI)t
can be used. The equalities (4.1) follow directly from the definition (3.18) of
Mori operator. Using the nonequilibrium statistical operator (3.19) in the
right-hand side of (4.1), the generalized transport equations for a magnetic
liquid can be obtained

(Do)l + (1 = P(£)) P! (4.1)

t
8 - . , - o
a(Pa)t=(Pa);+Z f dt'e = g 5(t, 8 )(Ps, Ps)Fa(t)dt!,  (4.2)

B oo

where

Pap(t,t') = OfldT (La(8)s (pg(xN; ) T(t, ) I5(1') (pg(xN; )=t x
X(Pg, Pg)™" = (Ia(t), T(t,¢)I5(t')y(Bs, P3)~! (4.3)

are the so-called generalized memory functions of a system or the generalized
transport kernels defined in terms of quasi-equilibrium statistical operator
pq(). Tt is important to note that the generalized transport coefficients of
the system can be represented in terms of the generalized memory functions
bap(t; ).

The transport equation system (4.2) for the chosen set of dynamic vari-
ables corresponds of an abbreviated description of nonequilibrium behaviour
of a magnetic liquid and may be applied to describe both strong and weak
nonequilibrium states of the system. In general, this is a system of nonlinear
equations. The intensive quantities Fy(t) entering in the quasi-equilibrium

statistical operator py(x";t) depend on the averages (P,)! via equations of
self-consistency (3.8). The last ones have to be determined from the system
(4.2). Besides, as the generalized memory functions dap(t;t') are unknown,
the question about the solutions of the system (4.2) may be considered only
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under the following condition: approximations for these functions are to be
based on analysis of the expression (4.3) and the corresponding equations
for the higher-order memory functions. However, it is well-known that the
restriction to the linear case is a good approximation for transport phe-
nomena in a fluid. The nonlinear equations are to be used only for special
problems of nonequilibrium physics, for example to describe the dynamical
behaviour near the phase transition point, and this is not a main subject of
this article.

For the weak non-equilibrium case, the transport equations (4.2) can be
essentially simplified. Let us consider this case in more detail and derive
the linear transport equations.

5 Generalized hydrodynamic equations

The behaviour of a system near the equilibrium may be described by set of
the linear equations for deviations of macroscopic quantities (Pa)t from the
equilibrium values (f’a)o = Sp P.po(xV), where pg is an equilibrium sta-
tistical operator at temperature 1/3. Assuming the deviations of intensive
quantities § F,(t) = F(t) — F? to be small, (here F are their equilibrium
values) the following expressions can be obtained from (3.6)-(3.7):

®(t) = o - E(ﬁa)o 6Fot(t), (5'1)
S(t) = So—Y_ AP, 6Fa(2), (5.2)
where
&9 =In Sp exp{- ZP"‘ 3, (5.3)
So=%0+ ) P, F2, (5.4)

and AP, = P, — (P,)o. The Gibbs edui]ibrium distribution reads

po = exp{—Po — E P, F°} = exp{-5s}. (5.5)

From the definition of quasi-equilibrium statistical operator (3.6), in linear
approximation we obtain

1
b= 1= % [dr APT) 6Fa®}p0r  (56)
“ o
where R .
AP,(1) = pgAP.pyT . (5.7)

Using the conditions of self-consistency (3.8) and taking into account the or-

thogonality properties of the dynamic variables P, the relationship between
the deviations of intensive and extensive quantities can be found

8(Fa)t = —(A Py, ABFi(2). (5.8)
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The equilibrium correlation functions (A, B) have been defined above by
the expression (2.9). As it follows from (3.19), the expression for linearized
nonequilibrium statistical operator reads

t
bp(t) = bpg(t) + 3 [ dt'eW=D§F, (1) x
o —o0
1 ~ \”
x [dr pf To(t —¢') (1~ PYiLAE, p}~. (5.9)
0

Using Fourier transformation for the time-dependent functions

f() = [ dw f(w)ezp(iwt),

the expressions (5.6) and (5.9) can be written in a matrix form:

1
6pg(w) = — / dr AP*(r)8F(w)po, (5.10)
0

(1-P)B o6 F(w), (5.11)

“1
bp(w) = 6p —}—/d 5 R
pw) = 85y() S e r (1= Py

where AP is a vector-line with the elements {AP,} and 6F(w) is a vector-

column with elements {6 F,(w)}. The linearized projection operator has the
following structure

P...=(...,APT)AP,APH) AP, (5.12)
Respectively, the evolution operator has the following form:
To(t - t') = exp{—(t — t')(1 = P)iln}. (5.13)

Using the linearized solution of the Liouville equation (5.11), it is easy to
obtain the set of the generalized hydrodynamic equations or, in the other
words, the linearized transport equations for the macroscopic quantities

(AP)!. From the definition
£(APY = iLAPY
it follows N .
{iw — i + d(w)}{AP) = 0 (5.14)
where .
i = (AP,APY), (AP, APT)F? (5.15)

is a frequency matrix, and

~ b Y - -
pe(w) = ((1 - P)P,m(l —P)P ) (AP,APt)"1 (5.16)

is a matrix of the memory functions. The matrix equation (5.14) is the
set of the linearized equations of generalized hydrodynamics for a magnetic
liquid in an external magnetic field B(r;t).
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It can be shown that the equations for the time correlation functions
have the similar to (5.14) structure. Really, the fundamental solution of the
Liouville equation (3.4) can be also written in the form

t
p(x;0) = po(xit) - [t 0= D i)}y (x5 ). (5.17)

For the case of a weak nonequilibrium behaviour after Fourier-transforma-
tion for the time-dependent functions, we obtain

1

_ _ . 1 P o

6p(w) = 6pq(w) +/ dT pom{P + ’I,LUAP+}p(1) TCSF(W) (5.18)
0 -

From the equations of self-consistency (3.8)

Sp {AP[65(w) — 8po()]} = O,

using the solution in the form (5.18), one finds

-~ - wt ~
zw6F(w) = —W(AP, AP )zéF(w) =

A s+ .
= {~Gparr (AP AP ) +2 JiF(w), (5.19)
where _ 1
+ z +
(4, BY)" = (A, =7 BY) (5.20)

with 4,B = {AP,AP} being the matrices of Laplace transforms of the
corresponding time correlation functions and z = iw + .

A comparison between (5.14) and (5.19) in view (5.8) shows that the
matrix equation for the time correlation functions can be written in the

form . . . .
{ 2— i + $(2) (AP, APT)* = (AP,APT), (5.21)

where (AP, AP*)? is the matrix of Laplace transforms of the time corre-
lation functions. Another result that follows immediately from such math-
ematical treatment and can be useful for subsequent calculations is the
expression for the matrix of memory functions

1 A at 1

- _ “ ;+z_ P Atz .
Ba) = (PP = (P AP o (AP P ) i 6

22)

It is important to note that as it follows from the definition (5.20), the ma-
trix (AP, AP*)? can be expressed in terms of the retarded Green functions

1
GOt —1') = —i(t - t') / dr (A()p5BY (£)p3 Vo (5.23)

where 6(t) = 1 or 0 for t > 0 or t > 0 correspondingly.
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The spectrum of collective modes can be determined from equation
Det | z — iQ% + ¢(2) |= 0, (5.24)
giving the poles of the retarded Green functions (5.23) constructed on the
set of dynamic variables {APat}.

Now, for the calculations of the time correlation functions, the general-
ized transport coefficients connected with the memory functions ¢(2), and
the collective mode spectrum, one has to find elements of the frequency
matrix §f)o and the matrix of memory functions ¢(z). Using certain ap-
proximation for memory functions (Markovian, Gaussian, etc.) the prob-

lem can be reduced to the calculation of static correlation functions. The
investigation of these questions will be presented elsewhere.

6 The limiting cases

The sets of equations (5.14) and (5.21), the structure of frequency matrix
(5.15) and the matrix of memory functions (5.16), the matrix equation for
collective modes (5.24) are represented in form allowing to study some lim-
iting cases. Let us consider the cases when the typical time of one or several
dynamic variables are much larger than the other ones. It means that the
system can be considered as a "quasi” equilibrium one interms of the "fast”
dynamic variables for the time scale of the "slow” ones. From view-point of
general approach it is possible to eliminate the "fast” dynamical variables
from the hydrodynamic description. In these cases the system of equations
(5.14) simplifies.

(a) A pure "liquid” dynamics. The set of equations (5.14) transforms
to the molecular hydrodynamic equations of a simple classic liquid [27,28],
the variables of the "magnetic” subsystem having been formally neglected.
Meanwhile, the matrices iQg(k) and ¢(k;t — ') transform to the matrices

Q% (k) and ¢*(k;t — t') well-known from fluid hydrodynamics, where
0 Lk o0
Q5(k) = |- i,k 0 i0L(k)
0 iﬂfp(k) 0
with matrix elements
i05p(k) = (iL*Pa(k)A Ps(—k))o(A Po(k)A P5(-k))5 2, (6.1)
where P, (k) = {a(k), p(k), hr(k)},

hi(k) = €1(k) = (E(k)R(=k))o(A(k)A(-k))5 (k) (6.2)
and £p(k) are the "liquid” part of enthalpy and energy densities, respec-

tively. The correlation function (ﬁ(k)ﬁg—k))o/N = §(k)is a static structure
factor. For the matrix of the memory functions in this case we have

0 0 0
PGty = | 0 dp(kt) ok (ki)

0 ¢ (kit) Bfy(k;t)
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The nonzero elements d)f;ﬁ(k; t,t)
Prp(ki ) (1= PL)B(k), Ty (1)(1 - PL)B(-k)) (AB(K)AB(-K))5™,

il

Phalkit) = ((1-PoYb(k), TE@)(1 - PL)(-K)) (Ah(K)AR(-K))5?,
b (kit) = ((1-Po)h(k), TEH)(1 - Po)b(-k) (Ap(K)AB(~k))5Y,

shalkst) = ((1—Pr)h(k), TEE)(1 - PLA(—K)) (A(K)AR(-K))7,

are connected with the generalized transport coefficients of a liquid [27,28].
The expressions for the Mori projection operator P, and the evolution oper-
ator TJ(t) can be found, the variables of ”magnetic” subsystem having been
cancelled in (5.12) and (5.13). It is important to note that the averaging
in this limiting case has to be performed with the help of the full statis-
tical operator and is therefore more complicated than in case of a simple
liquid. On the other side, in our case the Liouville operator has additional
terms due to "spin” subsystem. In the simplest case, considering the "mag-
netic” subsystem as equilibrium, the model of an ”effective” liquid with the
"effective” potential of interaction depending on the equilibrium intensive
quantities of "magnetic” subsystem can be proposed. Then, the methods
developed for a simple liquid can be used.

(b) A pure magnetic” dynamics. The hydrodynamic equations for
"magnetic” subsystem can be derived neglecting formally in the set of equa-
tions (5.14) the variables of "liquid” subsystem

d

5; (Amm(k) — i (k)(Ar(k)) — i (k){Ahs(k))* +

t t
+ / dt' ¢ (ki1 — ) (Arn(k))" + / dt'$3,,(k; t — t')(Aks(k))" = 0,(6.3)

%(Afls(k))t — i@ (k){Amm(k))* — i, (k)(Ahs (k) +

t t
+ / dt'¢3 (k;t —t){Arm(k)) + / dt' gipn(k;t — 1) (Ahs(k)) = 0, (6.4)
where hg(k) is a "spin” part of enthalpy density.
hs(k) = (1 - Par)és(k).

The elements of frequency matrix i25(k) have the following structure
iQm (k) = (iLin(k), Am(-k)) (Arn(k), Afa(-k)) 2,

i07 (k) = (iLhs(k), Am(-k)) (Ar(k), Am(~k))™1,
iS5, (k) = (ilwn(k), Ahs(~Kk)) (Ahs(k), Ahs(=k))1,

i, (k) = (iLhs(k), Ahs(=k)) (Ahs(k), Ahs(—k))™.
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Respectively, the expressions for the memory functions or, in the other
words, for the transport kernels are

$55(k; 1) = ((1 = Ps)Pa(k), TS (8)(1 - Ps) Py(-k)) (APs(k), ABs(—k))™!

with Pu(k) = {m(k), hs(k)}. The functions ¢3,,(k;t), ¢5.(k;t) (or
d);fbh(k; t)), and ¢5, (k;t) are connected with the generalized transport coef-
ficients of the spin diffusion, the thermal diffusion, and the thermomagnetic
diffusion, respectively. The projection operator Ps and the operator of
evolution T§ (k,t) for the "spin” system in external magnetic field can be
obtained from (5.12) and (5.13), the variables of ”liquid” subsystem having
been canceled.

In fact the equations (6.3) and (6.4) can be also used for the descrip-
tion of a solid or an amorphous magnet dynamics. The question is only in
which way the averaging is defined. For a solid magnet the averaging is to
be performed with the help of the equilibrium statistical operator 55 with
the Hamiltonian (2.3) under condition that the positions of the particles
are fixed in Jattice. Similar equations for a solid magnet have been derived
by Schwabl and Michel [23]. For dynamics of an amorphous magnet, the
averaging over the ”spin” subsystem variables have to be on the base of
p5 as well, but the averaging of the equations for observed quantities over
positions of the particles is to be performed afterwards with the correspond-
ing distribution function. In our case we must consider, as the definition,
the averaging with the full equilibrium statistical operator jg of a magnetic
liquid, having the Hamiltonian (2.1).

As it follows from the expressions for iﬂgﬁ(k) and qbgﬁ(k; t), the influence
of the "liquid” subsystem on the "magnetic” dynamics is connected with two
reasons. First, the averaging is performed by the full equilibrium statistical
operator pg. Second, the new terms arise in the coefficients of the equations
(6.3) and (6.4) comparing with a pure solid magnet from the dynamics. It
can be shown considering the expressions for the derivatives of ra(k) and

hs(k). We obtain from the definition:

z - N '(kp ) y
m(k) = ilm(k) = - 3 =L Syexp(ikry) +
=
N o .
+ > iLsSyexp(ikry), (6.5)
=1

hs(k) = iLhs(k) = iLhs(k) + iLshs(k). (6.6)

Only the last terms in (6.5) and (6.6) have a pure magnetic origin.

(c) A pure "magnetic” relazation. In the case of isothermal processes,
i.e. when of the energy transport for the "magnetic” system is not so impor-
tant, the equation for a mean magnetic moment (m(k))! can be obtained
from the equations (6.3) and (6.4)

FABTOOY 05, () (AR + [ d65, kit - ¢)(A(k))"= 0.(6.7

In the other words, it is the generalized Bloch’s equation in an external
magnetic field B(r;t). The expressions for ¢35, (k;t — t') are similar to the
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former one, but the projection operator is defined using only one dynamic
variable, namely m(k) (see (2.12)).
Taking into account that

(Am(k))! = —(Am(k), Am(-k)) 6b(k, ),

where éb(k,t) = b(k,t) — B(k,t), and b(k, ) is an internal magnetic field,
the equation (6.7) can be rewritten in the other form in which an exter-
nal magnetic field B(k,t) will be presented obviously. Such equation was
studied by Robertson [31] and later by Kalashnikov and Auslender [24].

In the case when an external field can be represented as a sum of
two terms describing respectively time-independent and a weakly time-
dependent parts of an external field, the expression for the matrix of dy-
namic susceptibilities x(k,w) can be derived on the basis of fluctuation-
dissipative theorem and equation for the time correlation functions. After
some mathematical manipulations, the result can be written as follows

_ ——iQS ()+¢ (kW — t€)
x(kow) = w — 183 (k)+¢mm(k w— € )

where x(k) = —3(Am(k), Am(k)) is the tensor of differential static mag-
netic susceptibility, and ¢ — +0 as mentioned above.

As it follows from (6.8), in contrary to the solution of usual Bloch equa-
tion [32], the dynamic susceptibility has the proper static limit x(k,w) —
x(k) when w — 0. In the other limit when the relaxation term is very large
and ¢3,,.(k;w — i€) — 0o, we also obtain the correct result x(k,w) — x(k).
It is necessary to note that in our approach as it follows from (6.5), the

relaxation term @3 (k;w — 7€) has a contribution which is connected with
the diffusion of partlcles Such additional term for a weak inhomogeneous
system was phenomenologically introduced by Torrey [33].

(d) Simple case of a "mized” dynamics. We consider also one example
of so-called "mixed” dynamics when the typical time scale of two dynami-
cal variables are much larger than the other ones, but the first variables are
connected with the "liquid” subsystem and the other are with the "mag-
netic” subsystem. In particular, the dynamical fluctuations of the density
particles’ number and the density of magnetic moment will be considered.
For this case the hydrodynamic equations read:

0
Jt

x(k), - (6.8) -

—(AR(K))t — ifhun(K)(AR(K)) — iQym (k) (Arn(k)) +

+/ dt' (ks £ — £)(AR(K +/ dt' b (ks ¢ — ) (Ara(k)) = 0, (6.9)

d

o {AT(K))" — (k) AR(K))" — il () (Ari(k))* +

+ / dt’ $m (k3 1 — 1) (AR(K))" + / dt' B (ki t — ¢') (A (K))" = 0,(6.10)

-0

where R(k) was defined before by the expression (2.10).
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Solving these equations with respect to one of the variables, the expres-
sions for the renormalized memory functions can be obtained

FaV (ks 2) = dn(k; 2) — (=i (k) + Prm (ks 2)) X

1 1 it * -
X 2=10mm (K)+dmm (K;z) (_ZQMN(k) + ¢mN(k9 Z))a (6.11)

) (X;2) = b (k5 2) — (—iQmie(k) + Prun(k; 2)) X

1 . 7 .
X it () T B (557) (-—zﬂnm(k) + dum(k; z)). (6.12)

As it can be seen from (6.11), (6.12), the subsystems under consideration de-
pend one on the other on the dynamical level. The expressions (6.11)-(6.12)
may be analysed for the specified type of an external field and interparti
cle interactions. This problem will be studied elsewhere. However, from
the general structure of (6.11) and (6.12) we can conclude that the spin
dynamics will be described by more complicated equation than the Bloch
equation, even though the Markovian approximation for the memory func-
tions are used. Moreover, the another equation will describe the coupled
dynamics of the ”liquid” subsystem, namely, the density fluctuations in our
case.

7 Conclusions

A general formalism of Zubarev’s method of the nonequilibrium statistical
operator is applied to derive the generalized hydrodynamic equations of a
magnetic liquid. Our calculation starts from a rigorous equation for the
statistical operator of a system containing particles with localized spins and
with consideration both translational and magnetic degrees of freedom. This
approach has permitted microscopic derivation of the equations for the time
correlation functions (the retarded Green functions) and the equation for the
collective mode spectrum. The microscopic expressions for the relaxation
kernels of these equations were also obtained.

The limiting cases, where assumption of a large difference between the
typical time scales of two groups of the considering dynamic variables is
valid, were studied. In particular, the limiting cases for a pure "liquid”, a
pure "magnetic” and a "mixed” dynamics were analysed. For the first two
cases the known hydrodynamic equations were found.

The sets of equations (5.14), (5.21) and the equation for the spectrum of
collective modes (5.23) can be used for study of nonequilibrium behaviour
for particular cases of a model Hamiltonian (2.1).
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